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Spectral Decomposition of Quantum Fourier Transform

Takashi AOKI*, Yusuke MAESAKA** and Mikio NAKAHARA*

The spectral decomposition of an n-qubit quantum Fourier transform (QFT,) is derived exactly. It is then
applied to find the logarithm of a QFT,, gate. Hamiltonian which generates QFT,, in a single step is suggested.
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1. Introduction

In this article we present a concrete form of the
spectral decomposition of the quantum Fourier trans-
form (QFT). QFT is one of the most useful mathe-
matical tools in applied mathematics and mathemat-
ical sciences such as signal processing and quantum
computing?. For example, in the famous quantum
algorithm of factorization of a large integer due to
Shor?, QFT plays an essential réle. Thus studying
QFT is an important subject in various fields of ap-
plied mathematics. Spectral decomposition of QFT
provides us with a very convenient way of theoretical
treatment of QFT. As an application, we compute
the logarithm of QFT.

2. Quantum Fourier Transform (QFT)

Let n > 3 be an integer and N = 2". Then the
n-qubit quantum Fourier transform F, is defined as
follows.

Fg - Fn_1,0

Fn = 5' E v (1)

Fo,n—1 Fy_1,nv-1

where
B = (0P on(TK), @

The phase (—i)'/" has been introduced to make F,
unimodular; |Fy,| = 1. Therefore F), is an element of
SU(N). We may equally work with the gate without
the phase since the overall phase has no physical ef-
fects. It will turn out to be convenient to introduce
an auxiliary matrix F' defined as
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3. Spectral decomposition of QFT
Qur main result is

Theorem 1. The matriz F,, has four eigenvalues
.X]_ = I, )\2 = —1, )\3 = 1 and ..\4 = —i, with the
multiplicity g, = 272 + 1, go = 2772 g3 = 272
and gg = 2“'2—1,hrespectiwely. Therefore the spectral
decomposition of F is given by

F,=P — P, +iPy —iPy, (4)

where P; 1s the projection operator to the eigenspace
corresponding to an eigenvalue X;;

(F — M) .
Jg(»\,—)\k) (=izdh 6

Their explicit forms are

(Pi)je = % [éjfic,l) + 6j4k,0 + 04k, N
+% Cos (%jk) ], (6)
(Pa)jx = % [5j—k,0 +04k,0 + 0jk N
—%COS(NJIC>:| (7)
(P)jx = i{% k0 — Oj+k,0 — Ok,
Gl o
(Pa)jr = ﬂﬁjfk,o — 8,0 — Ok, N
—\/%Sin (%ﬁ;k)] (9)
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This result is readily translated into that for F,, as
Fno=¢e(P - P, +iPs —iPy), (10)

where £ = (—i)/N.
The proof of the theorem is divided into several

steps. Let char()) be the characteristic polynomial
of I

char()) = |AT — F. (11)

Obviously F% = I holds and hence it should have
the form:

char(d) = (A—-12(A+1)°
x (A —1)¢(\ + )4, (12)

where a = g;, b= gz, ¢ = g3 and d = g4 are the mul-
tiplicities of the eigenvalues. It follows from Eq. (12)
that

char(A) - char(—A)
. ()\ - 1)a+b(A + 1)a.+b
x (A —)¢te() 4 g)oHd, (13)

Now let us consider the square of F

(14)

Since N = 2" is even, we have char(}) - char(—)) =
M — F|-| = A — F| = |A*I — F?|, from which we
obtain

char(A) - char(—X)

= |A%T—F?

M—-1]o0 0
0 A2 —1

A2 -1

At =1

= 22

0 -1 A2
2!1.

A2 =1
2
. 2 142 e -1
= ()\ 1) =3 )‘2
-1 bl
an_2
0 M =-1
_ (X‘" _ 1)2 . 0 At-1
- =1 A2
—1 A2
1 -\
' 1 =)
= (A*-1)° 0 At-1
0 . ‘ P |
M -1
p e |
gn-1_1

— (,\2 _ 1)2(A4 _ 1)2”"171
= (A=) +1)TH
x(A— ¥ A4+ 9T, (15)
It follows from Egs. (13) and (15) that
a+b=2""14+1, c+d=2""1-1, (16)
Two more equations necessary to find a,b, ¢ and

d are obtained by evaluating the trace of F,. We
obtain

= o
trf, = — Y exp| = '2) =1+1, 17
= ;0 p ( 1 (17)
by using the following identities®

M-1 9i2n
> oo (2 ):JM‘,

KFZ_I sin (%) = \/ﬂ—d, (18)

which are applicable when M = 0 (mod 4). Trace
of F, is also evaluated by noting that trP; = g; and
found to be

trF, = a— b+ ci — di. (19)
Comparing this with Eq. (17), we find two equations

oa—b=1, ¢—d=1. (20)
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Finally Egs. (16) and (20) are solved to yield

pm IV R, b= 2772, e =072, g =902 (21)

and Theorem 1 has been proved.
These results are also summarized in the form of
the characteristic polynomial of F,, as

char(A) = (A— 1)2“‘”1()\ g 1)2"‘2
x(A=)F T +0)T T (22)

We note en passant that the minimal polynomial of
E, is

min()) = x* - 1. (23)
Next we evaluate the projection operators. We first
note that F? = F! = F*, = being the complex con-
jugation, and
(ﬁ}%) = 0j4k,0 + i 4k,N-
ik
Then
1 = oy ;
P = [+ DFa—il)(Fa+iD)]
ik
(F2 4+ F2 4+ B+ D
[53 k0 + 0jqpk,0 + Ojpn,N
2 2m
cos k ] 24
e () )
Other projction operators are obtained similarly.

4. Logarithm of F,

1
4
1
4
e

Now that we have obtained the spectral decom-
position of F,, it is easy to construct its logarithm.
Note that the logarithm of a unitary gate corresponds
to the Hamiltonian (times time, to be precise) which
implements the unitary gate, assuming all the gener-
ators of the Lie algebra are available.

The spectral decomposition (10) gives

logFa = {log(e)} Py + {log(~<)} Py
+ {log(ie)} Ps + {log(—ie)} Py

3
= (2n+1m + 2',’TTL1'£) P

3

+ (2n+1 w4 7+ QTTRZZ) P,
3 . .

+ 2n+1m+21+27m3z Py

3 3
+ (2ﬂ+] i+ 71 + 2’77141) Py,

(25)
where n; is an integer specifying the branch of log(};)
function. We will fix {n;} such that the resulting

matrix has vanishing trace. In other words, {n;} are
chosen in such a way that log F}, be an element of the
Lie algebra su(N).
It follows from Eqg. (21) that
3
trF, = 2m ('m + ng + Nz + ng + -2—> on—2
+2m (ﬂ] = TL4) =0. (26)

An example of n; which satisfies the above constraint
is

LS|

Il

—on=2 g =2"2, (27)
Ng = *2“’73, Ny = gne=a,
Now we have proved the following Corollary.
Corollary 1. Let H, be a matriz defined by

"TT’ n n T
Hy = W[(Iﬂ —4™P 4+ (3+ 4" + 27T Py
+(3 221 4 2M)Py
+(3+ 221+ 3.2MPy]. (28)

Then H,, € su(2") and F,, = exp H,.

In fact, there are infinitely different ways to make
log F,, € su(N). For instance Eq. (26) is satisfied if
we take

a+B+7+8 = 0,
a—6+3.273 = 0,

which are solved to yield two parameter family of
solutions
ny=mng —3 .21'1—3'
(29)
ny = 3 i al na — 24.
For each choice of the set {n;} there corresponds
a Hamiltonian of different matrix elements. Which
choice is best fitted depends on actual physical real-
ization of the algorithm.

5. Summary and Discussion

We have obtained in this paper the explicit form
of the spectral decomposition of the qauntum Fourier
transform for an arbitaray n-qubit system with n >
3. We used this decomposition to find a Hamiltonian
which implements the quantum Fourler transform in
a single step. A Hamiltonian, looked upon as an el-
ement of the Lie algebra su(2"), has only a limited
number of generators and further ingenuity must be
required in actual implementation.

After completing this work, we were informed of
the previous works® ®, where spectral decomposi-
tion of QFT were carried out. In both works, eigen-
vectors were explicitly obtained to evaulate the pro-
jection operators. We believe our work is superior
to the previous works in that projection operators
were evaluaed directly without employing the eigen-
vectors. This makes our analysis considerablly sim-
pler. We would like to thank Yumi Nakajima for
drawing our attention to references 4) and 5).
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