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Synthesis of Networks Consisting of LC Elements and Coupled 2-Wire Lines
Hideaki FUJIMOTO*

Necessary and sufficient conditions are presented under which a 2x2 2-variable admittance matrix may
be realized as a 2-port network in which two distinct 4-port networks consisting of LC elements only are
terminated in a 2-port network consisting of coupled 2-wire lines. Furthermore, an example is given to

illustrate the synthesis technique.
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1 Introduction

It is well known that networks containing both
lumped and distributed elements may be analyzed
and synthesized by using the theory of multivariable
positive-real functions or matrices.[1-4] A very im-
portant practical class of these networks, especially
at microwave frequencies, is a cascaded structure of
transmission lines, separated by lumped 2-port net-
works. Realizability conditions on various cascaded
structures were presented by several authors. [3-8],
[10-12]

Recently, H.Fujimoto has considered three distinet
cases of lumped and distributed mixed 2-port net-
works, and has presented those realizability con-
ditions.[13,14] Each of the networks consists of a
cascade-load connection that a distributed constant
2-port network, as in the following three cases, ter-
minates a lumped constant 4-port network consist-
ing of five capacitors. The cases are with respect to
both wires of the coupled line at the far end : one is
ground-connected, the second is open-circuited and
the third is short-circuited.

In this paper, realizability conditions are de-
rived under which a 2-variable admittance matrix of
complex variables "p” and "s” may be realized as a
2-variable 2-port network in which an s-variable 4-
port network is terminated in a p-variable 2-port net-
work(Fig.1). The s-variable 4-port network, which
is referred to as fifth-order elliptic low-pass filters, is
constructed of LC-elements. The p-variable 2-port
network consists of a cascade of two coupled 2-wire
lines, and both wires of the second coupled line are
ground-connected at the far end. Furthermore an ex-
ample is given to illustrate the synthesis technique.

2 Circuit Analysis
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In this section, relationships with respect to the
admittance matrix of the 2-port network shown in
Fig.1 are derived. Fig.2 shows the 2-port network
which is a configuration of a 4-port network N ter-
minated in a 2-port network N. The 2-port network
will be described as N. We assume N and N are lin-
ear, passive, time-invariant, lossless and reciprocal.

Let W = [w;;] be a 2x2 admittance matrix of N
between ports 1 and 2 in Fig.2. Furthermore, let

Y = [7i;] and Y = [§;;] be 4x4 and 2x2 admittance
matrices of N and N, respectively.
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Fig.1 Lumped and distributed mixed 2-port
networks.
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Fig.2 2-port netwok N where N terminates N.
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After some matrix manipulation, the matrix W may
be expressed in the form

W=Y1; - Y12 (Va2 + §’)_1 You
where
i R bl
and
Uiz The

oy T

Vi = T2, = [ ] .

The superscript "T” denotes the transpose of any
matrix. Assume §13 = J2q4 and Gi4 = Fo3, then we
can have the following with respect to elements of
W.

U2z Y24

wyy £ Wig
(13 * T14)?
(T33 £ F34) + (F11 £ Y12)
(1)

where only the upper or only the lower signs are to
be used.

3 Realizability Conditions

= (J11 £ T12) —

Necessary and sufficient conditions are presented
for the realizability of 2-port networks shown in Fig.1
in the standpoint of functions of two complex vari-
ables "p” and "¢”. Symbols "p” and "¢" are used
to express Rlchards tra.nsforma.tlon tanh 7s (T > 0)
and the complex frequency, respectively.

The following theorem, which is the extension of
Richards and Saito’s theorem, will be applied in or-
der to extract a coupled 2-wire line from a multivari-
able positive-real matrix given.

Theorem 1 [8,9] : Let W(p,q) be an r x r sym-
metric positive-real matrix in complex variables p,
g = (g1, *+ ,qm). If there exists a matrix Ry and a
positive constant p = pg such that

W(po,7) =Ro
then Wg(p, ¢) which is defined by
WR(p> ff) =
Rq [Ro — pW(p,§)]™" [W(p,)—pRo]

is also an r x r positive-real matrix if the inverse
exists, and in general,

degpWr(p, ) < deg,W(p,q).

In particular if

W(_p(]! &) = _RO

then

deg,Wr (p,q) = deg, W(p, @) — 1.

We will present conditions for realizing network
configurations shown in Fig.1.

Theorem 2: Necessary and sufficient conditions
for a reactance 2x2 symmetric matrix W(p,s) =
[wi;(p,8)] (i,5 = 1,2) to be realized as the admit-
tance matrix of the 2-port network between ports 1
and 2 in Fig.1(a) are that

(1) w(p, S) = waa(p, 8)

(2) for k=1,2,

1
wi1(p, 8) = wiz(p, $)
_ 1 " 1
- [ b
a;;s-l-& ’Y.:;s-l——k-Jrakp-F—-}ﬁ
s s p

(2)

where (i) a1 = a2 >0, B1 =2 >0, v2 > v >0,
& = 0, 6‘2 = 0y (il) a; + by > as + by >
0, asby (CLI o o bl) > agby (0.2 A bz) >0 for ak,bk > 0.
When "+, k = 1 must be adapted, and when " -7,
k=2.

Proof: The proof of necessity will be omitted
here. Therefore, the proof is presented only for the
sufficient conditions, and is performed through three
stages: the first is to yield elements of the admittance
matrix in eqn.(1), the second is to obtain values of
LC elements, and the last is to provide characteristic
admittances of coupled 2-wire lines.

First of all to obtain elements of the admittance
matrix of eqn.(1), we rewrite eqn.(2) as in the fol-
lowing:

w3 (pa 3) + wlz(ps S) =

2

A (aks+i—k)
as+?k— AEl —
(o +v)s + erg'c

(3)

Comparing eqn.(3) with eqn.(1) ylelds the following
relationships:

(4)

T11 T2 = s + %
e B _
Tisttha=c¢|ars+ i (e=+£1) (5)

(6)

- o +6
U3z = Y34 = (ak+7k)s+.@_’£s_.’£
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~ ~ b
Y11 £ Y12 = akp + ?k (7)
From egn.(4) we have

e 1
Y11 =ms+ %

and
712 =0.
To obtain %3 and 714 from eqn.(5), we will adopt
e = —1. Then,
Uiz =~ (0!13 + gl)
s
and
714 = 0.
From eqn.(6),
63\ 1
a3 = Sy P B+ =)=
2 2 ) s
and
Taa = _"(2—"(13_5_21
% 2 28

To obtain LC element values of the second stage,
we construct the 4x4 admittance matrix Y(s) of N
in Fig.2. The result is

Hg

‘Y—(s) = ﬁcs + 5 (8)
where
He
(431 0 — 0
0 Qa1 O -1
=| @, 0 al+°/1+'rz _72;71
_ M Y1+ Y
Q 95} —'——2 + ‘*"—"*'*2
and
B 0 -B1 0
0 6 0 s —gi
He=|_-8 0o g+2 -2
8 . %,
0 -6 3 B + ey

H¢ and H, are the residue matrices of Y(s) at the
poles s = oo and s = 0, respectively, and are non-
negative-definite. Y(s) satisfies Y(s) = —YT(—S),
and elements of ¥(s) are holomorphic in Re s = 0
except the above poles. Thus Y(s) is the reactance
maftrix in s.

From eqn.(8) we can obtain the following with re-
spect to elements in Fig.1.

CI=O£1
02:72;’}'1
Ca=m

1
LI':B—'
1

2
L2=6—2.

Finally, we shall find 7y and 72 from eqn.(7).
Thus,

by +bz]

The admittance matrix Y(p) = [ (p)] of N in Fig.2
becomes

= 1
u=g [(az +az)p+

and

by — by
p

P = 3 {(‘11 —ag)p+

~

~ ~ H
Y(p):plﬁlc+?£‘ 9)
where
]ﬁ[ _lrag_-l-(lz a1 — ag
CT 3 lar—a a;+ay
and
fi __E-b1+bz by — b
L—'2 _bl-bg by +bal”

]f-flc and I[-f[,r, are the residue matrices of '{’(p) at the
poles p = oo and p = 0, respectively, and are non-
negative-definite. Y(p) satisfies Y(p) = YT (-p),
and elements of Y(p) are holomorphic in Rep = 0
except the above poles. Thus the 2x2 matrix g’(p)
is the reactance matrix in p. Hence, we are at a
position of realizing Y(p) by using transmission lines.

To extract a coupled 2-wire line from the reactance
matrix Y(p) of eqn.(9), Y(1) is calculated. The result
is

: L 1Yot +Ye1  Yo1 — Ye1
Y 1 —_ ol el ol € 10
( ) 2 |Yo1 —¥Ye1 Yo1 + Yer1 ( )
where
Yo1 =0G1 + bI
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and
Ye1 = Qg + bg.

Symbols y.; and y,; are the even and odd mode char-
acteristic admittances of the extracted 2-wire line.

Let Yr(p) be the remainder after extracting the
above coupled 2-wire line from ?(1), then

Talp) = ¥01) [¥) - p¥0)] [Fe)-p¥(0)]

From theorem 1, ?R(p) is the 2 x 2 reactance matrix
in p and is given by

oy 1 Yo2 +Ye2 Yo — Ye2
YR(P) - E [yo.? —Ye2 Yo2 -+ gei:! (ll)
where
Yoz = "a—lya1
and
ba
Yeza = E;ym.

Yr(p) may be realized by taking a connection
where both wires of the coupled line are ground-
connected at the far end. Here y,3 and y.» are two
mode characteristic admittances of this 2-wire line.
We complete the proof of theorem 2. Q.E.D.

Theorem 3: Necessary and sufficient conditions
for a reactance 2x2 symmetric matrix W(p, s)
[wyj(p, 8)] to be realized as the admittance matrix of
the 2-port network between ports 1 and 2 in Fig.1(b)
are that

(1) wi1(p, 8) = waz(p, )

(2) for k=1,2,

1
wi1(p, s) + wia(p, s)

1

= 8 + ~ T
s+ = 4a —
Brs + S Takp+ -

(12)

where (i) a1 = a2 >0, 81 =6 >0, 72 >mn >
0, (ii) a1 + b1 > ay + ba > 0, agby (a1 +by) >
a1bs (ag + b2) > 0 for ag, b > 0.
When "+”, k = 1 must be adapted, and when " -7,
k=2.

Proof: The proof of necessity will be omitted
here. Therefore, only the sufficiency is proved.
Eqn.(12) can be written as

w11 (p, 8) = wiz(p, 8)

By comparing eqn.(13) with eqn.(1), we can get
following relations:

1
Ju T heg=— (14)
QRS
Jig + Yia =€ ! (e ==1) (15)
Yia T e = Gna =
_ _ 1 1
33 = Taq = Ors + (’Yk + —) - (16)
ar ) s
"~ b
Y1 Y =ap+ > (17)

From eqn.(14) we have

Lo i

i1 = 08
and

512 EO

To obtain g3 and §14 from egn.(15), we will adopt
e = —1. Then,

B 1
iy = [ 375
and
g14 = 0-
From eqn.(16) ,
. I m+m)l
y33—518+(a1+ 3 =
and
Taa = r-—ml
34 5 3

Thus the 4 x 4 admittance matrix Y(s) of N in Fig.2
may be written as

¥(s) = ==X + Hps + —= (18)
s s
where
H,
- 1 1 -
—~ 0 s 0
1 1
o L 0 =
e Q1 Qg
1 0 1  m-m Yo — M
s g s + i
a (e 5] 2 2
0 1 Y2 — V1 i+72—71
L (o3} 2 aq 2 .
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00 0 0
= 00 0 0
Ho‘oomo
00 0 B
and
00 0 O
= |00 0 0
ML"ooqlo
000"}’1

Hyi, He and Hy are non-negative definite residue
matrices. Thus it is easy to see that ¥Y(s) is the
reactance matrix in s. From eqn.(18), we obtain the
following element values.

Li=0
2
2:
Y2 — M1
1
Ly=—
71
Cs = B1.

We are at a position of realizing i:’(p) by using 2-
wire lines. Find 71; and 712 from eqn.(17), then we
can have

~ 1 by +b
Yi1 = 5 [(m “1‘&2)}74‘#]

and

% 1 by —-b
3’12:5[(0-1—0‘2)P+ lp 2]-

Thus the admittance matrix Y(p) = [7i;(p)] of N in
Fig.2 becomes

2 _ i
Y(P)IPHCJr?L

where
fi. -t [a1 +as a1 —as
C'?_2 @1 — G2 a1 + as
and
fi __l-b1+bz by — by
ET o bi—by bi+by)”

The matrix Y(p) defined above is the same into
eqn.(9). Hence, i”(p) is realized as the cascade of
coupled two 2-wire lines, and both wires are ground-
connected at the far end. As the result, we see the
even and odd mode characteristic impedances are the
same values that were described in theorem 2. Q.E.D.

4 Example

Let us illustrate the application of theorems to
the synthesis technique presented by considering an
example.

Realize a reactance matrix W(p,s) = [wq;(p, 5)]
(1,7 = 1,2) where w;;(p, s)'s are given by

wii(p, 8) = waz(p, s)
48s%p* + 123 (275% + 26) p°
2 + (2165* + 37952 + 120) p?
{ +2s (155% + 13) p + s* }
s {3sp® +6 (3s* + 4) p+ s}
x {16sp® + 12 (s + 1) p+ s}

and

wiz(p, 8) = wai(p, 8)
4p (42sp® — 12p + 3)
s {3sp? 46 (32 +4) p+ s}
x {16sp? + 12 (s? + 1) p+ s}

First of all, let us calculate w11(p, s) wia(p, s). The
results are

1 _1 1
w1 (p, 8) +wiz(p, 8) 2

1 1
3s+;+4p+—

4p
and
1 By 1
wll(pss)gwlz(p$s) 33+g+lp+_]:_
s 2 6p

The above two expressions suggest the application
possibility of theorem 3. According to eqn.(18), we
can have the following:

1

Q’]_—-‘_‘—Otz:-z-

Mnm=1 7%=2
&1=4, ag =

1 1
bi=-, by=-.
1 41 2 6
For the above coefficients, we see that (i), (if) in the-
orem 3 are satisfied. From eqn.(18) the admittance
matrix Y(s) of N in Fig.2 is given by

- 2 -
20 -2 0
V)= | ;O "§
8) = s
A 0 35—!—1 =
8 23 23
0 2L 35+ o
" s 2s 25
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Thus LC element values in Fig.1(b) are given by
L1= %, Lg=2, L3=1, and(73=3.

Finally, let us consider the realization of Nin Fig.2.
From eqn.(9), the corresponding admittance matrix
Y(p) can be written as

Thus, as shown from eqn.(10), two mode characteris-
tic admittances y,1 and ye; of the coupled line which
can be extracted from Y(p) are

1 [ 54p® +5 42p° 41

Y@)zm 420 +1 54p° 4+ 5

& and ~2
Yo1 = 4’ Ye1 = 3
Theorem 1 is applied to ?(p) to obtain the ad-

mittance matrix Yg(p) after the 2-wire line having
the characteristic admittances above was extracted.

m 2]

The above is the admittance matrix of 2-port net-
work where both wires of a 2-wire line are ground-
connected at the far end. Thus, the odd- and even-
mode characteristic admittances become

1
1152p

281 25

Yr(p) = 25 9281

2
and yez = 7,

17
Yea = g 9

respectively.

5 Conclusion

Necessary and sufficient conditions have been
presented under which a 2-variable 2x2 admittance
matrix may be realized as a 2-variable 2-port network
in which two distinct 4-port networks consisting of
LC elements is terminated in a cascade of coupled
2-wire lines.
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