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NMR量 子 コン ピュー タのための同種核分子 のハ ミル トニ ア ン
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Hamiltonian of Homonucleus Molecules for NMR Quantum Computing

Yasushi KONDO*, Mikio NAKAHARA*, Kazuya HATA** and Shogo TANIMURA***

  A Hamiltonian in the rotating frame is derived for NMR quantum computing with homonucleus molecules as 
its computational resource. It is theoretically shown that control pulses designed for heteronucleus spins can be 
translated to pulses for homonucleus spins by simply replacing hard pulses by soft pulses with properly chosen 
pulse width. Several experiments employing cytosine as a homonucleus molecule are conducted and it is proved 
experimentally that the above Hamiltonian accurately describes the dynamics of the spins. 
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the conventionally used Hamiltonian and the proper 
Hamiltonian for homonucleus spins. It is, therefore, 
urgently required to establish theoretical foundation 
underlying a liquid-state NMR quantum computer 
with homonucleus molecules. 

 Suppose we would like to implement a quantum al-
gorithm whose unitary matrix representation is Ualg• 
If the Hamiltonian H depends on the control param-
eters, which we write collectively as 'y(t), the time 
evolution operator is given by

Introduction1

where 'T stands for the time-ordering product. We 
use the natural unit in which h= 1. Optimal control 
of the quantum computer requires a control function 

y(t) that produces the specified quantum algorithm 
U[y(t)] = Uaig in the shortest possible time T. Re-
cently, numerical scheme to find the optimal control 
has been worked out for fictitious Josephson junc-
tion qubits, where polygonal paths in the parameter 
space has been utilized8' 9). For time-optimal con-
trol of an NMR quantum computer, another method 
employing the Cartan decomposition of SU(2n) has 
been proposed10) and has been demonstrated experi-
mentally with a two-qubit heteronucleus molecule11) 
We note that exact optimal control has been found 
for holonomic quantum computation in an idealized 
situation12) . 

 This paper has three aims: (1) to provide the 
theoretical foundation for an NMR quantum com-
puter with homonucleus molecules, (2) to show 
that any pulse sequence designed for heteronucleus 
molecules can be translated into that for homonu-
cleus molecules, and (3) to demonstrate experimen-
tally that our Hamiltonian accurately describes the 

dynamics of the spins. For these purposes, we care-

fully examine the Hamiltonians for NMR spin dy-

 Quantum computation currently attracts a lot of 
attention since it is expected to solve some of com-
putationally hard problems for a conventional dig-
ital computer's). Numerous realizations of a quan-
tum computer have been proposed to date. Among 
others, a liquid-state NMR (nuclear magnetic reso-
nance) quantum computer is regarded as most suc-
cessful. Early experiments demonstrated quantum 
teleportation2), quantum search algorithm3), quan-
tum error correction4), and simulation of a quantum 
mechanical system5). Undoubtedly, demonstration 
of Shor's factorization algorithm6) is one of the most 
remarkable achievements in NMR quantum compu-
tation. Although the number of admissible qubits in 
a liquid-state NMR quantum computer is suspected 
to be limited up to about ten due to poor spin polar-
ization at a room temperature, a liquid-state NMR 
quantum computer is one of few quantum computers 
that are capable of running nontrivial quantum algo-
rithms thanks to well established NMR technology. 

 Since the number of qubits within heteronucleus 
spins is practically limited to two or three, the use 
of homonucleus spins is inevitable if we try to equip 
an NMR with a large number of qubits. It should 
be pointed out, however, that liquid-state NMR of 
homonucleus molecules is still poorly understood and 
literature dealing with this subject often lacks solid 
ground. Although the product operator formalism7) 
has been extensively employed to implement quan-
tum algorithms with an NMR quantum computer, 
people overlooked significance of the genuine Hamil-
tonian. Actually there is a subtle difference between
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namics. Although the Hamiltonian for a homonu-
cleus molecule is the same as the one for a heteronu-
cleus molecule in the laboratory frame, the former 
looks quite different from the latter in a rotating 
frame. 
 This paper is organized as follows. In section II 

we study Hamiltonians of homonucleus as well as 
heteronucleus molecules. We carefully examine how 
they are transformed in a rotating frame and what is 
appropriate approximation to be employed. Surpris-
ingly, our resulting Hamiltonian is different from the 
conventional Hamiltonian. In section III, we conduct 
several experiments to verify our analysis by taking 
cytosine as an example of homonucleus molecules. 
We execute the Deutsch-Jozsa algorithm, execute 
the pulse sequence for pseudo-pure state preparation, 
and verify the robustness of two-qubit entangling op-
erations. As an application of the correct form of 
the Hamiltonian we implement field inhomogeneity 
compensation using a pair of i--pulses in section IV. 
Section V is devoted to conclusions and discussion.

NMR setup for heteronucleus molecules.Figure 1:RotatinginHamiltonian 
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ond spins have respective resonance frequencies wo,i (
i = 1, 2), which are also called Larmor frequencies. 

Their resonance frequencies are widely different for 
heteronucleus molecules under consideration. Hence 
two sets of resonance circuits and assembly of elec-
tronic circuits are required. The large difference of 
the resonance frequencies, Acwo = Wo,2 — w0,1, al-
lows us to address each spin individually with a short 
pulse. 

The oscillator i (i = 1, 2) in the third part gen-
erates an rf electric wave with frequency corf,i. The 
sequencer i modulates the rf wave to shape a de-
signed pulse. A typical temporal duration of a pulse, 
which is called the pulse width, is of the order of 
10 is. The rf pulses are amplified and fed into the 
resonance coil i, which generates rf magnetic fields 
applied to the sample in the test tube. Precession of 
spins in molecules appears as rotation of magnetiza-
tion of the sample and induces a signal at the coil 
i. The receiver i detects the signal. The directional 
coupler prevents transmission of the rf pulse from the 
amplifier to the receiver.

 In this section, we write down the Hamiltonian of 
spin dynamics in the laboratory frame and transform 
it to the one in a rotating frame. Although the Hamil-
tonian for a homonucleus molecule has the same form 
as the one for a heteronucleus molecule in the labo-
ratory frame, Hamiltonians in a rotating frame differ 
from each other. 

 We restrict ourselves within two-qubit molecules 
for simplicity. Generalization to molecules with more 

qubits is straightforward. As an example of heteronu-
cleus molecules, we refer to 13C-labeled chloroform. 
The qubits are spins of 13C and H nuclei. We take 
cytosine solved in D20 as an example of homonu-
cleus molecule. The qubits are spins of two hydrogen 
nuclei (protons) in this case.

Heteronucleus molecule2.1

2.1.1 Experimental setup

2.1.2 Heteronucleus molecule in rotating 
      frame 

 The two-qubit Hamiltonian in the laboratory frame 
is 

H=Ho+Hrf ,l+Hrf,2• (2) 

Here the system Hamiltonian H0 is defined as14) 

Ho = —wo,1lz 0 I — w0,2/ 0 I, + E JIk ®'k, (3) 
                                             k=x,y,z

A liquid-state NMR consists of three parts as de-
scribed in13). The first part is magnetic coils; a su-
perconducting coil to generate a homogeneous static 
magnetic field and a normal conducting coil to gener-
ate temporally controlled field gradients. The second 
part contains resonance circuits for applying radio 
frequency (rf) magnetic fields to the sample. They 
are also used to pick up rf signals from the sample. 
The third part is an assembly of electronic circuits 
to feed rf pulses into the resonance circuits and to 
detect the signals picked up by the coils. 

 The NMR setup for heteronucleus molecules is 
shown schematically in Fig. 1. The first and sec-



where -Wrot = Wrot,2 — Wrot, l• The transformed con-
trol Hamiltonians Hrf ,i will be given later. If we take 
the frame co-moving with each spin, which has the 

 angular velocities Wrot,i = Wo,i, the first two terms 

in Eq. (12) vanish. In the case of heteronucleus 
molecules, the condition I Owo I >> J is always sat-
isfied and thus the matrix elements in the last line 
also vanish after averaging over time. For example, 
IOwoI /27 400 MHz while J/27r N 200 Hz for 13C-
labeled chloroform at 11 T, for which l Owo i 106. 
Therefore H0 is well approximated by

(13)H0=JII®I ,z.

 When the resonance and co-rotating conditions 

Wrf,i = Wo,i = Wrot,i are satisfied, the control Hamil-
tonians in the rotating frame

(14)Hrf,i = UHrf,iUt

are approximately given as

Hrf,l = —W1,1 (COS 01 Ix 0 I + sin q1 Iy 01), (15) 
Hrf,2 = —W1,2 (COS 02 I 0 Ix + sin 42 I 0 I,,) (16)

after dropping terms rapidly oscillating with frequen-
cies 2wo,i and Lwo. Note that the factor 2 in front of 
w1,i in Eqs. (4) and (5) has disappeared in Eqs. (15) 
and (16). This is physically understood as discussed 
in13); a linearly polarized rf magnetic field oscillating 
with frequency wrf is a superposition of two circularly 
polarized fields with frequencies ±wrf and the effect 
of the component with —Wrf is averaged to vanish. 
It is also important to notice that a pulse with fre-
quency Wrf,i influences only the spin i and does not 
affect the other spin in the rotating frame. This is 
because I OwoIis much larger than the inverse of the 
typical pulse width 1/(10 is) N 100 kHz and hence 
the rf pulse resonating with one spin does not have 

spectral component which affects the other spin. 

 In conclusion, the Hamiltonian for a heteronucleus 

molecule in resonant magnetic fields is

H = JI ,z ®II 
— W1,,(cosOiIx ®I+sin&Iy®I) 
— w,,2 (cos 2 I ® Ix + sin q2 I ® Iy) (17)

in the rotating frame that has the angular velocities 

Wrot ,i = WO,i •

Homonucleus molecules2.2

2.2.1 Experimental setup 

 The NMR setup for homonucleus molecules is 

shown schematically in Fig. 2. Because the differ-

ence of the resonance frequencies Owo = W0,2 — wo,1 
is not large compared to w0 ,i in this case, a com-
mon resonance circuit and a power amplifier can be 

used to control both spins. For cytosine in D20,

where 'k = '7k/2, o-k being the k-th Pauli matrix 
and I is the unit matrix of dimension two. The firsi 
two terms in H0 describe free precession of the spins 
in a static magnetic field while the third term de-
scribes the intramolecule spin interaction with cou-
pling strength J. 

 Hrf,i (i = 1, 2) represents the action of the rf mag-
netic field generated by the coil i and hence is callec 
the control Hamiltonian. Their explicit forms are 

      Hrf,1 
= —2w1,1 cos(wrf,lt — cb1)(Ix 0 I + gI 0 Ix), (4, 

     Hrf,2 
= —2w1,2 cos(wrf,2t )(g—'Ix 0 I + I 0 Ix). (5, 

Here, the amplitude of the rf pulse w1,i, the frequenc3 
of the pulse Wrf,j and the phase of the pulse qi are con-
trollable parameters. We may assume, without los: 
of generality, that the rf field is applied along the x-
axis in the laboratory frame. In the above equation: 
we introduced the ratio of resonance frequencies o: 
the two nuclei, 

                           W0,2 
       9 =•(6, 

wo ,1 

 We shall examine the transformation law of th( 

Hamiltonians from the laboratory frame to a rotatinq 

frame. The spin dynamics in the laboratory frame it 

governed by the Liouville equation 

           idt= [H, PI, (7, 
where p is the density matrix of the system uncle] 

consideration. The unitary operator 

U = exp(—iwrot,llzt) 0 exp(—iwrot,2lzt) (8; 

transforms p into the density matrix 3 in the rotatin€ 
frame as 

P = Up Ut •(9: 
Note that we can choose the rotation angular veloc-
ities Wrot,i (i = 1, 2) arbitrarily. The time evolutior 
of the system is now governed by 

         i5=LII,PI(10: 

with the transformed Hamiltonian 

       H= UHUt _ iUdtUt 
= Ho + 11-                      rf,l + Hrf,2• (11: 

Here the transformed system Hamiltonian is



 terms rapidly oscillating with frequencies 2w0 ,i and 
w0 ,1 + w0,2 are averaged out as 

Hrf,1 = —wl,l [ cos gb1 Ix ® I + sin 01 Iy 0 I 
+g cos(Owot + cb1)I ® Ix 

+g sin(Awot + 01)I ® Id,(19) 
Hrf,2 = —w1,2 [COS q52 I 0 Ix + sin 02 I 0 Iy ) 

+g-1 cos(—Owot + O2)Ix ® I 

+g-1 sin(—Owot + 02)Iy ® I] . (20) 
If we further assume that the pulse width r are 

long enough so that even slowly oscillating terms in 
Eqs. (19) and (20), which contain Aw0, are averaged 
out, then Eqs. (19) and (20) reduce to Eqs. (15) and 
(16). Simultaneously, we can tune the pulse width T 
short enough (Jr << 1) so that the spin-spin interac-
tion (18) is negligible while pulses are applied. There-
fore we conclude that an arbitrary pulse sequence de-
signed for heteronucleus molecules works for homonu-
cleus ones provided that all the hard pulses are re-
placed by soft pulses whose pulse width r satisfies the 
condition 27r/ I Awo I< r << 27r/J. We will demon-
strate this consequence experimentally in the next 
section, where we set T = 4(27r/ I Awo' ) = 5.229 ms 
<< 27r/J = 140.8 ms.

2.3 Conventional Hamiltonians

 Here we make comparison between the Hamiltoni-
ans derived in the previous subsection and the Hamil-
tonian for homonucleus molecules used in literature. 
Conventionally the system Hamiltonian 

Hconv,o = —Ac.~ol ® Iz + JIz ® Iz (21) 
is used to describe spin dynamics in a static magnetic 
field in a rotating frame15) . Apparently, it differs 
from our Hamiltonians (18). 

 We suspect that the Hamiltonian (21) may be 
derived from the original system Hamiltonian (3) 
via transformation from the laboratory frame to 
the frame rotating with a common angular velocity 
wrot,l = Wrot,2 = w0,1. We will show, however, that 
this choice does not yield the Hamiltonian (21) in the 
rotating frame. 

 If we take a frame that rotates with a common 
angular velocity equal to wo, i for both spins, trans-
formation operator (8) becomes 

Ucom = exp(—iwo,llzt) ® exp(—iwo,llzt). (22) 
Then the system Hamiltonian (3) is transformed into 

      com,0—UcornH0Ucom—ZUcorndtUcorn 
= —ACM)/ ® Iz + JIz ® Iz 

0 0 0 0 

          0020 (23) 
020o' 
0 0 0 0

for example, we find I Awo I /27r — 765.0 Hz while 
wo,i/27r — 500 MHz. Although the difference Aw0 
is small, it still allows us to address respective spins 
individually provided that the pulse width is suffi-
ciently long. 

 The oscillator i generates a continuous rf electric 
wave with frequency wrf,i = wo,i. The sequencer 
shapes the continuous wave into pulses. When ad-
dressing the two spins simultaneously, a typical pulse 
width is of the order of 10 its. On the other hand, 
when addressing them individually, a typical pulse 
width is of the order of 2ir/ l Awo I N 1 ms. The rf 
pulses from the two sequencers are mixed and ampli-
fied. The coil generates magnetic fields and picks up 
signals from the sample and the receiver detects the 
signals. Due to close resonance frequencies w0,i, only 
one set of resonance circuit and receiver is necessary 
for homonucleus molecules.

2.2.2 Homonucleus molecule in rotating 
      frame 

 The Hamiltonian for homonucleus molecule in the 
laboratory frame has the identical form to the Hamil-
tonian for a heteronucleus molecule (2). Even for 
homonucleus molecule the condition I Awo I >> J is 
satisfied in general. For example, in the case of cyto-
sine in D20, IAwoI /27r N 765.0 Hz while J/27r 
7.1 Hz, and thus the above condition is satisfied. 
Therefore, the approximation used in the derivation 
of the system Hamiltonian (13) for a heteronucleus 
molecule is also applicable to derivation of that for 
a homonucleus molecule. Thus the system Hamilto-
nian of a homonucleus molecule takes the form 

Ho = JIz ®Iz•(18) 

in the co-rotating frame of each spin. 
The control Hamiltonian Hrf,i describes the ac-

tion of the resonant magnetic field in the frame ro-
tating with angular velocity wrot,i = w0,i = wrf,i• 
Corresponding Hamiltonian Hrf,i for homonucleus 
molecule is considerably more complicated even when
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NMR setup for homonucleus molecules.Figure 2:



Experiments3

3.1 Spectrometer and molecules 

 All the data were taken at room temperature with a 
 JEOL ECA-500 spectrometer18), where the hydrogen 

Larmor frequency is approximately 500 MHz. 
We used 0.6 mL, 23 mM sample of cytosine19) 

solved in D2O. The measured coupling strength is 
J/27r = 7.1 Hz while the frequency difference is 
IOwo! /27r = 765.0 Hz. The transverse relaxation 
time T2 is measured to be 1 s for both hydro-
gen nuclei and the longitudinal relaxation time T1 is 

7s. 
 In order to measure the spin states, we apply a 

reading pulse to only one spin, called spin 1, and 
then obtained the spectrum by Fourier transforming 
the free induction decay (FID) signal. The state of 
the spin 1 is read from the sign of the peak in the 
spectrum while the state of the other nucleus (spin 
2) is found from the peak position.

3.2 Deutsch-Jozsa algorithm 

The Deutsch-Jozsa (DJ) algorithm2o) is one of 
the simplest quantum algorithms that illustrate the 
power of quantum computation and has been imple-
mented by several groups', 19). Let us consider a 
one-bit function f : {0, 1} --+ {0, 1}. For a two-qubit 
register, there are only four possibilities for f, whose 
explicit forms are fi(0) = f1(1) = 0, f2(0) = 12(1) = 
1, f3(0) = 0, f3(1) = 1 and f4(0)=1,f4(1)=0. The 
former two functions are said to be "constant" while 
the latter two are "balanced". With the DJ algo-
rithm, we can tell whether a given unknown function 
f is constant or balanced via only a single trial. 

Chuang et al.21) employed carbon-13 labeled chlo-
roform, a heteronucleus molecule, as a computational 
resource while Jones and Mosca19) used cytosine, a 
homonucleus molecule, to execute the DJ algorithm. 
Chuang et al. executed the DJ algorithm using the 
pulse sequences shown in Table 1. According to 
our previous discussions, it should be possible to use 
the pulse sequences of Chuang et al. for cytosine 
molecules by simply replacing hard pulses with soft 
ones. 
 The results of our quantum computations with cy-

tosine are summarized in Figs. 3 and 4. We started 
the computation with the thermal equilibrium state 
since the DJ algorithm does not require a pure initial 
state21)

3.2.1 J-coupling tirne 

The DJ algorithm employs the J-coupling uni-
tary operator Uj(t) with t = 27r/4J = TJ/2 or 
t = 27r/2J = Tj to entangle two spins. The time 
durations for the two-qubit operations are 271/4J + 
27r/4J = Tj for fi and 12 and Tj for f3 and f4. Thus 
the total execution time is Tj for all four cases.

which does not agree with the conventional Hamilto-
nian (21). 

 Another system Hamiltonian in the laboratory 
frame

Hconv,o = —W0,1lz ® I — wo,2l ® Iz + JIz ® Iz (24)

is also sometimes employed in literature14, 16, 17)but 
this is also different from the original system Hamil-
tonian (3). We cannot take the Hamiltonian (24) as 
a correct one since we cannot replace > k JIk ® Ik by 
JIz ® Iz in the laboratory frame. 

 To illustrate the difference between our Hamilto-
nian and the conventional Hamiltonian, let us con-
sider the unitary gate

, (25)

 0 

 0 

 0 

e-i'' 4

exp(—iirlz ® Iz) 
e—i7/4 0 0 

0 ei'r'4 0 

0 0 ei'r/4 

0 0 0

which is employed along with one-qubit operations 
to implement the controlled-NOT gatel) . We imple-
ment the gate UE from our system Hamiltonian (18), 
as

UJ(ir/J) = exp(—iirHo/J) = exp(—i7rlz ® Iz). (26)

In other words, we simply wait for a time interval 
TJ = 7r/J without applying any rf pulses. Let us 
define the distance between UE and UJ (t) as

IIUE — UJ(t)II = Vtr[(UE — UJ(t))t(UE — UJ(t))}. 
                         (27) 

This is easily evaluated as

(28)
~/-/

UE _

1 — cos (Jt — 71).2IIUE—UJ(t)II=2

We observe that the distance vanishes at t = TJ so 
that UJ(TJ) = UE. We note also that the distance 
remains close to zero in the vicinity t T. This 
robust character of UJ (t) was clearly observed in our 
experiment as shown in the next section. 

On the other hand, if we replace H0 in Eq. (26) 
by the conventional Hamiltonian (21), the distance 
between UE and U (t) becomes

IIUE -- UconvJ(t)II

)cos(Jt_ir). (29) 
OWOt

2
=2\/2\/1—cos(

Therefore, if the conventional Hamiltonian (21) were 
a correct one to describe the spin dynamics, Uconvj(t) 
would not coincide with UE at t = Tj and the dis-
tance II UE — UconvJ (t) II should oscillate in the vicinity 
of the t N Tj. However, such a rapid oscillation in 
time has not been observed in our experiment.



Figure 3: The FID spectra of the spin 1 showing 
output of the DJ algorithms. The sign of each peak 
indicates the state of the spin 1. The location of 
each peak indicates the state of the spin 2. When 

 the initial state of the spin 2 is 10), it causes a larger 
shift to the resonance frequency of the spin 1 and 
contributes to a left peak in each curve. Then the sign 
of the left peak discriminates whether fi is constant 
or balanced. The left peak is positive for fi and f2 
and negative for f3 and f4. The numbers in the left 
side are durations of the two-qubit operations in ms.

Fig. 3 that the spectra are not sensitive to variation 
of the time interval. Therefore we concluded that 
our Hamiltonian (18) accounts for the experimental 
results consistently.

dthRf pulse wi3.2.2

In literature19, 17) it is recommended to use soft 
pulses whose width is an integral multiple of 
27r/ l Awo1in order to avoid undesirable effect caused 
by the term Awol ® Iz in the conventional Hamilto-
nian (21). Our discussion and experiment show that 
this tuning is not necessary since the relevant Hamil-
tonian (18) does not contain the term OwoI ®Iz. 

 We executed the DJ algorithms shown in Table 1, 
with different pulse width (5.229 and 6.217 ms). In 
our setting, the pulse width 5.229 ms is equal to 
4 x 27r/ l Awo l , while 6.217 ms is 4.76 x 27r/ l Awo l . 
The measured FID spectra of the spin 1 are shown in 
Fig. 4. No significant changes in the spectra appeared 
even if we tuned the pulse width to a fractional mul-
tiple of 27r/1/Iwo'. This result proves that the pulse 
width need not be an integral multiple of 2ir/ I Owo I 
to implement a given gate and obtain a reasonable 
spectrum.

Table 1: Control pulse sequences for the Deutsch-

Jozsa algorithm taken from the reference21). The 
functions fi(x) are defined in the text. Here, [ 2 ]i 
denotes the 7r/2 pulses around the i-axes (i = 
x, y, —x, —y). The symbol [ii] denotes the 7r pulse 
around the x-axis. (1/nJ) denotes the two-qubit 
entangling operation produced by turning off the rf 
pulses during the interval 27r/nJ.

Pulse seauenceGate

 As we discussed when we derived Eq. (28), our 
Hamiltonian (18) predicts that Uj(t) does not de-
viate much from the desired unitary transformation 
even when the gate operation time t deviates from the 
correct value. On the other hand, Eq. (29) tells us 
that the conventional Hamiltonian (21) predicts that 
Uj(t) sharply depends on the timing t and oscillates 
as cos(Owot/2). 

 In experiment we executed the DJ algorithm with 
various gate operation time t in the vicinity of Tj 
and observed how the resulting spectra depend on 
t. We employed the pulse sequences shown in Ta-
ble 1, in which all hard pulses used by Chuang et 
al.21) were replaced with Gaussian soft pulses with 
the pulse width 5.229 ms. 

The initial state of the molecules is a thermal mix-
ture of four states 100), 101), 110), and Ill). The DJ 
algorithm does not work when the second qubit is 11) 
and fails to distinguish constant from balanced. On 
the other hand, it works regardless of the state of the 
first qubit. In Fig. 3 the peaks with a smaller fre-
quency shift (the right peaks) are outputs from the 
initial states 101) or I11). In this case the algorithm 
fails to distinguish if fi is constant or balanced. The 
peaks with larger frequency shift (the left peaks) in 
Fig. 3 are outputs from the initial states 100) or 110). 

                                      In this case the DJ algorithm successfully tells us if 
f i is constant or balanced by the sign of the peak 
(positive for Ii and 12 while negative for f3 and f4). 

 We varied the J-coupling time interval t in the 
range from 69.8 ms to 71.0 ms. In other words, 
Owot/2 was swept between 26.7 x 27r and 27.2 x 27r. 
The exact duration to produce the designed uni-
tary operator correctly is 70.4 ms. We observe from



Table 2: Control pulse sequences to create the 
 pseudo-pure state 100)22). The symbol FG denotes 

application of a pulsed field gradient for spatial la-
beling.

Pulse sequence

take the rotation axis to be the x-axis of one of the 
spins, for example the spin 1, while the rotation axis 
for the other spin, the spin 2, depends on the time 
when the [7] is applied, according to the Hamilto-
nian (19). The pulse sequence is represented as the 
product of unitary matrices

(31)

(32)

Uj* (t) = UP), Uj(t/2) (4 ,17), Uj(t/2) 
where 

     (1     U
i,)), 

= exp(—i7rlx ®I) 

x exp(—i7r[cos(Owo2)I 01-xt 
   U(2) 
= exp(—i7rlx ® I)

                     sin(AwoI ®Iy] ), 

                         (33)

. ®Iy]) • 

Note that we put the ratio of resonance frequencies 

g = wo,2/Wo,, = 1 for the homonucleus molecule. 
The resulting operator UJ* (t) does not coincides with 
U j(t) . The distance between Uj* (t) and UE is eval-
uated as

IIUE-U.j*(t)II

   = 2/2-\/1 — cos (Wot)cos(Jt — iv). (34) 
          4 The distance does not vanish generally because the 

two conditions, cos(Owot/2) = ±1 and cos(Jt/4 — 
'r/4) = ±1, are rarely satisfied simultaneously. More-
over, the distance is very sensitive to t.

4.2 Pseudo-pure state preparation 

 An NMR quantum computer must be initialized 
to the pseudo-pure state 100) before executing a spe-
cific algorithm. This initialization procedure is imple-
mented with the pulse sequence22) shown in Table 2. 
In this section we examine the effect of the compen-
sating 7 pulses on the initialization procedure. 

 The initialization process contains the J-coupling 
time, in which the two spins are entangled by the two-
qubit operation Uj(t). We vary the gate operation 
time t to introduce an operational error on purpose. 
It is possible, however, to apply a pair of 7r-pulses to 
compensate this error while the J-coupling is under

I

Figure 4: The effect of variation of the pulse widths 
on the spectrum of the DJ algorithms. The pulse 
widths for spins 1 and 2 are (a) 5.229 ms and 
5.229 ms, (b) 6.217 ms and 6.217 ms, and (c) 5.229 ms 
and 6.217 ms, respectively. Observe that the spectra 
are insensitive to the variation of pulse width.

Field Inhomogeneity Com-

pensation

4

 Here we discuss an experiment to reveal the na-
ture of the Hamiltonians (19) and (20), which de-
pict the action of the oscillating magnetic fields on 
the spins. It is common to employ the compen-
sating pulse method to suppress errors induced by 
field inhomogeneity. We will show, by employing our 
Hamiltonian, that the entangling operation with the 
J-coupling is fragile in the presence of the compen-
sating pulses and a fine tuning of the gate operation 
time is required.

4.1 7-pulse pair in J-coupling time 

 We have shown in the previous section that it is not 
necessary to tune the J-coupling time very accurately 
since this operation is robust against small change of 
the gate operation time. However, if the system is 
under the influence of field inhomogeneity, it may 
cause an error during the J-coupling time. 

 It is well known that this undesired effect caused by 
field inhomogeneity can be compensated by a series 
of hard 7r-pulse pair, whose width is of the order of 
10 ps. The best known example may be the CPMG 
(Carr-Purcell-Meiboom-Gill) pulse sequence13) . Let 
us apply this technique to Uj(t). Then the pulse 
sequence for Uj(t) is replaced with

(30)U~* (t) : Uj(t/2) — [iv] - Uj (t/2) — [7],

where time flows from left to right and [ir] denotes a 
hard pulse that rotates both spins by 7r radian. We



tonian found in literature. It was shown in our ex-
periments that the spectra are robust under small 
variations of the J-coupling operation time as well 
as of the rf pulse widths. Moreover, we provided the 

 theoretical basis for field inhomogeneity compensa-
tion by a pair of hard 7r pulses during the entangling 
operation and verified it experimentally. 

 Generalization of the present work to molecules 
with more spins is straightforward. It is easy to 
find proper pulse sequence, either numericallyl1) or 
by Cartan decompositionlo, 23) , once an exact form 
of the Hamiltonian is obtained. Theoretical analysis 
as well as experiments on these subjects are under 
progress and will be published elsewhere.
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