WEKO3
アイテム
〈ノート〉多体問題とグリーン関数との関係の研究--グリーン関数と多体問題(20)量子統計力学(12)
https://kindai.repo.nii.ac.jp/records/7333
https://kindai.repo.nii.ac.jp/records/733311261588-8f4b-40be-a75e-a581bad7165c
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | ☆紀要論文 / Departmental Bulletin Paper(1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2012-03-07 | |||||||||
タイトル | ||||||||||
タイトル | 〈ノート〉多体問題とグリーン関数との関係の研究--グリーン関数と多体問題(20)量子統計力学(12) | |||||||||
その他(別言語等)のタイトル | ||||||||||
その他のタイトル | 〈Scientific Report〉Studies of relations between many-body problems and Green functions: Green function and many-body problems (20) Quantum statistical mechanics (12) | |||||||||
著者 |
橋爪, 邦夫
× 橋爪, 邦夫
|
|||||||||
言語 | ||||||||||
言語 | jpn | |||||||||
資源タイプ | ||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||
資源タイプ | departmental bulletin paper | |||||||||
著者(英) | ||||||||||
言語 | en | |||||||||
値 | HASHIZUME, Kunio | |||||||||
著者 所属 | ||||||||||
値 | 近畿大学工学部教育推進センター | |||||||||
著者所属(翻訳) | ||||||||||
値 | Center for the Advancement of Higher Education, Faculty of Engineering, Kinki University | |||||||||
版 | ||||||||||
出版タイプ | VoR | |||||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||||||
出版者 名前 | ||||||||||
出版者 | 近畿大学工学部 | |||||||||
書誌情報 |
近畿大学工学部研究報告 en : Research reports of the Faculty of Engineering, Kinki University 号 45, p. 133-147, 発行日 2011-12-01 |
|||||||||
ISSN | ||||||||||
収録物識別子タイプ | ISSN | |||||||||
収録物識別子 | 0386491X | |||||||||
抄録 | ||||||||||
内容記述タイプ | Abstract | |||||||||
内容記述 | [Synopsis] In this paper, we discuss the quantization of the Hall conductivity of two-dimensional metals which has been observed by Klitzing, Dorda, and Pepper in Phys. Rev. Letter 45 494 (1980). Such a system can be made by injecting electrons into the interface of an alloy sandwich of a thin film about 500A thick by application of the transition technology. In the Hall experiment, the direct resistivities p_<xx> and the Hall resisitivities p_<xy>, have been measured at very low temperature. The Hall resisitivities p_<xy>, is the ratio of the electric field in the y direction to the Hall current density in the x direction. The Landau level filling factor v is defined by v=N/g=<hn>/<(-e)B>. Here, n is the density of electrond. The Hall resistivities exhibits plateau at v=1, 2/3, 1/3 with values equal to 1/v in unit of h/<(-e)^2>. And at the same time, the direct resistivity p_<xx> drops to very low values. The value at v =1 is called the integer quantized Hall effect. The values at v=2/3, 1/3 are called the fractional quantized Hall effect. The integer quantized Hall effect is explained in simple method and also in the method of metallic loop with quantum mechanics. But it dose not explain the plateau in the data. The plateau is explained the presence of impurities. | |||||||||
フォーマット | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | application/pdf |