ハミルトン C_{k}－Bowtie デザイン

 潮 和彦＊

 潮 和彦＊}

Hamilton C_{k}－Bowtie Designs

Kazuhiko USHIO＊

In graph theory，the decomposition problem of graphs is a very important topic．Various type of decom－ positions of many graphs can be seen in the literature of gaph theory．This paper gives a Hamilton C_{k}－bowtie decomposition of the complete multi－grapf λK_{n} ．

Key words：Hamilton C_{k}－bowtie decomposition，Complete multi－graph，Graph theory

1 Introduction

Let K_{n} denote the complete graph of n vertices． The complete multi－graph λK_{n} is the complete graph K_{n} in which every edge is taken λ times．Let C_{k} be the k－cycle（or the cycle on k vertices）．The C_{k}－ bowtie is a graph of 2 edge－disjoint C_{k}＇s with a com－ mon vertex and the common vertex is called the cen－ ter of the C_{k}－bowtie．In particular，a C_{k}－bowtie sat－ isfying $n=2(k-1)+1$ is called the Hamilton C_{k}－ bowtie because the C_{k}－bowtie spans λK_{n} ．
When λK_{n} is decomposed into edge－disjoint sum of Hamilton C_{k}－bowties，we say that λK_{n} has a Hamil－ ton C_{k}－bowtie decomposition．This Hamilton $C_{k^{-}}$ bowtie decomposition of λK_{n} is called a Hamilton C_{k}－bowtie design．

In this paper，it is shown that the necessary con－ dition for the existence of a Hamilton C_{k}－bowtie de－ composition of λK_{n} is（i）$n=2(k-1)+1$ and（ii） $\lambda \equiv 0(\bmod 2 k)$ for even $k, \lambda \equiv 0(\bmod k)$ for odd k ．Decomposition algorithms are also given．

It is a well－known result that K_{n} has a C_{3} de－ composition if and only if $n \equiv 1$ or $3(\bmod 6)$ ．This decomposition is known as a Steiner triple system． See Colbourn and Rosa［2］and Wallis［15］．Horák and Rosa［3］proved that K_{n} has a C_{3}－bowtie decompo－ sition if and only if $n \equiv 1$ or $9(\bmod 12)$ ．This decomposition is known as a C_{3}－bowtie system．
For the design theory，see Colbourn［1］，Lindner［4］， and Ushio［5］．For the graph decomposition，see Ushio［6－7］，Ushio and Fujimoto［8－14］．

平成20年6月21日受理

＊情報学科 Department of Informatics，School of Sci－ ence and Engineering，Kinki Univesity，Osaka 577－8502， JAPAN E－mail：ushio＠info．kindai．ac．jp

2 Hamilton C_{k}－bowtie decomposition of λK_{n}

Notation．We consider the vertex set V of λK_{n} as $V=\{1,2, \ldots, n\}$ ．We denote a Hamilton C_{k}－bowtie passing through $v_{1}-v_{2}-v_{3}-\ldots-v_{k}-v_{1}, v_{1}-v_{k+1}-$ $v_{k+2}-\ldots-v_{2 k-1}-v_{1}$ by $H=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right) \cup$ $\left(v_{1}, v_{k+1}, v_{k+2}, \ldots, v_{2 k-1}\right)$ ．

Theorem 1．If λK_{n} has a Hamilton C_{k}－bowtie de－ composition，then（i）$n=2(k-1)+1$ and（ii）$\lambda \equiv 0$ $(\bmod 2 k)$ for even $k, \lambda \equiv 0(\bmod k)$ for odd k ．

Theorem 2．If λK_{n} has a Hamilton C_{k}－bowtie de－ composition，then $(s \lambda) K_{n}$ has a Hamilton C_{k}－bowtie decomposition for every s ．

Theorem F．（Fermat）Let p be prime and a be integer．Then $a^{p} \equiv a(\bmod p)$ ．

Corollaly F1．Let p be prime and $(a, p)=1$ ．Then $a^{p-1} \equiv 1(\bmod p)$ ．

Corollaly F2．Let p be prime and $(a, p)=1$ ．Then $s a^{p-1} \equiv s(\bmod p)$ for $1 \leq s \leq p-1$ ．

Definition．When $s a^{n-1} \equiv s(\bmod n)$ ，let $a_{i}=$ $s a^{i-1} \bmod n(i=1,2, \ldots, n)$ for $1 \leq s \leq n-1$ ．Find the first $i(i=2,3, \ldots, n)$ such that $a_{i}=s$ ．Put the i be L ．Then the sequence $a_{1}(=s), a_{2}(=s a), a_{3}(=$ $\left.s a^{2}\right), \ldots, a_{L}(=s)$ is called an L－orbit starting s ．
When there exist（ $n-1$ ）L－orbits starting $1,2, \ldots, n-$ 1 ，we say that n admits L－orbits．

Note．Let p be prime．It is a widely known result that p admits p－orbits and that a is called a primitive root w．r．t．mod p ．In particular，the least a denoted g is called the least primitive root w．r．t $\bmod p$ ．

Example F．1．（p，g）table．
$(p, g)=(2,1),(3,2),(5,2),(7,3),(11,2),(13,2)$ ，
$(17,3), \quad(19,2), \quad(23,5), \quad(29,2), \quad(31,3),(37,2)$ ，
$(41,6), \quad(43,3), \quad(47,5), \quad(53,2), \quad(59,2), \quad(61,2)$ ， $(67,2),(71,7),(73,5),(79,3),(83,2),(89,3),(97,5)$ ， $(101,2),(103,5),(107,2),(109,6),(113,3),(127,3)$ ， （131，2），（137，3），（139，2），（149，2），（151，6），$(157,5)$ ， $(163,2),(167,5),(173,2),(179,2),(181,2),(191,19)$ ， $(193,5),(197,2),(199,3),(211,2),(223,3),(227,2)$ ， $(229,6),(233,3),(239,7),(241,7),(251,6),(257,3)$ ， $(263,5),(269,2),(271,6),(277,5),(281,3),(283,3)$ ， $(293,2), \quad(307,5), \quad(311,17), \quad(313,10),(317,2)$ ， $(331,3),(337,10),(347,2),(349,2),(353,3),(359,7)$ ， $(367,6),(373,2),(379,2),(383,5),(389,2),(397,5)$ ， $(401,3),(409,21),(419,2),(421,2),(431,7),(433,5)$ ， $(439,15), \quad(443,2), \quad(449,3), \quad(457,13), \quad(461,2)$ ， $(463,3),(467,2),(479,13),(487,3),(491,2),(499,7)$ ， $(503,5),(509,2),(521,3),(523,2),(541,2),(547,2)$ ， $(557,2),(563,2),(569,3),(571,3),(577,5),(587,2)$ ， $(593,3),(599,7),(601,7),(607,3),(613,2),(617,3)$ ， $(619,2),(631,3),(641,3),(643,11),(647,5),(653,2)$ ， $(659,2),(661,2),(673,5),(677,2),(683,5),(691,3)$ ， （701，2），$(709,2),(719,11),(727,5),(733,6),(739,3)$ ， $(743,5),(751,3),(757,2),(761,6),(769,11),(773,2)$ ， $(787,2),(797,2),(809,3),(811,3),(821,2),(823,3)$ ， $(827,2),(829,2),(839,11),(853,2),(857,3),(859,2)$ ， $(863,5),(877,2),(881,3),(883,2),(887,5),(907,2)$ ， $(911,17),(919,7),(929,3),(937,5),(941,2),(947,2)$ ， $(953,3),(967,5),(971,6),(977,3),(983,5),(991,6)$ ， $(997,7)$ ．

Theorem 3．Let n be prime．When $n=2(k-1)+1$ ， $\lambda \equiv 0(\bmod 2 k)$ ，and k even，λK_{n} has a Hamilton C_{k}－bowtie decomposition．

Example 3．1．Hamilton C_{4}－bowtie of $8 K_{7}$ ． $(n, g)=(7,3)$
n－orbit： $1,3,2,6,4,5,1$ ．
$H=(7,1,3,2) \cup(7,6,4,5)$
$H=(7,3,2,6) \cup(7,4,5,1)$
$H=(7,2,6,4) \cup(7,5,1,3)$ ．
These 3 starters comprise a Hamilton C_{4}－bowtie de－ composition of $8 K_{7}$ ．

Example 3．2．Hamilton C_{6}－bowtie of $12 K_{11}$ ．
$(n, g)=(11,2)$
n－orbit ： $1,2,4,8,5,10,9,7,3,6,1$ ．
$H=(11,1,2,4,8,5) \cup(11,10,9,7,3,6)$
$H=(11,2,4,8,5,10) \cup(11,9,7,3,6,1)$
$H=(11,4,8,5,10,9) \cup(11,7,3,6,1,2)$
$H=(11,8,5,10,9,7) \cup(11,3,6,1,2,4)$
$H=(11,5,10,9,7,3) \cup(11,6,1,2,4,8)$ ．
These 5 starters comprise a Hamilton C_{6}－bowtie de－ composition of $12 K_{11}$ ．

Example 3．3．Hamilton C_{10}－bowtie of $20 K_{19}$ ．
$(n, g)=(19,2)$
n－orbit： $1,2,4,8,16,13,7,14,9,18,17,15,11,3,6,12$ ， $5,10,1$ ．
$H=(19,1,2,4,8,16,13,7,14,9)$
$\cup(19,18,17,15,11,3,6,12,5,10)$
$H=(19,2,4,8,16,13,7,14,9,18)$
$\cup(19,17,15,11,3,6,12,5,10,1)$
$H=(19,4,8,16,13,7,14,9,18,17)$
$\cup(19,15,11,3,6,12,5,10,1,2)$
$H=(19,8,16,13,7,14,9,18,17,15)$
$\cup(19,11,3,6,12,5,10,1,2,4)$
$H=(19,16,13,7,14,9,18,17,15,11)$
$\cup(19,3,6,12,5,10,1,2,4,8)$
$H=(19,13,7,14,9,18,17,15,11,3)$
$\cup(19,6,12,5,10,1,2,4,8,16)$
$H=(19,7,14,9,18,17,15,11,3,6)$
$\cup(19,12,5,10,1,2,4,8,16,13)$
$H=(19,14,9,18,17,15,11,3,6,12)$
$\cup(19,5,10,1,2,4,8,16,13,7)$
$H=(19,9,18,17,15,11,3,6,12,5)$
$\cup(19,10,1,2,4,8,16,13,7,14)$ ．
These 9 starters comprise a Hamilton C_{10}－bowtie decomposition of $20 K_{19}$ ．

Example 3．4．Hamilton C_{12}－bowtie of $24 K_{23}$ ． $(n, g)=(23,5)$
n－orbit： $1,5,2,10,4,20,8,17,16,11,9,22,18,21,13$ ， $19,3,15,6,7,12,14,1$ ．
11 starters comprise a Hamilton C_{12}－bowtie decom－ position of $24 K_{23}$ ．

Example 3．5．Hamilton C_{16}－bowtie of $32 K_{31}$ ． $(n, g)=(31,3)$
n－orbit： $1,3,9,27,19,26,16,17,20,29,25,13,8,24,10$ ， $30,28,22,4,12,5,15,14,11,2,6,18,23,7,21,1$ ．
15 starters comprise a Hamilton C_{16}－bowtie decom－ position of $32 K_{31}$ ．

Example 3．6．Hamilton C_{22}－bowtie of $44 K_{43}$ ． $(n, g)=(43,3)$
n－orbit： $1,3,9,27,38,28,41,37,25,32,10,30,4,12,36$ ， $22,23,26,35,19,14,42,40,34,16,5,15,2,6,18,11,33$ ， $13,39,31,7,21,20,17,8,24,29,1$ ．
21 starters comprise a Hamilton C_{22}－bowtie decom－ position of $44 K_{43}$ ．

Example 3．7．Hamilton C_{24}－bowtie of $48 K_{47}$ ． $(n, g)=(47,5)$
n－orbit： $1,5,25,31,14,23,21,11,8,40,12,13,18,43$ ， $27,41,17,38,2,10,3,15,28,46,42,22,16,33,24,26$ ， $36,39,7,35,34,29,4,20,6,30,9,45,37,44,32,19,1$ ． 23 starters comprise a Hamilton C_{24}－bowtie decom－ position of $48 K_{47}$ ．

Example 3．8．Hamilton C_{30}－bowtie of $60 K_{59}$ ． $(n, g)=(59,2)$
n－orbit ： $1,2,4,8,16,32,5,10,20,40,21,42,25,50,41$ ， $23,46,33,7,14,28,56,53,47,35,11,22,44,29,58,57$ ， $55,51,43,27,54,49,39,19,38,17,34,9,18,36,13,26$ ， $52,45,31,3,6,12,24,48,37,15,30,1$ ．
29 starters comprise a Hamilton C_{30}－bowtie decom－ position of $60 K_{59}$ ．

Example 3．9．Hamilton C_{34}－bowtie of $68 K_{67}$ ． $(n, g)=(67,2)$
n－orbit： $1,2,4,8,16,32,64,61,55,43,19,38,9,18,36$ ， $5,10,20,40,13,26,52,37,7,14,28,56,45,23,46,25,50$ ， $33,66,65,63,59,51,35,3,6,12,24,48,29,58,49,31,62$ ， $57,47,27,54,41,15,30,60,53,39,11,22,44,21,42,17$ ， 34,1 ．
33 starters comprise a Hamilton C_{34}－bowtie decom－ position of $68 K_{67}$ ．

Example 3．10．Hamilton C_{36}－bowtie of $72 K_{71}$ ． $(n, g)=(71,7)$
n－orbit： $1,7,49,59,58,51,2,14,27,47,45,31,4,28,54$ ， $23,19,62,8,56,37,46,38,53,16,41,3,21,5,35,32,11$ ， $6,42,10,70,64,22,12,13,20,69,57,44,24,26,40,67$ ， $43,17,48,52,9,63,15,34,25,33,18,55,30,68,50,66$ ， $36,39,60,65,29,61,1$ ．
35 starters comprise a Hamilton C_{36}－bowtie decom－ position of $72 K_{71}$ ．

Example 3．11．Hamilton C_{40}－bowtie of $80 K_{79}$ ． $(n, g)=(79,3)$
n－orbit： $1,3,9,27,2,6,18,54,4,12,36,29,8,24,72,58$ ， $16,48,65,37,32,17,51,74,64,34,23,69,49,68,46,59$ ， $19,57,13,39,38,35,26,78,76,70,52,77,73,61,25,75$ ， $67,43,50,71,55,7,21,63,31,14,42,47,62,28,5,15,45$ ， $56,10,30,11,33,20,60,22,66,40,41,44,53,1$ ．
39 starters comprise a Hamilton C_{40}－bowtie decom－ position of $80 K_{79}$ ．

Example 3．12．Hamilton C_{42}－bowtie of $84 K_{83}$ ． $(n, g)=(83,2)$
n－orbit ： $1,2,4,8,16,32,64,45,7,14,28,56,29,58,33$ ， $66,49,15,30,60,37,74,65,47,11,22,44,5,10,20,40$ ，
$80,77,71,59,35,70,57,31,62,41,82,81,79,75,67,51$ ， $19,38,76,69,55,27,54,25,50,17,34,68,53,23,46,9$ ， $18,36,72,61,39,78,73,63,43,3,6,12,24,48,13,26$ ， $52,21,42,1$ ．
41 starters comprise a Hamilton C_{42}－bowtie decom－ position of $84 K_{83}$ ．

Theorem 4．Let n be prime．When $n=2(k-1)+1$ ， $\lambda \equiv 0(\bmod k)$ ，and k odd，λK_{n} has a Hamilton $C_{k^{-}}$ bowtie decomposition．

Example 4．1．Hamilton C_{3}－bowtie of $3 K_{5}$ ．
$(n, g)=(5,2)$
n－orbit： $1,2,4,3,1$ ．
$L_{1}: 1,4,1 \quad L_{2}: 2,3,2$.
$H=(5,1,4) \cup(5,2,3)$ ．
This starter comprises a Hamilton C_{3}－bowtie decom－ position of $3 K_{5}$ ．

Example 4．2．Hamilton C_{7}－bowtie of $7 K_{13}$ ．

 $(n, g)=(13,2)$$n$－orbit ： $1,2,4,8,3,6,12,11,9,5,10,7,1$ ．
$L_{1}: 1,4,3,12,9,10,1 \quad L_{2}: 2,8,6,11,5,7,2$.
$H=(13,1,4,3,12,9,10) \cup(13,2,8,6,11,5,7)$
$H=(13,4,3,12,9,10,1) \cup(13,8,6,11,5,7,2)$
$H=(13,3,12,9,10,1,4) \cup(13,6,11,5,7,2,8)$ ．
These 3 starters comprise a Hamilton C_{7}－bowtie de－ composition of $7 K_{13}$ ．

Example 4．3．Hamilton C_{9}－bowtie of $9 K_{17}$ ． $(n, g)=(17,3)$
n－orbit： $1,3,9,10,13,5,15,11,16,14,8,7,4,12,2,6,1$ ．
$L_{1}: 1,9,13,15,16,8,4,2,1$
$L_{2}: 3,10,5,11,14,7,12,6,3$.
$H=(17,1,9,13,15,16,8,4,2)$
$\cup(17,3,10,5,11,14,7,12,6)$
$H=(17,9,13,15,16,8,4,2,1)$
$\cup(17,10,5,11,14,7,12,6,3)$
$H=(17,13,15,16,8,4,2,1,9)$
$\cup(17,5,11,14,7,12,6,3,10)$
$H=(17,15,16,8,4,2,1,9,13)$
$\cup(17,11,14,7,12,6,3,10,5)$ ．
These 4 starters comprise a Hamilton C_{9}－bowtie decomposition of $9 K_{17}$ ．

Example 4．4．Hamilton C_{15}－bowtie of $15 K_{29}$ ．
$(n, g)=(29,2)$
n－orbit： $1,2,4,8,16,3,6,12,24,19,9,18,7,14,28,27$ ， $25,21,13,26,23,17,5,10,20,11,22,15,1$ ．
7 starters comprise a Hamilton C_{15}－bowtie decom－ position of $15 K_{29}$ ．

Example 4．5．Hamilton C_{19}－bowtie of $19 K_{37}$ ．

$(n, g)=(37,2)$
n－orbit： $1,2,4,8,16,32,27,17,34,31,25,13,26,15,30$ ， $23,9,18,36,35,33,29,21,5,10,20,3,6,12,24,11,22,7$ ， $14,28,19,1$ ．
9 starters comprise a Hamilton C_{19}－bowtie decom－ position of $19 K_{37}$ ．

Example 4．6．Hamilton C_{21}－bowtie of $21 K_{41}$ ． $(n, g)=(41,6)$
n－orbit： $1,6,36,11,25,27,39,29,10,19,32,28,4,24$ ， $21,3,18,26,33,34,40,35,5,30,16,14,2,12,31,22,9$ ， $13,37,17,20,38,23,15,8,7,1$ ．
10 starters comprise a Hamilton C_{21}－bowtie decom－ position of $21 K_{41}$ ．

Example 4．7．Hamilton C_{27}－bowtie of $27 K_{53}$ ．

$(n, g)=(53,2)$
n－orbit ： $1,2,4,8,16,32,11,22,44,35,17,34,15,30,7$ ， $14,28,3,6,12,24,48,43,33,13,26,52,51,49,45,37,21$ ， $42,31,9,18,36,19,38,23,46,39,25,50,47,41,29,5,10$ ， 20，40，27， 1 ．
13 starters comprise a Hamilton C_{27}－bowtie decom－ position of $27 K_{53}$ ．

Example 4．8．Hamilton C_{31}－bowtie of $31 K_{61}$ ．

$(n, g)=(61,2)$
n－orbit： $1,2,4,8,16,32,3,6,12,24,48,35,9,18,36,11$ ，
$22,44,27,54,47,33,5,10,20,40,19,38,15,30,60,59$ ，
$57,53,45,29,58,55,49,37,13,26,52,43,25,50,39,17$ ，
$34,7,14,28,56,51,41,21,42,23,46,31,1$ ．
15 starters comprise a Hamilton C_{31}－bowtie decom－ position of $31 K_{61}$ ．

Example 4．9．Hamilton C_{37}－bowtie of $37 K_{73}$ ． $(n, g)=(73,5)$
n－orbit ： $1,5,25,52,41,59,3,15,2,10,50,31,9,45,6$ ， $30,4,20,27,62,18,17,12,60,8,40,54,51,36,34,24,47$ ， $16,7,35,29,72,68,48,21,32,14,70,58,71,63,23,42$ ， $64,28,67,43,69,53,46,11,55,56,61,13,65,33,19,22$ ， $37,39,49,26,57,66,38,44,1$ ．
18 starters comprise a Hamilton C_{37}－bowtie decom－ position of $37 K_{73}$ ．

Example 4．10．Hamilton C_{45}－bowtie of $45 K_{89}$ ． $(n, g)=(89,3)$
n－orbit ： $1,3,9,27,81,65,17,51,64,14,42,37,22,66$ ， $20,60,2,6,18,54,73,41,34,13,39,28,84,74,44,43,40$ ， $31,4,12,36,19,57,82,68,26,78,56,79,59,88,86,80,62$ ， $8,24,72,38,25,75,47,52,67,23,69,29,87,83,71,35,16$ ， $48,55,76,50,61,5,15,45,46,49,58,85,77,53,70,32,7$ ， $21,63,11,33,10,30,1$ ．
22 starters comprise a Hamilton C_{45}－bowtie decom－ position of $45 K_{89}$ ．

Example 4．11．Hamilton C_{49}－bowtie of $49 K_{97}$ ．

 $(n, g)=(97,5)$$n$－orbit： $1,5,25,28,43,21,8,40,6,30,53,71,64,29,48$ ， $46,36,83,27,38,93,77,94,82,22,13,65,34,73,74,79$ ， $7,35,78,2,10,50,56,86,42,16,80,12,60,9,45,31,58$ ， $96,92,72,69,54,76,89,57,91,67,44,26,33,68,49,51$ ， $61,14,70,59,4,20,3,15,75,84,32,63,24,23,18,90,62$ ， $19,95,87,47,41,11,55,81,17,85,37,88,52,66,39,1$ ．
24 starters comprise a Hamilton C_{49}－bowtie decom－ position of $49 K_{97}$ ．

References

1）C．J．Colbourn，CRC Handbook of Combinatorial Designs，CRC Press（1996）．
2）C．J．Colbourn and A．Rosa，Triple Systems， Clarendom Press，Oxford（1999）．
3）P．Horák and A．Rosa，Decomposing Steiner triple systems into small configurations，Ars Combinatoria 26 （1988）91－105．
4）C．C．Lindner，Design Theory，CRC Press（1997）．
5）K．Ushio，G－designs and related designs，Discrete Math． 116 （1993）299－311．
6）K．Ushio，Bowtie－decomposition and trefoil－ decomposition of the complete tripartite graph and the symmetric complete tripartite digraph，J．School Sci．Eng．Kinki Univ． 36 （2000）161－164．
7）K．Ushio，Balanced bowtie and trefoil decompo－ sition of symmetric complete tripartite digraphs，In－ formation and Communication Studies of The Fac－ ulty of Information and Communication Bunkyo University 25 （2000）19－24．
8）K．Ushio and H．Fujimoto，Balanced bowtie and
trefoil decomposition of complete tripartite multi－ graphs，IEICE Trans．Fundamentals E84－A（3） （2001）839－844．
9）K．Ushio and H．Fujimoto，Balanced foil decom－ position of complete graphs，IEICE Trans．Funda－ mentals E84－A（12）（2001）3132－3137．
10）K．Ushio and H．Fujimoto，Balanced bowtie de－ composition of complete multigraphs，IEICE Trans． Fundamentals E86－A（9）（2003）2360－2365．
11）K．Ushio and H．Fujimoto，Balanced bowtie de－ composition of symmetric complete multi－digraphs， IEICE Trans．Fundamentals E87－A（10）（2004） 2769－2773．
12）K．Ushio and H．Fujimoto，Balanced quatre－ foil decomposition of complete multigraphs，IEICE Trans．Information and Systems E88－D（1）（2005） 19－22．
13）K．Ushio and H．Fujimoto，Balanced $C_{4^{-}}$ bowtie decomposition of complete multigraphs，$I E$－ ICE Trans．Fundamentals E88－A（5）（2005）1148－ 1154.

14）K．Ushio and H．Fujimoto，Balanced $C_{4^{-}}$ trefoil decomposition of complete multigraphs，$I E$－ ICE Trans．Fundamentals E89－A（5）（2006）1173－ 1180.

15）W．D．Wallis，Combinatorial Designs，Marcel Dekker，New York and Basel（1988）．

