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Synthesis of Networks Consisting of LC Elements and Coupled 2-Wire Lines 

                      Hideaki FUJIMOTO* 

 Necessary and sufficient conditions are presented under which a 2 x2  2-variable admittance matrix may 
be realized as a 2-port network in which two distinct 4-port networks consisting of LC elements only are 
terminated in a 2-port network consisting of coupled 2-wire lines. Furthermore, an example is given to 
illustrate the synthesis technique. 
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  In this section, relationships with respect to the 
admittance matrix of the 2-port network shown in 
Fig.1 are derived. Fig.2 shows the 2-port network 
which is a configuration of a 4-port network N ter-
minated in a 2-port network N. The 2-port network 
will be described as N. We assume N and N are lin-
ear, passive, time-invariant, lossless and reciprocal. 

Let W = [wzi ] be a 2x 2 admittance matrix of N 
between ports_1 and 2 in Fig.2. Furthermore, let 
Y = [gzi ] and Y _ [y2i ] be 4x 4 and 2 x 2 admittance 
matrices of N and N, respectively.

1 Introduction

Lumped and distributed mixed 2-port 
           networks.

Fig.1

N  
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   It is well known that networks containing both 
lumped and distributed elements may be analyzed 
and synthesized by using the theory of multivariable 
positive-real functions or matrices. [1-4] A very im-
portant practical class of these networks, especially 
at microwave frequencies, is a cascaded structure of 
transmission lines, separated by lumped 2-port net-
works. Realizability conditions on various cascaded 
structures were presented by several authors. [3-8], 
[10-12] 

Recently, H.Fujimoto has considered three distinct 
cases of lumped and distributed mixed 2-port net-
works, and has presented those realizability con-
ditions.[13,14] Each of the networks consists of a 
cascade-load connection that a distributed constant 
2-port network, as in the following three cases, ter-
minates a lumped constant 4-port network consist-
ing of five capacitors. The cases are with respect to 
both wires of the coupled line at the far end : one is 
ground-connected, the second is open-circuited and 
the third is short-circuited. 

   In this paper, realizability conditions are de-
rived under which a 2-variable admittance matrix of 
complex variables "p" and "s" may be realized as a 
2-variable 2-port network in which an s-variable 4-
port network is terminated in a p-variable 2-port net-
work(Fig.1). The s-variable 4-port network, which 
is referred to as fifth-order elliptic low-pass filters, is 
constructed of LC-elements. The p-variable 2-port 
network consists of a cascade of two coupled 2-wire 
lines, and both wires of the second coupled line are 
ground-connected at the far end. Furthermore an ex-
ample is given to illustrate the synthesis technique.

Analysis2 Circuit

2-port netwok N where N`terminates N.Fig.2
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then

 degpW (p, q) – 1.degpWa(p, 4) =

networkrealizing We will present conditions for 
configurations shown in Fig.1.

Theorem 2: Necessary and sufficient conditions 
for a reactance 2x 2 symmetric matrix W(p, s) = 
[wZj (p, s)] (i, j= 1,2) to be realized as the admit-
tance matrix of the 2-port network between ports 1 
and 2 in Fig.1(a) are that 
(1) tun (p, s) = w220 s) 
(2) for k = 1, 2, 

        1 w11(P,^)±w12(p,^) 
  11  

  _+ 

      CEOyks+3+akp+bk 
   s3p 

                        (2)

where (i) a l = a2 > 0, 131 = 02 > 0, 'Y2 > 'Yl > 0, 
61 = 0, 62 > 0 , (ii) al + b1 > a2 + b2 > 
0, a2bl (al + b1) > a1b2 (a2 + b2) > 0 for ak, bk > 0. 
When "+", k = 1 must be adapted, and when " –" , 
k=2. 
 Proof: The proof of necessity will be omitted 

here. Therefore, the proof is presented only for the 
sufficient conditions, and is performed through three 
stages: the first is to yield elements of the admittance 
matrix in eqn.(1), the second is to obtain values of 
LC elements, and the last is to provide characteristic 
admittances of coupled 2-wire lines. 

 First of all to obtain elements of the admittance 
matrix of eqn.(1), we rewrite eqn.(2) as in the fol-
lowing:

w11(p, s) ± w12(p, s)

)2
/3k 

s

(aks +
+ akP +b 

p 

     (3)

/3k + 8k
3

(ak+7k)s+

aks + —k – 
       s

yields the followingwith eqn.(1)Comparing eqn.(3) 
relationships:

(4)    +Ok  aks—
s

y11 ±y12

(5)(E = ±1)aks+k 
      s

Y13 ± 914 = E

(6)
13k + 6k

s

= (ak+7k)8+J33 ± '34

After some matrix manipulation, the matrix W may 

be expressed in the form

W=Y11 — 712 (722 ± ~) 721

where

    yll Y12Y33Y34                   7 22 = V11 Y
12 Y22 y y34 y44

and

     7'y13Y14 V12_~21_Y23Y24[
The superscript "T" denotes the transpose of any 
matrix. Assume g13 = Y24 and y14 = Y23, then we 
can have the following with respect to elements of 
W.

w1I +W12

(y13 + y14)2
(Y33 ± Y34) + (y11 ± Y12)

= (yll ± y12) —

(1)

where only the upper or only the lower signs are to 

be used.

3 Realizability Conditions

Necessary and sufficient conditions are presented 
for the realizability of 2-port networks shown in Fig.1 
in the standpoint of functions of two complex vari-
ables "p" and "s".  Symbols "p" and "s" are used 
to express Richards' transformation tanh Ts ('r > 0) 
and the complex frequency, respectively. 

 The following theorem, which is the extension of 
Richards and Saito's theorem, will be applied in or-
der to extract a coupled 2-wire line from  a multivari-
able positive-real matrix given.

Theorem 1 [8,9] : Let W(p, q) be an r x r sym-
metric positive-real matrix in complex variables p, 

= (qi, • • • , q?,,,). If there exists a matrix R0 and a 
positive constant p = po such that

W(Po,)=R0 

then WR,(p, q) which is defined by 

WR.(p, q) _ 

Ro [Ro – PW (p, 01-1  [W (13 q) –PRo ]

is also an r x r positive-real matrix if the inverse 
exists, and in general,

degpWR(p, q) < deggW(p, q). 

In particular if

W(–Po, q) = –Ro



 From eqn.(8)  we can obtain the following with re-
spect to elements in Fig.l.(7)

            bk 
y11±P12=akp+p•

Cl = alFrom eqn.(4) we have

'Y2 — 'Y1

2
c2 =

y11=a1s+—s s

and

C3 ='Y1Y12 0.

L1 =1 P
1

y14 from eqn.(5), we will adoptandTo obtain y13 
e=-1. Then,

   2 
L2= K.

— ais + ~1 

s

Y13 =

and

eqn.(7).fromand y12find yllwe shall Finally, 

Thus,y14 =0.

1
b1 + b2

p[(ai +a2)p +yii = 2

From eqn.(6),

and

        b21 
 s+t1+2

s

'Y2

2(ai +y33 =

bZb1  (
ai — a2)p + 

p

    1 
Y12 =

fl'~in Fig.2 ixi-7(p) = [gii (p)] 0The admittance matr 

becomes

(9)
]HlL 

p
ii(p) = Pit +

 To obtain LC element values of the second stage, 
we construct the 4 x 4 admittance matrix Y. (s) of N 
in Fig.2. The result is

where(8)

1
al — a2 

al + a2

ai + a2 

al — a2
llc- =

and

1
b1 — b2 

b1 + b2

b1 + b2 

b1 — b2
HL- =

Irk' and IEIIL are the residue matrices of C(p) at the 
poles p = oo and p= 0, respectively, and are non- 
negative-definite._Y(p) satisfies Y(p) = —YT (—p), 
and elements of1Y(p) are holomorphic in Rep_>0 
except the above poles. Thus the 2x 2 matrix (p) 
is the reactance matrix in p. Hence, we are at a 
position of realizing 7(p) by using transmission lines. 

To extract a coupled 2-wire line from  the reactance 
matrix Y. of eqn.(9), Y(1) is calculated. The result 
is

2 
7'1 + 'Y2

(10)1Yol — Yei 

Yol + Ye1

1 Yol + Ye1 

2 Yoi — Yel

 'Y2 — 71 62 1 

  2 s 2s

Y(1)

where

poi = a1 + b1

y34 =

lHcs+ — 

       s

(s) =

 0 
—al 

'Y2 — 'Y1

—a1 

0 
Yi + 'Y2

0

2
al +

2 'Y1
al+ 

    'Y2 —

al 

0

2
—al

0 
—131 

62 

01 +

-01 

„  NI+2 

82

0 

Ql 

0

01 
0

-01

—010

where

al 

0

—a1

0

and

1E0

and

HL=

1H10 and IEIIL are the residue matrices of Y(s) at the 
poles s = oo and s = 0, respectively, and are non- 
negative-definite. Y(s) satisfiesY(s)=—YT(—s), 
and elements of V(s) are holomorphic in Re s >_ 0 
except the above poles. Thus I' (s) is the reactance 
matrix in s.
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 By comparing eqn.(13)  with eqn.(1),  we can get 
following relations: 

                    1 
           y1ify12 =as(14) 

                           aks 

                   Y13±Y14=ea ks(e=±1)(15) 

1 1 
9-33± g34 =13k8+ '}'k+— - (16) 

ak 

           y11+y12 = akp +b(17) 

p From eqn.(14) we have 

                 1 
y11 = a

is 

and 

y12 O. 

To obtain 9'13 and y14 from eqn.(15), we will adopt 
6 = -1. Then, 

                 y13=-1 a
ks 

and 

y14=0. 

From eqn.(16) , 

                   1'Y1+72  
      Y33 = fl s++21 

and 
-Y2 - -Y1 1 

           y34 = 2 s. 

Thus the 4 x 4 admittance matrix (s) of N in Fig.2 
may be written as 

          ~'(8) —~L1-r--TrIT+r(18) 
    ss 

where 

~L1 
- 1

0-1-          0 

  01101_1 
—ala1 
    _1o1+-Y2`~'1'}'2—~'1  

 a1al 22 
 1 0 ---2Y11 -                               Y211  

_a12a1 2 _

and 

ye1 =a2+b2. 

Symbols yeiand yolare the even and odd mode char-

acteristic admittances ot the extracted 2-wire line. 

 Let YR(p) be the remainderafter extracting the 
above coupled 2-wire line fromY(1), then 

 i'R(P) = Y(1) [C7(1) - pY(p)]-1(P)-PY(1)] 
From theorem 1, 1YR,(p) is the 2 x 2 reactance matrix 
in p and is given by 

                1Yo2+ye2 Yo2—Ye2 
   RAP) =—(11) 

              2p yo2 — Ye2 Yo2 + Ye2 

where 

bi 
Yo2 = '—Yo1 a

l 

and 

                   b2 
Ye2 = "-Yel•                        a

2 

ZYR,(p) may be realized by taking a connection 
where both wires of the coupled line are ground-
connected at the far end. Here yo2 and ye2 are two 
mode characteristic admittances of this 2-wire line. 
We complete the proof of theorem 2. Q.E.D. 

Theorem 3: Necessary and sufficient conditions 
for a reactance 2x2 symmetric matrix W(p, s) = 
[wjj (p, s)] to be realized as the admittance matrix of 
the 2-port network between ports 1 and 2 in Fig.1(b) 
are that 
(1) w11 (p, s) =w22(p, s) 
(2) for k=1,2, 

      1
/   wii(p , s) + w12(p, s) 

                       1 

      = aks +b
k                 fik s + sk + akp + 

                         (12) 

where (i) a1 =a2>0,Qi =02>0,72 > y1 > 
0, (ii) a1 + b1 > a2 + b2 > 0, a2b1 (al + b1) > 
ajb2 (a2 + b2) > 0 for ak, bk > 0. 
When "+", k = 1 must be adapted, and when " -" , 
k = 2 . 

 Proof: The proof of necessity will be omitted 
here. Therefore, only the sufficiency is proved. 
Eqn.(12) can be written as 

wii(p,^)±w12(P,^) 

1 2 

1aks 

                                                                                                                                                                         • 

  aks1 1bk             /A
s +  'Yk+— - +akp+ —           

ak s p

(13)



           4 Example 

   Let us illustrate the application of theorems to 
the synthesis technique presented by considering an 
example. 
 Realize a reactance matrix W(p, s) = [wzi (p, s)] 
(i, j = 1, 2) where wj3 (p, s)'s are given by 
w11(p, s) = w22(p, s) 

           48s2p4 + 12s (27s2 + 26) p3 
        2 + (21654 + 37952 + 120) p2 

                 +2s (1582 + 13) p + 52 
s{3sp2+6(382+4)p+5} 

x {16sp2+12 (s2+1)p+s}

and

w12(p,3)=w21(p,^) 
4p (42sp2 — 12p + s)

IHIL1, 1HIc and IEIIL are non-negative definite residue 
matrices. Thus it is easy to see that Y(s) is the 
reactance matrix in s. From eqn.(18), we obtain the 
following element values. 

s {35p2 + 6 (3s2 + 4) p + s} 
x {16sp2+12(s2+1)p+s} 

First of all, let us calculate w11(p, s) + w 12 (p, s). The 
results are 

  111 --------------------- —s + --------------------  w11(p,^) + w12(p, s) 2 3s + 1+ 4p + 4 
and 

  1 1 1  
           s211 • 

 w11(p,^)—w12(p,^) 2 3s+2+
2p+6                              6p 

The above two expressions suggest the application 
possibility of theorem 3. According to eqn.(18), we 
can have the following: 

                    1 
          al-==

 We are at a position of realizing1Y(p) by using 2- 
wire lines. Findy11and y12 from eqn.(17), then we 
can have

1

0 0 0 0 

0 0 0 0 

0 0 ,Q1 0 

0 0 0 ,Q1

0 0 0 0 

0 0 0 0 

0 0 ry1 0 

0 0 0 'Y1

= a1 

  2 

Y2 — ''1 

  1 

7'1 

= ti •

mac=

and

~L =

L1 

L2 = 

L3 

 C3

b1 + b2

p
(al + a2 ) p +

1 

2
Q11=

and

— b2 

p

b1 (
a1 — a2)p +

1 

2
Y12 =

11 
b1=4, b2=6. 

For the above coefficients, we see that (i), (ii) in the-
orem 3 are satisfied. From eqn.(18) the admittance 
matrix V(s) of N in Fig.2 is given by

31 = 02 = 3of Si in[y2j (P)]

Y1=1, 'Y2=2

Thus the admittance matrix Y(p) = 
Fig.2 becomes

         1 
a1 = 4, a2 =

kilL 

p
Y(p) = pgic +

where

1
a1 — a2 

a1 + a2

al + a2 

a1 — a2
mac=

 0 

  2 

2s7 

3s + 2
s

  2 

s 

 0 

3s +7
s   1 

2s

0 

2 

s 

0 

2 

s

and

1
bl—b2 

b1 + b2
b1 + b2 
b1 — b2

2 

s 

0 

2 

s 

0

~Y(s) =

The matrix (p) defined above is the same into 
eqn.(9). Hence,17(p) is realized as the cascade of 
coupled two 2-wire lines, and both wires are ground-
connected at the far end. As the result, we see the 
even and odd mode characteristic impedances are the 
same values that were described in theorem 2. Q.E.D.
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Thus LC element values in Fig.1(b) are given by

Ll _ L2 = 2, L3 = 1, and C3 = 3.

Finally, let us consider the realization of ST- in Fig.2. 
From eqn.(9), the corresponding admittance matrix 
Y(p) can be written as

54p2 + 5 42p2 + 1 ~ (
p) = 24p 42p2 + 1 54p2 + 5 '

Thus, as shown from eqn.(10), two mode characteris-
tic admittances yol andyei of the coupled line which 
can be extracted from Y(p) are 

         yo1=4,and yel=3• 
Theorem 1 is applied to (p) to obtain the ad-

mittance matrix lYR(p) after the 2-wire line having 
the characteristic admittances above was extracted. 
Thus,

281 25 

 25 281

1

1152p
~R(P)

The above is the admittance matrix of 2-port net-

work where both wires of a 2-wire line are ground-

connected at the far end. Thus, the odd- and even-

mode characteristic admittances become 

        yo264,and Ye2 =2 

respectively.

5 Conclusion

    Necessary and sufficient conditions have been 

presented under which a 2-variable 2x2 admittance 
matrix may be realized as a 2-variable 2-port network 
in which two distinct 4-port networks consisting of 

LC elements is terminated in a cascade of coupled 
2-wire lines.
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