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Abstract

Three-body problem on a circle interacting through a Guassian potential is solved both classically
and quantum mechanically. The Poincaré section of the classical system is analyzed for various poten-
tial widths, energies and initial conditions and it is shown that the system is chaotic when the energy is
comparable to the potential height while it is regular for energies much smaller or larger than the potential
height. In quantum mechanics, the energy spectrum of three bosons is considered. A three-boson system
with the d-function potential is solved exactly by the Bethe Ansatz method. Then the J-function potential
is replaced by a Gaussian potential. The eigenvalue problem of the three-body Schriodinger equation is
solved by diagonalizing the Hamiltonian with symmetrized plane-wave basis. The change of the level
statistics is studied as the width o and the energy E are varied. It is found that there exists a region in
the o-F plane where the level statistics is given by the Wigner distribution, which indicates the chaotic
behavior in the underlying classical system. This is also confirmed by studying the Brody parameter of
the level statistics.
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1 Introduction among which we adopt one that a quantum mechani-
cal system exhibits quantum chaos when the classical
counterpart is chaotic. Quantum chaos so far studied

Quantum chaos is an interesting and important sub- 1 .< been realized by (1) special boundary conditions,

ject in contemporary physics [1, 2, 3]. There are g,ch a5 a particle in the Sinai’s billiard or the stadium
several definitions of quantum chaos in the literature,

*Present address: NihonSoftware Corporation Ltd., 7-20-1, Fukushima, Fukushima-ku, Osaka 553-0003, Japan



billiard [4, 5, 6], by (2) special choices of the met-
ric, such as a particle in a constant negative curvature
space [7, 8], or by (3) a judicious choice of an inter-
action potential [9].

In the present paper, we propose another possibil-
ity of quantum chaos, namely, a three-boson system
on a circle interacting with a Gaussian two-body po-
tential. This is quite a simple system but has never
been studied in the light of quantum chaos, so far as
the authors know.

The rest of the paper is organized as follows. The
next Section is devoted to the analysis of the classi-
cal system. We first define the problem and solve the
Hamilton equations of motion using the symplectic
integration method. We obtain the Poincaré sections
for various potential widths and system energies. In
Section III, we solve the quantum-mechanical three-
body problem in which the particles are interacting
through the d-function potential. This system is ex-
actly solvable by the Bethe Ansatz method. There
are three quantum numbers and the system is com-
pletely integrable. The level statistics of this system
1s studied and is shown to obey the Poisson distri-
bution. In Section IV, the j-function potential is re-
placed by a Gaussian potential with the width o. The
exact solution of this system is not known so far and
the system is conjectured to be nonintegrable. The
Schrodinger equation is solved by writing the Hamil-
tonian in the plane-wave basis and then diagonalizing
it. The number of the basis being finite, this calcula-
tion is variational in nature. The change of the level
statistics 1s studied in Section V as the width o 1s var-
ied from zero to finite values. It is shown that if the
width is large enough the potential is almost constant
and the system becomes essentially free. For small o,
however, the spectrum exhibits level repulsion char-
acteristic of a nonintegrable system. The final Section
1s devoted to Summary. There are two Appendices,

the first of which explains the symplectic integration
method used in Section II while the second is devoted
to the detailed derivation of the matrix element intro-
duced in Section IV.

We will use the unit in which A = 2m = 1, m
being the particle mass.

2 Classical Theory

In the present Paper we consider a three-body system
on a circle. The Hamiltonian is taken to be

3
b = pr + Vo (21, T2, 73)

=1

1)
where the second term is the potential energy given
explicitly as

Va(xla X2, 333)

= Zvo(azi — Z;)

i<j
2c (z; — x; —mL)?
- S o
1<J meZ

2)

where x; € [0, L). The parameter ¢ > 0 denotes the
strength of the repulsive potential while o > 0 is the
potential width. Since the system is defined on a cir-
cle, the coordinate z; is identified with x; + L. The
summation over m makes the potential periodic over
the interval [0, L], namely

Vo.(scl —+ L) Vg(ﬁﬁl), VU(CUQ -+ L) = Vg(l'g),
Vo(zzs+ L) = Vy(x3).
Figure 1 shows the potential profiles v, (z) for sev-

eral choices of 0. Note that the potential is essentially
constant (~ 6¢) for ¢ > 0.5.
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Figure 1: Potential profile v, for ¢ = 0.05,0.1,0.2

and 0.5.

Before we start our analysis, let us consider the
case o = 0. The potential becomes the )-function in
this limit. Then the particle is free between two con-
secutive collisions and exchange their momenta on
each collision. Suppose the particles are numbered
as 1, 2 and 3. Then the trajectory in this case is ex-
actly the same as that for a free system except that the
particle labels are exchanged on each collision. Thus
it is not difficult to predict the particle positions at any
time in the future and the system becomes completely
integrable.

We now consider the general Hamiltonian (1)
with Eq. (2). Let us introduce the following coor-
dinate transformation

1

X = 31/2 ($1+1’2+$3)
1

Y = '2—1/—2 (331 — ZDQ) (3)
1

Z = (1'1 + Ty — 21‘3)

61/2

The center-of-mass coordinate X, which is clearly
conserved, decouples from the rest of the coordinates.
Thus one may put, without loss of generality, X = 0

and the corresponding momentum Px = (0. The
Hamiltonian is now written in terms of the relative
coordinates as

H = P}+4 P2

+(2737f/20 Z [exp (—(21/2Y = mL)2/202)

+ exp (—(21/2Y + 627 — 2mL)*/85%)
+exp (—(22Y — 622 — 2mL)?/80%)] .
“4)
Once the total energy E is fixed, the independent de-
grees of freedom may be taken Y, Z and P for ex-

ample. Figure 2 shows the three-body potential in
Eq. (4) for 0 = 0.1 as a function of Y and Z.
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Figure 2: three-body potential with o = 0.1 as a func-
tion of Y and Z. The peak at the center is the point
where the three particles meet.

The above Hamiltonian cannot be solved exactly
and one has to resort to certain numerical analysis.
Here we employ the symplectic integration method
outlined in Appendix A. This scheme is ideal for our
purpose since it (almost) conserves the total energy



without an accumulation of errors for an arbitrary du-
ration of time. In our calculation we employed the
fourth-order symplectic method. If the infinitesimal
time step is denoted by 7, there exists a “Hamilto-
nian” H which is exactly conserved and differs from
H by O(7*). Accordingly if 7 is sufficiently small,
the variation of the energy is negligible.

In actual computation, only a finite number of
terms are kept in the m-summation. This is because
the domains of the coordinates are restricted within

[0,32L),
(_2—1/2L7 2—1/2L) :

X €
Y €
Z € (—(2/3)2L,(2/3)"L).

®)

Therefore, the summand with a large m is exponen-
tially small compared to the terms with small m. It
is important to realized that the coodinates X, Y and
Z have to be normalized so that they remain in the
above domain. This is done by carrying out the in-
verse transformation (X,Y, Z) — (1,2, x3), then
normalize z; by adding (or subtracting) mL, (m €
Z) so that all of z; stay in the interval [0, L). Then
one transforms {z;} back to (X,Y, Z). This proce-
dure is repeated at each step of the symplectic time
evolution.

© ®

Figure 3: Phase space trajectories and corresponding
Poincaré section with L = 1,¢ = 10%,0 = 0.1 and
several choices of the total energy £. (a) is a phase
space trajectory and (b) is the Poincaré section both
for £ = 103. (c) is a regular trajectory while (d) is
a chaotic trajectory both for £ = 10%. The Poincaré
section for this energy is given in (e). (f) is the trajec-
tory for £ = 2x10°. The coordinates Y and Z satisfy
—212 ¢« ¥ < 272 gnd (232 < & < (2)/3)12
in all the figures while the scale of Py is arbitrary.
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Figures 3 are the trajectoris and Poincaré sections
with L = 1, ¢ = 103, o = 0.1 and several choices of
the total energy £. (We have chosen a large potential
strength c to make the difference of the energy levels
of an interacting system and those of a free system
manifest in the corresponding quantum theory, see
Sections III and IV.) Figure 3 (a) shows the trajec-
tories in the (Y, Z, Py)-space for E = 103, which
is much smaller than the height 2¢/ ((27)Y%0) ~
7980 of the two-body potential. The corresponding
Poincaré section is given in Fig.3 (b). It is impossi-
ble for two particles to exchange their positions after
collision in this case. Similarly, Fig.3 (c), (d) and
(e) show the trajectories and the Poincaré section for
E = 10%, which is slightly above the potential height.
The trejectory (c) is regular while (d) is chaotic. If
the total energy E is much larger than the potential
height, the particles do not detect the existence of the
potential and the system becomes almost free. Figure
3 (f) is the phase space trajectory for £ = 2 x 10°. It
is seen that the motion tends to be confined on a fixed
Py-plane as the energy increases. This is because the
energy is approximately given by E = P2 + P2 in
this region and both P and P, are approximately
conserved separately. For these high energies it is
very difficult to obtain the Poincaré sections across
the Py = 0 plane since the momentum Py hardly
changes the signature.

The reason for the chaotic behavior when E' is
of the order of the potential height is easily under-
stood. In this energy range the total energy is dis-
tributed among three particles and the relative energy
may or may not exceed the potential height when two
particles collide. Accordingly it is very difficult to
predict whether the particles pass through or reflect
each other after a particular collision. If, on the other
hand, the total energy is much smaller than the poten-
tial height, particles never exchange their positions.

If the total energy is much larger than the potential
height the potential energy may be negligible and the
particles are almost free. Thus in the latter two cases,
the motion is expected to be regular. The phase space
trajectories and the Poincaré sections in Fig.3 confirm
our claim.

3 Quantum Three-Body Prob-
lem with j-Function Potential

Now let us turn to the quantum theory. Consider three
bosons on a circle with the circumference L inter-
acting through 4-function repulsive potentials. The
Hamiltonian of this system is given by

3
Hy=-) 07+2c) b8(z;—z;) (6)
i=1

1<J

where x; € [0,L). This potential is obtained from
Eq. (2) by taking the limit ¢ — 0. The periodic
boundary condition implies ©(xz; + L) = ¥(x;) (1 <
i < 3) and the bosonic symmetry requires that the
wave function be symmetric under the exchange of
xZ; and x e

The spectrum of the above Hamiltonian is com-
pletely solvable by the Bethe Ansatz method. By ap-
plying the method to the present case, we obtain the
total energy

E=) K (7)

where the quasi-momenta or the “rapidities” k; are

_11_



determined by the conditions

kiL = 2mn; —2 [tan_l (kl . k2>
c
4 =L 2 — B
c
koL = 27mng — 2 {tan_l <k2 - kS)
c
ko — k
+ tan? ( e 1)] (8)
&
ks, = 2mng— 2 [tan_l <k3 . kl)
e

+ tan ! ks — Kz
c .

In the above equations, n; are mutually distinct inte-
gers. (The above conditions do not require the mu-
tual difference. However the wave function identi-
cally vanishes when n; = n;, (i # j).) The above
equations also show that the spectrum is determined
by the combination cL except for the overall normal-
ization given by L. Note also that k; are determined
by the quantization conditions (8) and are different
from the free ones k; = 27n; /L. Accordingly Eq. (7)
takes the interaction into account, although it looks
as if it were the total energy of a free system. The
quantum numbers k; are conserved since the parti-
cles simply exchange k; under a collision. Thus the
Hamiltonian (6) is completely integrable.

The study of the /N-body system interacting
through the d-potentials has concentrated on the ther-
modynamic limit N — oo so far [10]. Here, in con-
trast, we take N = 3 as above and concentrate on
the individual energy levels and their level statistics.
Before we proceed further, we specify the relevant
Hilbert space of our analysis to avoid degeneracies
due to the symmetry of the problem. Our system be-

ing interacting through two-body potentials, the total
momentum

3

3
KG:Z]%:%T;W

=1

®)

is a good quantum number and the Hilbert space H
is divided into a direct sum of subspaces indexed by

Kg,
H =D Hre-
Kg

In other words, the Hamiltonian is block diagonal and
the matrix elements between states with different K
vanish. If the total momentum K is introduced, the
energy F is separated into the center-of-mass motion
and the relative motion as

(10)

K2
E.:—G_J’_E)

3 (11)

where the first term is the center-of-mass energy and
e = > .k} — (35, ki)?/3 is the energy of the rela-
tive motion. Since we are interested only in the rel-
ative motion, the trivial contribution from the center
of mass motion must be subtracted. Here, without
loss of generality, we can restrict ourselves within
the subspace H, where the total momentum K van-
ishes and the total energy solely comes from the rel-
ative motion. This choice is also consistent with our
classical analysis in Section II, where we have put
& = Pei= [

Even within the subspace H,, we should not take
all the vectors |n,ny,ng) such that  °.n; = 0. We
rather have to take the following symmetries into ac-
count.

(1) The Bose symmetry; namely the vector is invari-
ant under the interchange of n; and n;. In other
words, the wave functions belong to the symmet-
ric representation A; of the permutation group Ss.
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Therefore we fix the ordering as n; > ns > ng for
example.

(2) The parity; under the map {n;} — {—n;},
the rapidities change as {k;} — {—k;} and hence
the energy £ = ), k7 is left invariant. This de-
generacy is removed if we keep states with even
parity only. For example, from |2,1,—3) a par-

1
ity even state [+) = —=(|2,1,—3) + |3,—1,—2)) is
21/2

obtained. The parity odd state

1
should be discarded.
In summary, our choice of the set {n;} satisfies

n€Z, ni+ny+n3=0,n >nyg>ng (12)

and the states must be parity even.

Now we are ready to study the level statistics of
the Hamiltonian (6). We have taken L, = 1 and
¢ = 10% in our computation. As mentioned before,
the energy levels are determined by the combination
cL and we are free to put L = 1. We have chosen
a large potential strength c since tan™'[(k; — k;)/c]
in Eq. (8) is very close to 7/2 for large k; — k;
unless ¢ 1s small so that the larger eigenvalue be-
comes almost identical to the free one. We have
solved the Bethe Ansatz equations (8) numerically
for —200 < n; < 200. The number density is ap-
proximately constant with the average py = 0.0039
‘in the interval D = {e]4 x 10° < € < 2 x 10%}. If the
eigenvalues are sorted in an increasing order, the level
spacing is defined by the difference of the two neigh-
boring levels, s, = €,41 — €,. Figure 4 shows the
level spacing distribution P(s) of the present spec-
trum taken over the range D). Also shown in Fig.4 is
the Poisson distribution function

P(s) = poe™"°%. (13)

The agreement between our numerical result and the
above distribution function is obvious. This is the
consequence of the “theorem” by Berry and Tabor
[11] claiming that any completely integrable system
with more than two degrees of freedom, except har-
monic oscillators, has exponential level spacing dis-
tribution.

P(s)
0.004

0.003

0.002

0.001

s
. 500 1000 1500 2000

Figure 4: Level spacing distribution of the spectrum
of the quantum three-body system with the 0-function
potential.

4 Quantum Three-Body Prob-
lem with Gaussian Potential

Having analyzed the integrable three-body problem,
we now consider the deformation of the J-function
potential to Gaussian potentials and solve the de-
formed Schrodinger equation. So far as the authors
know, this problem has not been solved exactly and
we have to resort to numerical computations. In the
present Paper we write the Hamiltonian with respect
to the (symmetrized) plane-wave basis and then di-
agonalize it. The number of the plane waves is, of
course, finite, which amounts to truncate our Hilbert
space. Therefore our approach is considered to be
variational.
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Let us consider the Hamiltonian

282—{-2@0 L5 — 2y) (14)
1<J
where v, is given by Eq. (2) and z; € [0, L) is the

particle position of the i-th particle on a circle of the
circumference L. Since the total momentum is con-
served, the Hilbert space H is again decomposed into
subspaces of a definite total momentum K as

’}'[ = @%KG"
Kg

Without loss of generality, we may choose the sub-
space H, as in the previous Section and analyze the
spectrum of the Hamiltonian within this subspace.
Let us write the Hamiltonian with respect to the sym-
metrized plane waves, which are made of one-particle

1
(3L%)
1

<£L‘1,x2,$3|k1,k,k> =

_ : {eik(—211+x2—!—z3) s eik(wl—ng—i—mg) o 6ik(w1+12—2z3)}

(3L3)Y
where use has been made of the relation k; + 2k = 0.
@i11) If k1 = ky = k3 = k, we have

1

ik(z1+z2+23)
[,3/2 ’

<£U1,33’2,Q’)3|]{,' k k‘) (18)

—= €

Since ) . k; = 3k = 0, the only basis of this form is
ki =ko=ks=0.

The choice of the basis vectors is similar to that
employed in the previous Section with proper modi-
fications. That is, if we write k; = 2mn;/L, the ket
|k1, ko, k3) has to satisfy, besides the identity > n; =
0, the following conditions.

(1) n; € Z and they are ordered in such a way that
n1 > ng > ng. There is no reason to reject the possi-
bility n; = n; any more.

plane waves of the form

1 2
(z|k) = —=€** k= —T—n,

i 7 (15)

where n 1is an integer. After symmetrizing
three one-particle states, we have the basis
(x1, T2, 3| k1, ko, k3) which takes the following form
(l) If kz 7é k,'j7 1 7é j, then

(z1, 22, T3] K1, K2, K3)
1

— W Z exp [’i(k’lfﬂpl + k‘zxpg + k3$p3)] ;
’ P

(16)
where P is the permutation of three indices.

(i1) If two of k;’s are identical, k; # k2 = k3 = k say,
the basis is given by

o {e (k1z1+k(z2+23)) +e(klrtz+k(w3+m1)) _|_ez(k1m3+k(x1+m2))}
1/2

17)

(2) To avoid degeneracies between a state and its
mirror reflection, we keep even-parity states only.
Namely, instead of |2, 1, —3) and |3, —1, —2) say, we
only keep the combination

1

+) =51

<|27 1) _3> + |37 _17 _2>) :
(We occasionally write |ni,ng,n3) instead of
|k1, ko, k3) to avoid writing ubiquitous 27 /L. Which
notation is employed should be clear from the con-
text.)

Now we are ready to evaluate the matrix ele-
ments of the Hamiltonian (14). Let us define the sets
K = {ki, ko, ks} and K’ = {k!, k}, k3 } and the kets

\K) = |k, ko, ks) and |K) = |k, k., Kk.). The ki-
1399 3

(19)
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netic term is easily found to be

3 3
K| (— Zc’ﬁ) |K) = bk ) K, (20)
i=1 i=1

where the 0k - is unity if K is equal to K’ as a set
and is zero if K # K'.
Let us now turn to the the potential term

60( /17ké;k17k2)
= (K, kalve(z1 — 22)|k1, k2)
2c

= <k17k’( )

(2m) 12 L2 &

The above matrix element is obtained after straight-
forward but tedious calculation given in Appendix B.
It takes a very simple form,

’Ijg(kll,k;;kl,kg) _6AK06XP

2c 1 2
Foskaexp |~ (AR,
(22)

where Ak = (ky — ko) — (K} — k%) is the change of the
relative momentum while AK = (ki +k2) — (k] + k)
is the change of the total momentum. If we write
ki = 2mn;/L and k; = 2mn./L, Ak becomes

2m

Ak = f(nl =

Since ¥, (k}, kb; k1, k2) depends only on Ak and not
on individual £’s, this matrix element will be written
as U,(Ak). Note that the combination of the integers
in Eq. (23) is always even, which follows from the
momentum conservation AK = 27(n; + ny — nf —
ny)/L = 0. Note that v,(Ak) = 1 if the potential is
the d-function (i.e., ¢ = 0).

ng —ny + ny). (23)

2 -S- / dl‘]_/ dx2e—i(k/1$1+klzmg) % 6—(1‘1—112—mL)2/20'2ei(k1x1—|—k:2:):2)'
0 0

(K'|V,|K). We first note that the potential term van-
ishes identically unless at least one of k. is equal to
one of k;. This is clear from the observation that our
potential is a two-body one and the third particle is
just a “spectator” during the collision of the first two.
Therefore we first have to evaluate the two-body ma-
trix element

125 Ze P mEE 20 by )

2D

We finally obtained the matrix element of the po-
tential term in the case of k1 # ko # k3 # ki, for
example,

K’]QCZUU
1<j

2c
= 6 [Ua(Akl2)5k' kp3
P

+00 (Ak23) Okt iy + o (Aks1) ks oy | (24)

z; — z;)| K)

where Ak;; = (kp; — kp;) — (ki — k).

S Deformation of Spectrum and
Level Statistics

Quantum three-body systems with a family of two-
body potentials parametrized by ¢ have been ana-
lyzed in Sections III and IV. In the present Section,
we study the deformation of the spectrum as o is var-
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ied. We have diagonalized the Hamiltonian accord-
ing to the prescription described in Section IV by in-
troducing 2116 basis vectors, which corresponds to
|n| < 90.

Figure 5: Spectral profile as a function of o. Only
low-lying levels are plotted with a restricted range of
o for clarity.

Figure 5 shows the spectral profile as a function
of o in a restricted region of the o E-plane. In the
following calculations, we have kept only the lowest
800 eigenvalues among 2116 ones. These low-lying
eigenvalues should have enough accuracy unless o is
very close to zero. (The matrix elements do not decay
as Ak — oo for 0 = 0 so that all the basis vectors
mix with each other as noted in the previous Section.)
‘We have taken o = 0.01, which is the “worst” case in
our analysis, and evaluated the lowest 800 eigenval-
ues by reducing the number of basis vectors to 1681,

which corresponds to [n| < 80, and then compared
these eigenvalues with those obtained with 2116 basis
vectors. The average level spacing for the 800 levels
is approximately 256, while the change in the energy
level is merely less than 0.9. Therefore we conclude
that these eigenvalues have enough precision to ana-
lyze the level statistics. The spectrum becomes flat
above o ~ 0.5 since all the matrix elements 9, (Ak)
vanish for ¢ > 0.5 except for Ak = 0, for which
v,(0) = 1, see Eq. (22). Therefore the Hamiltonian
is equivalent to a free Hamiltonian with a constant
potential 6¢ in this range of 0. Figure 6 are a close-
up of the spectral profile shown in Fig.5. Note that
level repulsions are observed at many places.

-
\/\
o AN -

0.03 0.04 0.05 0.06 0.07 0.08
(6

Figure 6: Close-up of the spectral profile. Observe
the ubiquitious level repulsion.

Now let us leave the spectrum and turn to the level
spacing distribution or the level statistics. It is ex-
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pected that the level statistic is exponential for 0 = 0
and for sufficiently large o (¢ > 0.5). This is because
the system is integrable for o = 0 and almost free for
o > 0.5. It is interesting to study the level statistics
in the intermediate region, 0 < ¢ < 0.5. We may be
inspired from the Poincaré sections of the classical
system and expect that the level statistics obeys the
Wigner distribution if the system energy is of the or-
der of the potential height and the exponential distri-
bution if it is much smaller or larger than the potential
height.

P(s) P(s
0.003 1=1~200 0.003 1=201~400
0.002 0.002
0.001 0.001
0 0
500 1000 S 500 1000 S
(a) (b)
P(s) PGs)
0.003 n=401~600 0.003 1=601~800
0.002 0.002
0.001 0.001
0 0
500 1000 s 500 1000 S
(c) (d)

Figure 7: Level statistics of the three-body system
with a Gaussian potential with o = 0.01.

We consider the three-boson system with L = 1
and ¢ = 103 as before. The local level statistics
for o = 0.01 are given in Fig.7. They clearly indi-
cate that the level statistics is exponential if the total
energy is much smaller or larger than the potential
height 2¢/ ((2m)*/?c). If, on the other hand, the total
energy is of the order of the potential height, the level
statistics is well approximated by the Wigner distri-
bution

T s
P(s) = 5 p exp(—7p58°)- (25)

600

400¢

200}

0.64 006 008 01

o)

0 0.02

Figure 8: Density plot of the Blody parameter as a
function of the potential width o and the level number
n. The curve denotes the two-body potential height.

It is interesting to fit our distributions to the Brody
distribution [12]

P(s,a) = as® exp(—bs*™) (26)

a=(a+1) [F (Zii)}aﬂ

=[r (229

The Brody parameter oz measures the deviation of the
given distribution from the exponential distribution.
Namely, the Brody distribution with o = 0 reduces
to the Poisson distribution, while o = 1 to the Wigner
distribution. Figure 8 is the density plot of the Blody
parameter as a function of o and the level number n
of the energy eigenvalue £,,. THe lighter spot shows
the parameter « is closer to 1 while the darker spot

with

27)
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closer to 0. We can see that the most chaotic region
(v ~ 1) is where the energy is slightly above the po-
tential height, which justifies our observation men-
tioned above.

6 Summary

We have studied a three-body system interacting
with a repulsive J-function potential or Gaussian po-
tentials both classically and quantum mechanically.
Our main concern is how the characteristics change
when the potential is deformed from the integrable -
function potential to the nonintegrable Gaussian po-
tential. The degree of chaoticity depends on the po-
tential width and the energy. When the energy is
comparable to the potential height, the system shows
a chaotic behavior in both classical mechanics and
quantum mechanics. The degree of the chaotic be-
havior can be recognized from the Poincaré section

A Symplectic Integration Method

of the classical trajectories and the nearest-neighbor
level statistics in quantum mechanics. When the
energy is much smaller or larger than the potential
height, the system behaves quite regularly, which can
be seen from the regular Poincaré section and Poisson
distribution of the level statistics. This is because the
available classical phase space is limited or the quan-
tum mechanical wave function is localized for small
energies, while the particles can move almost freely
for large energies. Therefore we conclude that our
model shows a variety of phenomena depending on
the potential width and the energy, although it is sim-
ple enough to analyze both classically and quantum
mechanically.

We are grateful to Haruo Yoshida for expalining
us the symplectic integration method. One of the au-
thors (MN) would like to thank Katsuhiro Nakamura
for fruitful discussions. We also thank Akio Ohno
for assistance in some numerical computations in the
earlier stage of the present work.

Here the relevant aspects of the symplectic integration method are summarized since we believe that this

method is not very popular among general readers.
Let us consider a Hamiltonian of the form

H(p,q) =T(p) +V(q),

(28)

with arbitrary degrees of freedom. If the coordinates ¢ and the momenta p are written collectively as z =
(g, p), the Hamiltonian equations of motion are written as

dz
dt

— =1{z,H(?)},

(29)

where the curly bracket denotes the Poisson bracket. Suppose G is some physical quantitiy. If a linear

differential operator D¢ acting on F'(z) is defined by

DgF(Z) =

{F’ G}’
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Eq. (29) can be rewritten as

Since Dy F(z) = {F, T +V} = DrF + DyF = (Dt + Dy)F, the time evolution of z from t = 0 to
t = 7 > 0 1s formally given by

z(1) = [exp(T7Dg)]2(0) = exp[r(Dr + Dy)]2(0). (31)

The above equation is just a replacement of the original differential equation (29) and is difficult to evaluate
in general since D and Dy do not commute. An essential observation in the present method is that the action
of the operator exp(7Dr) or exp(7Dy ) is evaluated with no difficulty. For example, z(7) = exp(7Dr)z(0)
is a solution whose Hamiltonian is given by H = T'(p) and written explicitly as

o(7) = g(0) +T%§, p(r) = p(0). (32)

Simlarly, exp(7Dy ) corresponds to the Hamiltonian H = V'(q) and the solution is a staight line

q(1) = q(0), p(r) =p(0) — T7—~. (33)

It is easily verified that these solutions represent symplectic evolutions, namely they preserve the symplectic
strucuture w = >, dp; A dg;. Accordingly the combined transformation

2(1) = exp(7Dr) exp(TDy)z(0) (34)

is also symplectic. It should be noted that the combined evolution corresponds to that of the original Hamil-
tonian up to the first order in 7 since

") = gme™B 1+ O(7?) (35)

, T , oV
QZQ‘I‘T(a—) 710:2?—7'(8—) : (36)
P/ p=p 1/ ¢=¢

There is a conserved quantity H, which differs from H by O(7), associated with the above evolution.
Suppose operators X and Y do not commute. Then an operator Z defined by eXe¥ = eZ is found, from
Baker-Campbell-Hausdorff formula, as

Written explicitly, Eq. (34) is

Z = X4Y+ 50V (X X Y]+ ¥ X))+
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where [X,Y] = XY — Y X. If this formula is applied to the present problem, we obtain

eTDT eTDV

1 1
= exp |7Dr + 7Dy + =[tDr,7Dy] + — ([t Dz, [rDr,7Dy]| + [t Dy, [tDv,7D7]]) + - - - |. (37)
2 12

If we put h =7"and g = V in the Jacobi identity
{f {9,y +{9,{h, f}} +{n,{f,9}} =0

the operators in Eq. (37) are written as

[DTa DV] = D{V,T}
[Dr, [Dr, Dv]] = [Dr, Dyv,ry] = Dygvrymy

Therefore, the L.H.S. of Eq. (37) is written in terms of a single exponential operator as

2 3

T T
eP1e™” = exp |7Dr + 7Dy + 5Dy + —(Dyvryry + Dyrvivy) + -
2 12
= €xp {TD(T+V+§{V,T}+%({{V,T},T}+{{T,V},V})+~~J
= exp[rDg], (38)
where ,
B=T+V+ {VTH+ S ({VTLTH {T,VEVE +-- (39)

We finally found the conserved quantity H whose time evolution is given exactly by Eq. (36). The difference
between H and H being O(7), the error in the energy remains of the order of 7.
A natural extension of the above observation is to find H,, which differs from H by O(7"),

H,=H +7"H, + O(r").

As a result, the error in the energy remains within O(7™). Such an extension is called the higher order sym-
plectic integration method. This is realized by approximating Eq.(35) by a product of exponential operators
in such a way that the error is O(7™*1). Namely we write

k 3
e7-(DT+DV) - H eCi7Dr odiT Dy 9 O(Tn+1) (40)

=1
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where k£ > 0 is an interger which depends on a given positive interger n. The coefficients (¢;, d;) are fixed
so that they satisfy the above equation. This can be done by expanding the both sides of Eq.(40) in 7 and
compare the coefficients of each term up to 7.

When n = 1, we find ¢; = 1,d; = 1 (k = 1) recovering Eq.(36). For n = 2 the matching of the
coefficients requires k£ = 2 and

:

Cc1+Ccy = 1
d1 + dg = 1
A42c0+c=1

{ di+2dida+d5=1

1
Cldl 1= Cldz + Cng = 5
1

Gady = —,
| 2h =3

from which we obtain ¢; = ¢y = %, d, = 1,ds = 0. As a result, the second order symplectic intergration
method yields

1

z(r) = €3 2

™D1emDv 037D 4((). 41)

More explicitly, they are

q*—q+z<éz> p’—p—7<a—v> q’—q*+z(8—T> (42)
2\dp ), 0q ) ggr’ 2\0p ),

For n = 4, the matching conditions are

( Cl+02+03+04=1
di+dy+ds+dy=1

1
cody + c3(dy + da) + ca(dy + dy + d3) = 5
1
cod + c3(dy + dp)* + ca(dy + dy + d3)? = 7
1
| codd+coldy +da)’ + ealdy + dy + )’ =

1

C%dl + (C1 + Cz)2d2 =} (Cl +c+ 03)2d3 + (61 + Co +c3+ C4)2d4 o= g
|

Ci’dl + (61 + C2)3d2 + (Cl + co + 03)3d3 + (Cl +cy+c3+ 04)3d4 = Z
ds

Clcgd% + clcg(dl + d2)2 + 6104(d1 = dz + d3)2 + CgC3d§ + CzC4(d2 + )2 A 0304613 = E
\
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Here we have taken k = 4. A solution to the above equations was found by Forest and Ruth [13, 14] as,

1 1—21/3
A= U= sn_apy 2T % T 3 o)
1 _21/3
d1=d3:m, d2=m, dy = 0. (43)
If we note that ¢; and d; are related as
d di+d dy +d d
61:-51—,62: 1—; 2,03: 22 3,04:?3 (44)
the R.H.S. of Eq.(40) is written explicitly as
54(7_) = ecl'rDT ed17—DV ecz'rDT edg’?’DV eCBTDT edgTDV eC4TDT
e%TDT edl‘rDVedTlTDTede‘rDT edz‘rDVedTQTDTe%aTDT edSTDVed?STDT. (45)
If we write the second order evolution operator as
8,7} = s PrgPverlr, (46)
Eq.(45) is written in terms of .S, as
S4(7') — Sg(le)Sg(dgT)Sg(le). (47)

Thus the fourth order symplectic integration method is equivalent to three consecutive second order integra-
tions.

B Matrix Elements of the Potential Energy

Here we sketch the derivation of the matrix element (22). Consider the integral
L L
I= Z / dz, / dx2efi(k:’l:vl+I€éac2)€f(aclfzz—l—'mL)Z/fo2 ei(klml—i-k:gmg)
—Jo 0

which appears in Eq.(21). Let us make the change of variables

X = (14 13), T =21 — 2o,

2
AK (kv + ko) — (K1 + k3), Ak = (k1 — ko) — (k7 — k5)

Il
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and write the above integral as
L~ Ivsl/2 , s
Z/ dm/ zAKXezAkz/2—(w+mL) /20 ‘
|z|/2

Note here that the momentum conservation requires AK = 0. In fact it is not difficult to show that the
integral vanishes if AK = 27 N/L # 0 and Ak = 27n/L.
Thus we write

I = & Z Ld AU, — Ak —(z+mL)? /202
= 0ak0 w2 x) cos 5 zle
= 0

mL+L Ak Ak
- — =20 ===
= 20akp ; /mL dy[(m + 1)L — yle™¥ cos < 5 V=g mL)
where y = x + mL. Here we find from AK = 0 that Ak = 2(k; — k1) = 4nn/L, (n € Z) and hence
cos = T %mL = cos =
TR g e

Substituting this into the above integral, we find

B Ak 8598 o Ak 3 190
I = 2§ — —z?/20% _ . —z% /20
AKD !;(mA— l)L/mL da:cos( 5 x) e /_oo d:cxcos( 5 x) e
mL+L
= 20aK0 Z(m + 1)L/ f(z)dz,
m mL
where f(x) = e *"/29" cos(Akx/2). Then it follows that
—1 0 mL+L
I = 20k Z +Z> (m / f(z)dx
m=—o00 m=0 L

00 m/'L+L o0 mL+L
= 20akoL | Y (—m) / dy f(y) + D _(m+1) / dz f(z)
m'=0 ik m=0
= 25AK,OL/ diL'f(:L‘),
0
where m’ = —m — 1 and y = —z. Thus we finally obtain
o Ak
I =28akpL / dze=*" 12" cos - z= bap ooy Pge"0R 18, (48)
0
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