WEKO3
アイテム
Nonintegrable Deformation of Integrable Three-Body Problem
https://kindai.repo.nii.ac.jp/records/11301
https://kindai.repo.nii.ac.jp/records/11301a5567ea9-e4ec-46fd-a7db-3fa07c3edcdb
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | ☆紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2015-06-09 | |||||
タイトル | ||||||
タイトル | Nonintegrable Deformation of Integrable Three-Body Problem | |||||
言語 | en | |||||
著者 |
Iyetake, Toshimasa
× Iyetake, Toshimasa× Matsuyama, Akihiko× Nakahara, Mikio |
|||||
言語 | ||||||
言語 | eng | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | integrable system | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | nonintegrable system | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | level statistics | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Bethe Ansatz | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | departmental bulletin paper | |||||
著者 所属 | ||||||
値 | 近畿大学 | |||||
著者 所属 | ||||||
値 | 静岡大学 | |||||
著者 所属 | ||||||
値 | 近畿大学 | |||||
著者所属(翻訳) | ||||||
値 | Kinki University | |||||
著者所属(翻訳) | ||||||
値 | Department of Physics, Shizuoka University | |||||
著者所属(翻訳) | ||||||
値 | Kinki University | |||||
版 | ||||||
出版タイプ | VoR | |||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||
出版者 名前 | ||||||
出版者 | 近畿大学理工学総合研究所 | |||||
書誌情報 |
理工学総合研究所研究報告 en : Annual reports by Research Institute for Science and Technology 巻 27, p. 7-24, 発行日 2015-02-01 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 09162054 | |||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | [Abstract]Three-body problem on a circle interacting through a Guassian potential is solved both classically and quantum mechanically. The Poincare section of the classical system is analyzed for various potential widths, energies and initial conditions and it is shown that the system is chaotic when the energy is comparable to the potential height while it is regular for energies much smaller or larger than the potential height. In quantum mechanics, the energy spectrum of three bosons is considered. A three-boson system with the δ-function potential is solved exactly by the Bethe Ansatz method. Then the δ-function potential is replaced by a Gaussian potential. The eigenvalue problem of the three-body Schrodinger equation is solved by diagonalizing the Hamiltonian with symmetrized plane-wave basis. The change of the level statistics is studied as the width σ and the energy E are varied. It is found that there exists a region in the σ-E plane where the level statistics is given by the Wigner distribution, which indicates the chaotic behavior in the underlying classical system. This is also confirmed by studying the Brody parameter of the level statistics. | |||||
フォーマット | ||||||
内容記述タイプ | Other | |||||
内容記述 | application/pdf |