WEKO3
アイテム
A General Method for the Analysis of Observations
https://kindai.repo.nii.ac.jp/records/1276
https://kindai.repo.nii.ac.jp/records/1276e6d1ded7-a2c4-46e8-a4db-94f5be4ba84e
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | ☆学術雑誌論文 / Journal Article(1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2011-02-01 | |||||||||||||
タイトル | ||||||||||||||
タイトル | A General Method for the Analysis of Observations | |||||||||||||
著者 |
Unno, Wasaburo
× Unno, Wasaburo
× Yuasa, Manabu
|
|||||||||||||
言語 | ||||||||||||||
言語 | eng | |||||||||||||
キーワード | ||||||||||||||
主題 | astrometry, classification, dynamical system, methods: data analysis | |||||||||||||
資源タイプ | ||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||||
資源タイプ | journal article | |||||||||||||
著者 所属 | ||||||||||||||
Research Institute for Science and Technology, Kinki University | ||||||||||||||
著者 所属 | ||||||||||||||
Research Institute for Science and Technology, Kinki University | ||||||||||||||
版 | ||||||||||||||
出版タイプ | VoR | |||||||||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||||||||||
出版者 名前 | ||||||||||||||
出版者 | Astronomical Society of Japan=日本天文学会 | |||||||||||||
書誌情報 |
PASJ: publications of the Astronomical Society of Japan en : 日本天文学会 欧文研究報告 巻 52, 号 1, p. 127-132, 発行日 2000-02-01 |
|||||||||||||
ISSN | ||||||||||||||
収録物識別子タイプ | ISSN | |||||||||||||
収録物識別子 | 00046264 | |||||||||||||
識別番号 その他 | ||||||||||||||
内容記述タイプ | Other | |||||||||||||
内容記述 | 10004677302 | |||||||||||||
抄録 | ||||||||||||||
内容記述タイプ | Abstract | |||||||||||||
内容記述 | [Abstract] A general method for constructing the science of a complex system from observational data has been developed from the view point of mathematical epistemology. A complete description of an observed system is achieved by establishing a large number of addresses under which all of the data are systematically arranged and by adopting an embedding dimension (number of variables to describe the system) appropriately for the complexity of the system. The variables are then normalized, and descriptive principal-component analyses (DESPCA) are performed to describe the system. Then, the addition of time derivatives (or variables of describing law) to the set of PCA's of the previous DESPCA provides an extended data set to be applied to a dynamical principal-component analysis (DYNPCA) which follows. The advantage of DYNPCA lies, among others, in a systematic improvement of the system used for analysis and in a quantitative estimation of the uncertainty of the differential equation of the dynamical system (or of the law) determined from the minimum eigen-value of the DYNPCA. As a simple application of the DYNPCA, the distance determination of mass-losing super-giants considered in a previous study is re-discussed from the point of view of methodology. The traditional use of classification in empirical sciences is found to be well adaptable in cooperation with the DYNPCA. | |||||||||||||
内容記述 | ||||||||||||||
内容記述タイプ | Other | |||||||||||||
内容記述 | Copyright (c) 2000 Astronomical Society of Japan | |||||||||||||
資源タイプ | ||||||||||||||
内容記述タイプ | Other | |||||||||||||
内容記述 | Journal Article | |||||||||||||
フォーマット | ||||||||||||||
内容記述タイプ | Other | |||||||||||||
内容記述 | application/pdf |