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                              Abstract 

  Chaotic phenomena are getting interest in all spheres of knowledge. In the past there 
were certain tools to identify regular and chaotic motions in dynamical systems such as time 
series curves, phase plots, Poincare maps, power spectra, Lyapunov Exponents etc. These 
indicators, though very powerful, are not sufficient to differentiate regular and chaotic motion 
when the system bears higher degrees of freedom. Recent developments in nonlinear dynamics, 
provide some new tools like Fast Lyapunov Indicators (FLI), Smaller Alignment Indices (SALI), 
Dynamic Lyapunov Indicators, 0 - 1 test etc. to overcome this problem. These new tools are 
discovered and explained by various researchers. In the present article these new tools have 
been discussed and their applications have been shown with satisfactory answers. Burger's 
map, Chirikov map and Bouncing ball dynamics model are brought in this cotext. Results 
obtained are quite satisfactory and significant.
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1 Introduction 

• 

  In nonlinear systems with higher degrees of 

freedom phase space is not clearly feasible and 

due to that the traditional indicators, like time 

series plots, phase plot, Poincare map, power 

spectra etc, are in no way sufficiently qualified 

to identify ordered and chaotic behaviour. To 

over come this problem some new indicators have 

been discovered recently. !! Fast Lyapunov Indi-

cator (FLI) was introduced by Froeschle et al 
(1997), Smaller Alignment Indices (SALI) was 
introduced by Skokos ! 32001 ! Kand Skokos et al 
(2004). These indicators are now used by many 
researchers to identify chaotic and ordered mo-
tions originating in various systems. More re-
cently, an another new indicator named as Dy-
namic Lyapunov Indicator (DLI) has been intro-
duced by Saha and Mridula (2007) which gives

very clear indication of ordered and chaotic mo-
tion whenever applied. All these indicators to-
gether with one more called 0 -#1 test, were used 
recently to study regular and chaotic motion in 
bouncing ball dynamics by Mridula et al (2007). 
Dynamics of bouncing ball has been reported 

by Everson in (1986). Since then this problem 
has attracted to many researchers such as Mello 
(1987), syta and Litak (2008). The 0 -#1 test was 
introduced by Gottwald and Melbourne (2004, 
2005). Presently we have used this last indica-
tor only when discussing bouncing ball dynam-
ics. Also, it is to be mentioned that the 0- 1 test 
results used here while discussing motion of the 
Bouncing ball is the reproduction of the work re-
ported in a recent paper by Mridula et al (2007).



2 Indicators of Chaos 

 Herebelow, we have defined the four indica-

tors of regularity and chaos as follows !' 

(a! }Fast Lyapunov Indicator (FLI): 
Starting with an rn-dimensional basis Vm(0) = 
(vi (0), v2(0), •• , vm,(0)), embedded in an n-
dimensional space with an initial condition 
(x1(0), x2(0), •••, xn(0)), we take at each itera-
tion the largest amongst the vectors of the evolv-
ing basis. !! Thus, the FLI is defined as: 

FLI=sup =1,2,•••,m (1) 

It has been observed that FLI's increase expo-
nentially for chaotic orbits and linearly for regu-
lar orbits. 

(b ! iSmaller Alignment Index (SALI): 
First consider an n-dimensional phase space and 
an orbit in this space with initial condition P(0) 

                                   = (xi (0), x2(0), •••, xn,(0)), and a deviation vec-
tor e(0) = (dx1(0), dx2(0), • • • , dxr,,(0)) for the 
initial point P(0). To compute the SALI for a 
given orbit, we follow the time evolution of the 
orbit of P(0) together with two deviation vectors 
W1(t), e2(t) which initially point in two different 
directions in the phase space. At every time step 
the two deviation vectors ei (t), .2(t) are normal-
ized and the SALI is then defined as follows: 

   SALI — min I I------------e1(t) — ----------e2 (t) I I s           IIe
1(t)II 112(t)II 

       II -------------------1(t)e2 (t)II(2)        IIR1(t)II II2(t)II 

It is found that the SALI fluctuates around a non-
zero value for ordered orbits while it tends to zero 
for chaotic orbits. 

For both the FLI and the SALT we evolve the vec-
tors by applying to them the evolving Jacobian 
matrix at each iteration for a discrete system. 

(c) Dynamic Lyapunov Indicator (DLI): 
The dynamic Lyapunov indicator (DLI) is de-
fined by the largest value estimated from all 
eigenvalues Ai of the Jacobian matrix J such that 

J — = 0;

j = 1, 2, • • • , n (for n-dimensional map) (3) 

of the examined map for all discrete times. If 
these eigenvalues form a definite pattern, then the 
motion is regular and if they are distributed ran-
domly, (with no definite pattern), then the mo-
tion is chaotic. 

(d) 0-1 Test: 
This 0 —1 test can be applied to any system with 
finite dimension, but it is based only on the sta-
tistical property of a single coordinate of the sys-
tem. !! The reliability of this test is established 
by Jing Hu et al (2005). We define and explain 
this test as follows: 
Starting with xk(i) as one of the initial coordi-
nate, k E {1, 2, 3, ••, n}, we define new coordi-
nates p(n), q(n) as 

     p(n) = 1 xk(j) cos(nc) 
    jnl(4) 

q(n) = E xk(j) sin(nc) 
                    j=1 

Here, q(n) is the complementary coordinate in 2 
- D space and c is chosen arbitrarily (in case of 
bouncing ball we assumed c=1.7). Thus, start-
ing with bounded coordinate x(i), we construct a 
series of p(n) which can be either bounded or un-
bounded depending on the dynamics of the pro-
cess to be examined. 
For a given periodic series xk(i), 

F(n) = xk(n)cos(nc) 

represents the random number as 

       p(n + 1)=p(n) + r(n), 

and total mean square displacement is scaled on 
n. On the other hand for a periodic or quasi-
periodic signal 

xk(i + L) = xk(i) or xk(i + L) .:: xrc(i), 

where L is a period, the total mean square dis-
placement is 0. So, any chaotic vibration in the
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initial space x corresponds to an unbounded mo-

tion in (p, q) plane while a regular vibration in x 
is related to the bounded motion in this plane. 

For qualitative description of the examined so-

lution one calculates the asymptotic properties 

defined as the total mean square displacement 

 n 

  M(n) =lim1E(p(j+n) — p(n))2 (5) 
 n—>oo n 

                     j=1 

Finally, we obtain the control parameter K in 

limit of a very long time 

ln(M(n) + 1)       K = lim 
In n(6)                        n—>oo

In the case of 0 - 1 test, the velocity v, (or vn) can 
be used, as the starting coordinate xk = v and 

obtain the set of (p, q) coordinates through eqn 
(4). Then, the corresponding trajectories in this 
plane can be plotted as phase portrait. For the 
case of bouncing ball, an unbounded drift has 

been observed for a chaotic solution and a mo-

tion around a certain circle (or curve) in case of 
regular motion as shown in Fig.1, (a) for chaotic 
motion and (b) for regular motion.

P

Fig.l. Phase portrait of bouncing ball problem: 
Figure(a) represents the chaotic case 
while (b) represents the regular case.



3 Application of above Indicators

  We have applied above defined indicators in 

the models given below: 

(i) Burger's Map: 

 xn+1 = (1 — a)x.n — yn2  (7) 
 yn+1 = (1+b)yn+xnyn 

where a and b are non-zero parameters . This 
map evolve chaotically when a=0.9, b=0.856. To 
control chaotic motion we have used pulsive feed-
back control technique, Litak et al (2007) by 

131%ame P1 et • %ailaz Cam.

changing the above map slightly as 

xn+i = (1 — a)xn — y + E(x + 0.856) (8) 
Yn+1 = (1 + b)yn + xnyn -}- E(y — 0.87772433) 

Here (-0.856, 0.87772433) is an unstable fixed 
point of the original Burger's map. It has been 
observed that for , E = —0.3 ! ! above chaotic 

motion gets controlled and display regular be-

haviour. This can be observed through the phase 

plots given in Fig.2. 

Rump  Plat • Qt—ic Came

Fig.2. Phase plots of ! ! Burger's map for a = 0.9, b = 0.856 and 

E ! a-0.3 when regularized and shown here in the left plot.

For this map FLI, SALI and DLI are com-

puted respectively and displayed through the fol-

L~: t .:=AAA...

lowing plots:
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Fig.3. FLI plots for regular and chaotic cases 

of Burger's map.
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Fig.4. Log[FLI] plots for regular and chaotic 
motions in Burger'map

Re qnl ax Caae:a=0.9,)=0.4$0,E =-D.3 Chaotic Case:a=0. 9,b=0.056,E L. 4

Fig.5. SALI plots for regular and chaotic motions 

in Burger's map

Regular Casc:a=0.9,b=0.0S11,E Chaotic Case:a=0.9,1=0.056,E = 0

Fig.6. DLI plots for regular and chaotic evolution 

of Burger's map. A pattern is clearly visible 

for the regular case.



 

!  !

(ii) Chirikov Map: 

xn+1 = xn — k sin yn mod( 27) 
Yn+1 = Yn + xn+1 mod(27r) (9)

This map evolve chaotically when k = 

is regular when k = 0.5. Phase plots 

cases are shown in Fig.7 as

2.5 and it 

for these

Begvla: Case. k:O.5 Chaotic Case, k:2.4

an

                     Fig.7. Phase plots of Chirikov Map. 

The following plots are those of FLI, SALI Fig. 8 - Fig. 10. 

d DLI for this map given through figures 
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Fig.8. FLI and Log[FLI] plots of Chirikov Map.



 Regular case, k = 0_S Chaotic case, k = -0.5

Fig.9. SALI plots of Chiri kov map.

.Aegsl ax Case; k = 11_5
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Fig.10. DLI plots of Chirikov map. The figure 

     on the right side indicates the transition 

     from regular to chaotic motion.

4 Bouncing Ball Problem

  Dynamics of bouncing ball has been reported 
in a recent research work by Mridula et al (2007). 
The forgoing discussion is nothing but the work 

done by them which has certain significance in

context of this paper. In the figure below we 

have a bouncing ball in the Earth gravitational 

field impacting a harmonicaly oscillating plate.

V(t) = Vo cos( S2 t; 

I

Fig.11. Bouncing ball model



 A map for velocities and impact instants —vn 

and tn, respectively, can be expressed by the fol-

lowing set of difference eqn : 

Vn+l = —k(vn — gAtn) 
+(1 + k)Vo cos(f tn+i)(10) 
Vo/S2(sin(ctn+1) — sin(fltn) 

       = vnAtn—g/2(Ltn)2 ) 
where At be the time interval between impacts 

and k represents the restitution coefficient and 

< 1, ! ! (Tel and Gruiz,2006 ). Introducing phase 
~n = Qtn, one gets the following simplified di-
mensionless map: 

On-F1 = q5 + AOn 
vn+1 = —k(vn — 2AOn/q) (11) 
+(1 + k) cosq5n+1, 

where the phase difference Aqn can be obtained 
from eqn 

sin* + A ) — sin On = vnAq5n — 2A4n/q. 
                       (12)

Here q = 2VoSl/g is the dimensionless driving fre-
quency. In the limit when q >> 1, above equa-
tion reduces to

~n+1 = On + AOn 
vn+l = vn + (1 + k) cos On+l (13)

As shown in Fig.1, phase portrait for this map, 

appears to be chaotic when q= 20.0, k = 0.3 and 

regular when q = 2.0 and k = 0.3. For quantita-

tive analysis we have estimated the M(n) by us-
ing eqn (5). To show the asymptotic behaviour, 
we have plotted In M(n) against In n. In both 
cases we obtained linear dependence,

lnM(n) = tan Winn+ci, i = a, b.

This is shown through the figure Fig.12.

(14)

Fig.12. Plot of ln M(n) versus In n.

In (14), kIf is the slope, dependent on a c-
parameter value and same for both lines while 
Ca, Cb. ! !Note that Ca > 0 while cb < 0. These 
determine M(n) dependence on n and we have 
M(n) = naec2, where a = tan k1). Clearly for 
positive C , M scales much stronger with na then 
for a negative ci. Furthermore, from above fig-

ure, one can also conclude that for the case of 

the b-solution and in the limit of large n, 

ln M(n) —* 0 for large n. 

1 !!! Evidently, this constraint is strictly con-

nected with the negative value of cb, namely 

cb ti — ln n. I ! Such differences in scaling are 

crucial in determining the value of K. Conse-

- g — 



 quently, having M(n), we obtained K = 0.925 
for the chaotic series and K = 0.042 for the pe-
riodic one. It is clear enough that the parameter 
K tends to 1 for the chaotic solution while 0 for a 
regular solution. In the calculation by Mridula et 
al (2007), they used N = 20000 and n = 180000 
respectively.

Phazc Plot

1-- - I

  For evolutionary behavior of bouncing ball 

map in context of FLI, SALI and DLI we have 

following plots for regular and chaotic cases indi-

cated there:

Fig.13 . Phase plot and FLI, log[FLI] 
and DLI plots of bouncing ball dynamics 

when the motion is regular.

Fig.14. Phase plot for chaotic motion.



Fig.15

 

. FLI and log(FLI) plots.

Repulat

Fig.16. DLI plot for 

Case: cm2.0.k=0.3

chaotic motion. 

Chaotic Case: (20:0.31=0. 3

0 40

r
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Fig.17. SALI plots for regular and chaotic motion.



5 Brief Discussion 

 From above numerical results it has been no- for qualitative analysis. These methods of iden-

ticed that for 2-dimensional cases SALI do not tification can be applied to other discrete maps 

provide a clear picture of identification of regular also. It is to be important to verify these for 
and chaotic motion, DLI provides a clear picture continuous maps also. 

for all maps. Also 0 - 1 test has its own merit 
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