WEKO3
アイテム
Indicators of Chaos
https://kindai.repo.nii.ac.jp/records/11083
https://kindai.repo.nii.ac.jp/records/110834380c082-5855-43ae-beb5-b72418d62a9b
名前 / ファイル | ライセンス | アクション |
---|---|---|
AN10074306-20080229-0001.pdf (2.1 MB)
|
|
Item type | ☆紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2010-08-06 | |||||
タイトル | ||||||
タイトル | Indicators of Chaos | |||||
言語 | en | |||||
著者 |
Yuasa, Manabu
× Yuasa, Manabu× Saha, L. M. |
|||||
言語 | ||||||
言語 | eng | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Indicators of chaos | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Regular(Ordered) motion | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Chaotic motion | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | departmental bulletin paper | |||||
著者 所属 | ||||||
値 | RIST, Kinki University | |||||
著者 所属 | ||||||
値 | Department of Mathematics, Zakir Husain College, University of Delhi | |||||
版 | ||||||
出版タイプ | NA | |||||
出版タイプResource | http://purl.org/coar/version/c_be7fb7dd8ff6fe43 | |||||
出版者 名前 | ||||||
出版者 | 近畿大学理工学総合研究所 | |||||
書誌情報 |
理工学総合研究所研究報告 en : Annual reports by Research Institute for Science and Technology 号 20, p. 1-12, 発行日 2008-02-01 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 09162054 | |||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Chaotic phenomena are getting interest in all spheres of knowledge. In the past there were certain tools to identify regular and chaotic motions in dynamical systems such as time series curves, phase plots, Poincare maps, power spectra, Lyapunov Exponents etc. These indicators, though very powerful, are not sufficient to differentiate regular and chaotic motion when the system bears higher degrees of freedom. Recent developments in nonlinear dynamics, provide some new tools like Fast Lyapunov Indicators (FLI), Smaller Alignment Indices (SALI), Dynamic Lyapunov Indicators, 0 - 1 test etc. to overcome this problem. These new tools are discovered and explained by various researchers. In the present article these new tools have been discussed and their applications have been shown with satisfactory answers. Burger's map, Chirikov map and Bouncing ball dynamics model are brought in this cotext. Results obtained are quite satisfactory and significant. | |||||
フォーマット | ||||||
内容記述タイプ | Other | |||||
内容記述 | application/pdf |