WEKO3
アイテム
ソフトマター3重周期極小曲面の構造と物性の理論的研究
https://kindai.repo.nii.ac.jp/records/18065
https://kindai.repo.nii.ac.jp/records/180652da9b8c6-7698-4be2-b520-e7bc783e92f0
名前 / ファイル | ライセンス | アクション |
---|---|---|
25400431seika.pdf (183.3 kB)
|
|
Item type | 研究報告書 / Research Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2016-10-17 | |||||
タイトル | ||||||
タイトル | ソフトマター3重周期極小曲面の構造と物性の理論的研究 | |||||
タイトル | ||||||
タイトル | Theoretical Studies on the Structures and the Physical Properties of Triply Periodic Minimal Surfaces | |||||
言語 | en | |||||
著者 |
堂寺, 知成
× 堂寺, 知成× 松澤, 淳一 |
|||||
言語 | ||||||
言語 | jpn | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | ソフトマター | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | 3重周期極小曲面 | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | ジャイロイド | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | タイリング | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | アルダー転移 | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | 空間群 | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_18ws | |||||
資源タイプ | research report | |||||
著者(英) | ||||||
言語 | en | |||||
値 | DOTERA, Tomonari | |||||
著者(英) | ||||||
言語 | en | |||||
値 | MATSUZAWA, Junichi | |||||
著者 所属 | ||||||
値 | 近畿大学理工学部; 教授 | |||||
著者 所属 | ||||||
値 | 奈良女子大学自然科学系; 教授 | |||||
著者所属(翻訳) | ||||||
値 | Kindai University | |||||
著者 役割 | ||||||
値 | 研究代表者 | |||||
著者 役割 | ||||||
値 | 連携研究者 | |||||
著者 外部リンク | ||||||
関連名称 | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-25400431/ | |||||
版 | ||||||
出版タイプ | NA | |||||
出版タイプResource | http://purl.org/coar/version/c_be7fb7dd8ff6fe43 | |||||
出版者 名前 | ||||||
出版者 | 近畿大学 | |||||
書誌情報 |
科学研究費助成事業研究成果報告書 (2015) p. 1-4, 発行日 2016 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | 研究成果の概要(和文):平面にビリヤード球を並べると、1つの球のまわりに6つの球が並ぶ。この構造は電子、原子から始まり、コロイド球、界面活性剤や高分子が作る構造に至るまで普遍的な規則構造として知られている。球状ウィルスのように、正曲率曲面である球面上の規則構造もよく知られている。しかし、ポテトチップのような馬の鞍型(負曲率)曲面上の物理的規則構造の研究はなされていなかった。本研究ではシュワルツのダイヤモンド及びプリミティブ3重周期極小曲面上で球のシミュレーションを行い、エントロピーを駆動力としたアルダー相転移を観察することによって、負曲率曲面上の規則構造を多数発見し、それらを結晶学、数学的観点から解析した。 研究成果の概要(英文):On a flat surface the hexagonal arrangement is a ubiquitous regular arrangement arising from dense packing, space division, or interactions between particles. What is regular arrangement when a surface is curved? On a sphere, this question was firstly raised by J. J. Thomson for electrons constituting atoms, Goldberg elucidated regular polyhedra, and for biological icosahedral viruses Caspar and Klug found a construction principle of regular arrangements on a sphere. In contrast, regular arrangements of particles on saddle-shaped periodic surfaces with negative curvatures have not been pursued. In this project, we have shown numerous regular arrangements of spheres on the Schwarz Pand D-surfaces obtained through the Alder transition, where magic numbers have been obtained in analogy with icosahedral viruses. These unprecedented arrangements are analyzed in terms of space groups, and polygonal & hyperbolic tilings. |
|||||
内容記述 | ||||||
内容記述タイプ | Other | |||||
内容記述 | 研究種目:基盤研究(C); 研究期間:2013~2015; 課題番号:25400431; 研究分野:ソフトマター物理学; 科研費の分科・細目: | |||||
資源タイプ | ||||||
内容記述タイプ | Other | |||||
内容記述 | Research Paper | |||||
フォーマット | ||||||
内容記述タイプ | Other | |||||
内容記述 | application/pdf |