2変数リアクタンス区間の分離
 藤本 英昭 ${ }^{*}$
 Separation of Two－Variable Reactance Sections
 Hideaki FUJIMOTO＊

A transformation which converts a multivariable positive－real function to another multivariable positive－real function is presented，and the conditions for reduction in degrees of the resulting positive－real function are discussed．Its application to the synthesis of a class of multivariable driving－point functions is discussed．

Key words：Circuit theory，Cascade synthesis，Lumped and distributed mixed networks，Multivariable positive－ real functions，Richards＇section．

1 Introduction

Multivariable positive－real function and matrix were introduced concerning the problem of designing a passive network composed of lumped elements with variable parameters［1］．The concept of such func－ tion and matrix was later applied to the problem of synthesizing passive networks composed of loss－ less transmission lines and lumped elements［2］．The above－mentioned synthesis problem has been dis－ cussed by several authors［3－12］．Koga made clear that an arbitrarily prescribed nxn positive－real ma－ trix of several variables is realizable as the impedance or admittance matrix of a finite passive n－port by us－ ing the corresponding variable elements［5］．

However，although the cascade synthesis problem of one－variable case，as is well known，is solved，mul－ tivariable case has not as yet been solved generally．

This paper presents two theorems with respect to the extraction of two－variable Richards＇sections which are used for realizing a cascade synthesis and indicates the application to synthesis of a class of reciprocal networks by Bott－Duffin procedure．The results presented here are the extension of one of re－ sults given in［10］．

We shall first give mathematical notations and symbols frequently used in this paper．The sym－ bols $p_{1}, p_{2}, q_{1}, \ldots, q_{n}$ will be used as complex vari－ ables．The set of complex variables q_{1}, \ldots, q_{n} is ex－ pressed as q ，i．e．，$q=\left(q_{1}, \ldots, q_{n}\right)$ ，and $\operatorname{Re} q_{k} \geqq 0$ （ $k=1,2 . ., n)$ as $\operatorname{Re} q \geqq 0$ ，etc．．

2 Transformation for a Positive－real Function

In this section a transformation for positive－real functions is presented in Theorem 2．Under certain

[^0]conditions the degree of the new positive－real func－ tion is lower than that of the original function，and this can be used to be obtain one step in the synthe－ sis of the original function as illustrated in the next section．

Theorem 1：Let $f_{1}\left(p_{1}, p_{2}\right)$ be a two－variable poly－ nomial given by

$$
\begin{align*}
f_{1}\left(p_{1}, p_{2}\right) & =\alpha\left\{g\left(p_{2}\right)+\varepsilon_{1} g\left(-p_{2}\right)\right\} p_{1}^{2} \\
& +\beta g\left(p_{2}\right) p_{1}+\gamma\left\{g\left(p_{2}\right)+\varepsilon_{1} g\left(-p_{2}\right)\right\} \tag{1}
\end{align*}
$$

or

$$
\begin{align*}
f_{1}\left(p_{1}, p_{2}\right) & =\alpha g\left(p_{2}\right) p_{1}^{2} \\
& +\beta\left\{g\left(p_{2}\right)+\varepsilon_{1} g\left(-p_{2}\right)\right\} p_{1}+\gamma g\left(p_{2}\right) \tag{2}
\end{align*}
$$

where $g\left(p_{2}\right)$ is a monic Hurwitz polynomial，$\alpha, \beta, \gamma>$ 0 ，and $\varepsilon_{1}= \pm 1$ ，then the following three hold．
［1］The polynomial $f_{1}\left(p_{1}, p_{2}\right)$ is a Hurwitz poly－ nomial．
［2］A rational function $w_{1}\left(p_{1}, p_{2}\right)$ defined by

$$
\begin{array}{r}
w_{1}\left(p_{1}, p_{2}\right)=R_{0} \frac{f_{1}\left(p_{1}, p_{2}\right)+\varepsilon_{0} f_{1}\left(-p_{1},-p_{2}\right)}{f_{1}\left(p_{1}, p_{2}\right)-\varepsilon_{0} f_{1}\left(-p_{1},-p_{2}\right)} \tag{3}\\
\left(\varepsilon_{0}= \pm 1\right)
\end{array}
$$

is a reactance function for R_{0} being a positive constant．
［3］A rational function $s_{1}\left(p_{1}, p_{2}\right)$ defined by

$$
s_{1}\left(p_{1}, p_{2}\right)=\frac{f_{1}\left(-p_{1},-p_{2}\right)}{f_{1}\left(p_{1}, p_{2}\right)}
$$

is a bounded real function．
Proof：We shall begin with proving［2］．For $f_{1}\left(p_{1}, p_{2}\right)$ given by eqn．（1）we consider $w_{1}\left(p_{1}, p_{2}\right)$ ． From eqn．（1）we can get

$$
\begin{align*}
f_{1}\left(-p_{1},-p_{2}\right) & =\varepsilon_{1} \alpha\left\{g\left(p_{2}\right)+\varepsilon_{1} g\left(-p_{2}\right)\right\} p_{1}^{2} \\
& -\beta g\left(-p_{2}\right) p_{1}+\varepsilon_{1} \gamma\left\{g\left(p_{2}\right)+\varepsilon g\left(-p_{2}\right)\right\} \tag{4}
\end{align*}
$$

Substituting eqns．（1）and（4）into eqn．（3）yields the following．

$$
\begin{align*}
& \frac{w_{1}\left(p_{1}, p_{2}\right)}{R_{0}}= \\
& \begin{cases}\frac{2 \alpha}{\beta} p_{1}+\frac{2 \gamma}{\beta p_{1}}+\frac{g\left(p_{2}\right)-\varepsilon_{1} g\left(-p_{2}\right)}{g\left(p_{2}\right)+\varepsilon_{1} g\left(-p_{2}\right)} & \left(\varepsilon_{0} \varepsilon_{1}=1\right) \\
\frac{1}{\frac{2 \alpha}{\beta} p_{1}+\frac{2 \gamma}{\beta p_{1}}+\frac{g\left(p_{2}\right)-\varepsilon_{1} g\left(-p_{2}\right)}{g\left(p_{2}\right)+\varepsilon_{1} g\left(-p_{2}\right)}} & \left(\varepsilon_{0} \varepsilon_{1}=-1\right)\end{cases} \tag{5}
\end{align*}
$$

For $f_{1}\left(p_{1}, p_{2}\right)$ given by eqn．（2），

$$
\begin{align*}
f_{1}\left(-p_{1},-p_{2}\right) & =\alpha g\left(-p_{2}\right) p_{1}^{2} \\
& -\varepsilon \beta\left\{g\left(p_{2}\right)+\varepsilon g\left(-p_{2}\right)\right\} p_{1}+\gamma g\left(-p_{2}\right) \tag{6}
\end{align*}
$$

Substituting eqns．（2）and（4）into eqn．（3）yields the following．

$$
\begin{align*}
& \frac{w_{1}\left(p_{1}, p_{2}\right)}{R_{0}}= \\
& \left\{\begin{array}{l}
\frac{1}{\frac{1}{\frac{\alpha}{2 \beta} p_{1}+\frac{\gamma}{2 \beta p_{1}}}+\frac{g\left(p_{2}\right)-\varepsilon_{1} g\left(-p_{2}\right)}{g\left(p_{2}\right)+\varepsilon_{1} g\left(-p_{2}\right)}} \quad\left(\varepsilon_{0} \varepsilon_{1}=1\right) \\
\frac{1}{\frac{\alpha}{2 \beta} p_{1}+\frac{\gamma}{2 \beta p_{1}}}+\frac{g\left(p_{2}\right)-\varepsilon_{1} g\left(-p_{2}\right)}{g\left(p_{2}\right)+\varepsilon_{1} g\left(-p_{2}\right)} \quad\left(\varepsilon_{0} \varepsilon_{1}=-1\right)
\end{array}\right. \tag{7}
\end{align*}
$$

In eqns．（5）and（7），a rational function of p_{1} ，

$$
\frac{\alpha}{\beta} p_{1}+\frac{\gamma}{\beta p_{1}}
$$

is a reactance function，and a rational function of p_{2} ，

$$
\frac{g\left(p_{2}\right)-\varepsilon_{1} g\left(-p_{2}\right)}{g\left(p_{2}\right)+\varepsilon_{1} g\left(-p_{2}\right)}
$$

is a reactance function，because $g\left(p_{2}\right)$ is a Hurwitz polynomial of p_{2} ．Therefore，$w_{1}\left(p_{1}, p_{2}\right)$ is the reac－ tance function of p_{1} and p_{2} ．Thus，we complete the proof of［2］．

To prove［1］，we shall consider a rational function

$$
\frac{w_{1}\left(p_{1}, p_{2}\right)}{R_{0}}+1
$$

The above is a two－variable positive－real function and can be written as the following right side．

$$
\frac{w_{1}\left(p_{1}, p_{2}\right)}{R_{0}}+1=\frac{2 f_{1}\left(p_{1}, p_{2}\right)}{f_{1}\left(p_{1}, p_{2}\right)-f_{1}\left(-p_{1},-p_{2}\right)}
$$

Therefore，$f_{1}\left(p_{1}, p_{2}\right)$ is the Hurwitz polynomial of p_{1} and p_{2} ．

Finally，we shall consider［3］．Due to［1］，$s_{1}\left(p_{1}, p_{2}\right)$ is holomorphic in the open domain $\operatorname{Re} p_{k}>0(k=$ 1，2）．Furthermore，

$$
\left|s_{1}\left(p_{1}, p_{2}\right)\right|=1
$$

for $\operatorname{Re} p_{k}=0(k=1,2)$ ，except at singularities of in－ determinacy．Thus，we see from the maximum mod－ ulus theorem that

$$
\left|s_{1}\left(p_{1}, p_{2}\right)\right|<1
$$

in the open domain $\operatorname{Re} p_{k}>0(k=1,2)$ ．Q．E．D．
Theorem 2：Let $w\left(p_{1}, p_{2}, q\right)$ be a positive－real func－ tion，and assume that $w\left(p_{1}, p_{2}, \boldsymbol{q}\right)+w\left(-p_{1},-p_{2}, \boldsymbol{q}\right)$ is factorizable as

$$
\begin{align*}
w\left(p_{1}, p_{2}, q\right) & +w\left(-p_{1},-p_{2},-q\right) \\
& =f_{1}\left(p_{1}, p_{2}\right) f_{1}\left(-p_{1},-p_{2}\right) \zeta\left(p_{1}, p_{2}, \boldsymbol{q}\right) \tag{8}
\end{align*}
$$

where $f_{1}\left(p_{1}, p_{2}\right)$ is the polynomials of eqns．（1）or（2）．
If there exists a positive constant R_{0} which satisfies

$$
\begin{equation*}
w\left(-\varphi_{1 k}\left(-p_{2}\right),-p_{2}, \boldsymbol{q}\right) \underset{q}{\equiv} R_{0} \quad(k=1,2) \tag{9}
\end{equation*}
$$

for the branch functions $p_{1}=\varphi_{1 k}\left(-p_{2}\right)(k=1,2)$ of an algebraic function defined by $f_{1}\left(-p_{1},-p_{2}\right)=0$ ， then a rational function

$$
\begin{equation*}
w_{2}\left(p_{1}, p_{2}, \boldsymbol{q}\right)=\frac{w_{1}\left(p_{1}, p_{2}\right) w\left(p_{1}, p_{2}, \boldsymbol{q}\right)-R_{0}^{2}}{w_{1}\left(p_{1}, p_{2}\right)-w\left(p_{1}, p_{2}, \boldsymbol{q}\right)} \tag{10}
\end{equation*}
$$

is also positive real for $w_{1}\left(p_{1}, p_{2}\right)$ given in eqn．（3）， and

$$
\begin{align*}
& \operatorname{deg}_{p_{k}} w_{2}=\operatorname{deg}_{p_{k}} w-\operatorname{deg}_{p_{k}} f_{1} \quad(k=1,2) \tag{11}\\
& \operatorname{deg}_{q_{k}} w_{2}=\operatorname{deg}_{q_{k}} w \tag{12}\\
&(k=1,2 \ldots, n)
\end{align*}
$$

Proof：Let $s\left(p_{1}, p_{2}, \boldsymbol{q}\right), s_{1}\left(p_{1}, p_{2}\right)$ and $s_{2}\left(p_{1}, p_{2}, \boldsymbol{q}\right)$ ， respectively，be defined as

$$
\begin{aligned}
s\left(p_{1}, p_{2}, q\right) & =\frac{w\left(p_{1}, p_{2}, q\right)-R_{0}}{w\left(p_{1}, p_{2}, q\right)+R_{0}} \\
s_{1}\left(p_{1}, p_{2}\right) & =\frac{w_{1}\left(p_{1}, p_{2}\right)-R_{0}}{w_{1}\left(p_{1}, p_{2}\right)+R_{0}}
\end{aligned}
$$

and

$$
s_{2}\left(p_{1}, p_{2}, \boldsymbol{q}\right)=\frac{w_{2}\left(p_{1}, p_{2}, \boldsymbol{q}\right)-R_{0}}{w_{2}\left(p_{1}, p_{2}, \boldsymbol{q}\right)+R_{0}}
$$

The function $s_{2}\left(p_{1}, p_{2}, \boldsymbol{q}\right)$ can be written as

$$
\begin{align*}
s_{2}\left(p_{1}, p_{2}, \boldsymbol{q}\right) & =\frac{s\left(p_{1}, p_{2}, \boldsymbol{q}\right)}{s_{1}\left(p_{1}, p_{2}\right)} \\
& =\frac{f_{1}\left(p_{1}, p_{2}\right)}{f_{1}\left(-p_{1},-p_{2}\right)} \cdot \frac{w\left(p_{1}, p_{2}, \boldsymbol{q}\right)-R_{0}}{w\left(p_{1}, p_{2}, \boldsymbol{q}\right)+R_{0}} . \tag{13}
\end{align*}
$$

Because the function $w\left(p_{1}, p_{2}, q\right)-R_{0}$ has the factor $\left(p_{1}-\varphi_{11}\left(-p_{2}\right)\right)\left(p_{1}-\varphi_{12}\left(-p_{2}\right)\right), f_{1}\left(-p_{1},-p_{2}\right)$ is can－ celed from the denominator and the numerator of
$s_{2}\left(p_{1}, p_{2}, \boldsymbol{q}\right)$ ．Therefore，$s_{2}\left(p_{1}, p_{2}, q\right)$ is holomorphic in the domain $\operatorname{Re} p_{1}>0, \operatorname{Re} p_{2}>0$ and $\operatorname{Re} q>0$ ． Furthermore，

$$
\left|s_{2}\left(p_{1}, p_{2}, \boldsymbol{q}\right)\right|=1
$$

for $\operatorname{Re} p_{k}=0(k=1,2)$ and $\operatorname{Re} q=0$ ，except at sin－ gularities of indeterminacy．Therefore $s_{2}\left(p_{1}, p_{2}, \boldsymbol{q}\right)$ is bounded real，and

$$
\begin{aligned}
\operatorname{deg}_{p k} s_{2}=\operatorname{deg}_{p k} s & (k=1,2) \\
\operatorname{deg}_{q k} s_{2}=\operatorname{deg}_{q k} s & (k=1,2, \ldots, n)
\end{aligned}
$$

Thus，$w_{2}\left(p_{1}, p_{2}, \boldsymbol{q}\right)$ is positive real．From eqns．（8） and（9），

$$
w\left(\varphi_{1 k}\left(p_{2}\right), p_{2}, \boldsymbol{q}\right)+R_{0} \underset{q}{\equiv} 0 \quad(k=1,2) .
$$

In eqn．（13）the factor $f_{1}\left(p_{1}, p_{2}\right)$ in the denominator of $s_{2}\left(p_{1}, p_{2}, q\right)$ is exactly disable from its numerator． Therefore，

$$
\begin{aligned}
& \operatorname{deg}_{p_{k}} s_{2}=\operatorname{deg}_{p_{k}} s-\operatorname{deg}_{p_{k}} f_{1} \quad(k=1,2) \\
& \operatorname{deg}_{q_{k}} s_{2}=\operatorname{deg}_{q_{k}} s \quad(k=1,2, \ldots, n)
\end{aligned}
$$

Thus，from the above results we see eqns．（11）and （12）are true．Q．E．D．

3 Application to Network Synthesis

The transformation of Section 2 can be used to ob－ tain one step in the synthesis of a class of networks by Bott－Duffin type procedure or alternatively by using gyrators．

In this section we shall realize the positive－real function $w\left(p_{1}, p_{2}, \boldsymbol{q}\right)$ which satisfies the conditions of Theorem 2．In order to do this we assume $w\left(p_{1}, p_{2}, \boldsymbol{q}\right)$ is the impedance function．

From eqn．（10）$w\left(p_{1}, p_{2}, \boldsymbol{q}\right)$ can be written as fol－ lows：

$$
w\left(p_{1}, p_{2}, \boldsymbol{q}\right)=\frac{w_{1}\left(p_{1}, p_{2}\right) w_{2}\left(p_{1}, p_{2}, \boldsymbol{q}\right)+R_{0}^{2}}{w_{1}\left(p_{1}, p_{2}\right)+w_{2}\left(p_{1}, p_{2}, \boldsymbol{q}\right)}
$$

The above $w\left(p_{1}, p_{2}, \boldsymbol{q}\right)$ is the driving point impedance function of each of circuits shown in Fig．1．

Fig． 1 Realizations of $w\left(p_{1}, p_{2}, \boldsymbol{q}\right)$ ．

Fig． 2 Realizations of $w\left(p_{1}, p_{2}, \boldsymbol{q}\right)$ coresponding to eqn．（5）．

This means that there are two types of networks with respect to $w\left(p_{1}, p_{2}, \boldsymbol{q}\right)$ given．Furthermore we can have two types of networks with respect to realizing the reactance function $w_{1}\left(p_{1}, p_{2}\right)$ for $\varepsilon_{0}= \pm 1$ ，as will be seen from Fig．2（a），（b）or Fig．3（a），（b）．

Fig．1（a）shows the extraction of Richards＇sec－ tion having the gyrator in which the ratio is R_{0} ． Fig．1（b）shows one step of the Bott－Duffin synthe－ sis processes．

Therefore，if the impedance $w_{1}\left(p_{1}, p_{2}\right)$ can be spec－ ified，$w\left(p_{1}, p_{2}, \boldsymbol{q}\right)$ is then reduced to the realiza－ tion of two impedances $\left(w_{2}\left(p_{1}, p_{2}, \boldsymbol{q}\right)\right.$ and its dual $R_{0}^{2} / w_{2}\left(p_{1}, p_{2}, \boldsymbol{q}\right)$ ）．

In below the realization of $w_{1}\left(p_{1}, p_{2}\right)$ correspond－ ing to each of the polynomials shown in eqns．（5）and （7）is given．

Realizations corresponding to eqns．（5）and（7）are shown in Figs． 2 and 3，respectively．The symbols L and C ，etc．，in these figures，express element values of a p_{1}－variable inductor and a p_{1}－variable capaci－ tor，respectively，and these are given below．Fur－ thermore，$z_{2}\left(p_{2}\right)$ and $\tilde{z}_{2}\left(p_{2}\right)$ represent driving point impedances of circuits consisting of p_{2}－variable ele－ ments，as shown below．
For Fig．2：

$$
\begin{aligned}
& L=\frac{2 R_{0} \alpha}{\beta}, \tilde{L}=\frac{\beta R_{0}}{2 \gamma}, C=\frac{\beta}{2 R_{0} \gamma}, \tilde{C}=\frac{2 \alpha}{\beta R_{0}} \\
& z_{2}\left(p_{2}\right)=R_{0} \frac{g\left(p_{2}\right)-\varepsilon_{1} g\left(-p_{2}\right)}{g\left(p_{2}\right)+\varepsilon_{1} g\left(-p_{2}\right)}, \quad \tilde{z}_{2}\left(p_{2}\right)=\frac{R_{0}^{2}}{z_{2}\left(p_{2}\right)}
\end{aligned}
$$

For Fig．3：

$$
L=\frac{R_{0} \alpha}{2 \beta}, \quad \tilde{L}=\frac{2 \beta R_{0}}{\gamma}, C=\frac{2 \beta}{R_{0} \gamma}, \quad \tilde{C}=\frac{\alpha}{2 \beta R_{0}}
$$

（a）$\varepsilon_{0} \varepsilon_{1}=1$

（b）$\varepsilon_{0} \varepsilon_{1}=-1$

（c）$\varepsilon_{0} \varepsilon_{1}= \pm 1$
Fig． 3 Realizations of $w\left(p_{1}, p_{2}, \boldsymbol{q}\right)$ coresponding to eqn．（7）．

$$
z_{2}\left(p_{2}\right)=R_{0} \frac{g\left(p_{2}\right)+\varepsilon_{1} g\left(-p_{2}\right)}{g\left(p_{2}\right)-\varepsilon_{1} g\left(-p_{2}\right)}, \quad \tilde{z}_{2}\left(p_{2}\right)=\frac{R_{0}^{2}}{z_{2}\left(p_{2}\right)}
$$

4 Example

Realize a three－variable positive－real function $w\left(p_{1}, p_{2}, q_{1}\right)$ given by

$$
\begin{aligned}
& w\left(p_{1}, p_{2}, q_{1}\right)= \frac{n\left(p_{1}, p_{2}, q_{1}\right)}{m\left(p_{1}, p_{2}, q_{1}\right)} \\
& \begin{aligned}
4\left\{2\left(p_{1}^{2}+2\right) p_{2}+p_{1}^{3}+p_{1}^{2}+4 p_{1}+2\right\} q_{1}^{2}
\end{aligned} \\
&= \frac{+\left\{8\left(p_{1}^{2}+2\right)\left(p_{1}+1\right) p_{2}+9 p_{1}^{2}+8 p_{1}+2\right\} q_{1}+8\left(p_{1}^{2}+2\right) p_{2}+p_{1}^{3}+p_{1}^{2}+10 p_{1}+2}{\left\{8\left(p_{1}^{2}+2\right)\left(p_{1}+1\right) p_{2}+9 p_{1}^{2}+8 p_{1}+2\right\} q_{1}^{2}} \\
& \quad+\left\{2\left(p_{1}^{2}+2\right) p_{2}+p_{1}^{3}+p_{1}^{2}+4 p_{1}+2\right\} q_{1}+2\left(p_{1}^{2}+2\right)\left(p_{1}+1\right) p_{2}+3 p_{1}^{2}+2 p_{1}+2
\end{aligned} .
$$

For the above $w\left(p_{1}, p_{2}, q_{1}\right)$ ，eqn．（8）becomes

$$
\begin{aligned}
& w\left(p_{1}, p_{2}, q_{1}\right)+w\left(-p_{1},-p_{2},-q_{1}\right) \\
& =-\frac{2\left(2 q_{1}^{2}+1\right)^{2}\left\{\left(4 p_{2}+1\right) p_{1}^{2}+4 p_{1}+2\left(4 p_{2}+1\right)\right\}}{\left\{\left(1-4 p_{2}\right) p_{1}^{2}-4 p_{1}+2\left(1-4 p_{2}\right)\right\}} \\
& m\left(p_{1}, p_{2}, q_{1}\right) m\left(-p_{1},-p_{2},-q_{1}\right)
\end{aligned} .
$$

Let $f_{1}\left(p_{1}, p_{2}\right)$ be

$$
f_{1}\left(p_{1}, p_{2}\right)=4\left(p_{2}+\frac{1}{4}\right) p_{1}^{2}+4 p_{1}+8\left(p_{2}+\frac{1}{4}\right)
$$

Therefore
$f_{1}\left(-p_{1},-p_{2}\right)=4\left(\frac{1}{4}-p_{2}\right) p_{1}^{2}-4 p_{1}+8\left(\frac{1}{4}-p_{2}\right)$.

Now，define $g\left(p_{2}\right)$ by

$$
g\left(p_{2}\right)=p_{2}+\frac{1}{4}
$$

then this is a Hurwitz polynomial．Thus，

$$
\begin{aligned}
& g\left(p_{2}\right)-g\left(-p_{2}\right)=2 p_{2} \\
& g\left(p_{2}\right)+g\left(-p_{2}\right)=\frac{1}{2}
\end{aligned}
$$

In addition，

$$
\alpha=4, \quad \beta=16, \quad \gamma=8, \text { and } \varepsilon_{1}=1
$$

Thus we see that $f_{1}\left(p_{1}, p_{2}\right)$ satisfies the conditions given in Theorem 1（eqn．（2））．The gyrator of ratio R_{0} is given as

$$
R_{0} \equiv 2
$$

for roots

$$
p_{1}=-\frac{2 \pm \sqrt{2-16\left(2 p_{2}-1\right) p_{2}}}{4 p_{2}-1}
$$

of $f_{1}\left(-p_{1},-p_{2}\right)=0$ for the open domain except at $\operatorname{Re} p_{k}>0(k=1,2)$ ．Therefore，$w_{1}\left(p_{1}, p_{2}\right)$ yielded from eqn．（3）becomes

$$
\begin{aligned}
& w_{1}\left(p_{1}, p_{2}\right) \\
& =\left\{\begin{array}{cl}
\frac{p_{1}^{2}+2}{2\left(p_{2} p_{1}^{2}+p_{1}+2 p_{2}\right)} & \left(\varepsilon_{0}=1\right) \\
\frac{8\left(p_{2} p_{1}^{2}+p_{1}+2 p_{2}\right)}{p_{1}^{2}+2} & \left(\varepsilon_{0}=-1\right)
\end{array}\right.
\end{aligned}
$$

Fig． 4 Realizations of $w\left(p_{1}, p_{2}, q_{1}\right)$ ．

5 Conclusions

A new transformation for a class of multivari－ able positive－real functions has been presented．This transformation has been applied to obtain a Bott－ Duffin type cycle in the synthesis of functions which may otherwise be difficult to realize．An alternate realization is obtained using a gyrator．

References

1）H．Ozaki and T．Kasami，＂Positive real functions of several variables and their application to variable networks，＂IRE Trans．on Circuit Theory，vol．CT－7， No．10，pp．251－260， 1960.
2）H．G．Ansell，＂On certain two－variable generaliza－ tions of circuit theory，with applications to networks of transmission lines and lumped reactances，＂IEEE Trans．on Circuit Theory，vol．CT－11，No．6，pp．214－ 223， 1964.
3）M．Saito，＂Synthesis of transmission line networks by multivariable techniques，＂in Generalized Net－ works，Polytechnic Institute of Brooklyn，NY，MRI Symposia Series，pp．353－392， 1966.
4）J．O．Scanlan and J．D．Rhodes，＂Realizability of a resistively terminated cascade of lumped，two－port networks separated by noncommensurate transmis－ sion lines，＂IEEE Trans．on Circuit Theory，vol．CT－ 14，No．7，pp．388－394， 1967.
5）T．Koga，＂Synthesis of finite passive n－ports with prescribed positive real matrices of several vari－ ables，＂IEEE Trans．on Circuit Theory，vol．CT－15， No．1，pp．2－22 March 1968.
6）H．Fujimoto，＂Cascade synthesis of a two－variable positive real function，＂Trans．IEICE，vol．59－A， No．5，pp．409－416， 1976 （In Japanese）．

7）H．Fujimoto and J．Ishii，＂Synthesis of a resistively terminated cascade of lumped lossless sections and ue sections＂，Trans．IEICE，vol．59－A，No．11，pp．994－ 999， 1976 （In Japanese）．
8）H．Fujimoto and H．Ozaki，＂Separation of two－ variable reactance sections in the cascade synthe－ sis of multi－variable positive real functions，＂IEICE Trans．，vol．E61，No．6，pp．433－440， 1978.
9）H．Fujimoto，J．Ishii and H．Ozaki，＂Multi－variable Richards transformations，＂Trans．IEICE，vol．E62， No．8，pp．529－535， 1979.
10）H．Fujimoto，＂Cascade realization of a class of two－variable transfer functions，＂IEEE Trans．on Circuits and Systems，vol．38，No．12，pp．1451－1459， 1991.

11）H．Fujimoto，＂Reciprocal realization of a class of two－variable cascaded transmission line networks＂， International Journal of Electronics，vol．78，No．6， pp．1127－1138， 1995.
12）H．Fujimoto，＂A class of two－variable transfer functions and its application to the design of mi－ crowave filter networks，＂IEEE Trans．Circuits and Systems Fundamental，Theory and Applications， vol．45，No．7，pp．769－775， 1998.
13）V．Belevitch，＂Classical network theory＂，Holden－ Day，San Francisco，London， 1968.
14）B．A．Fuks，＂Theory of analytic functions of several complex variables，＂American mathematical society， Rhode Island， 1963.

[^0]: 平成 20 年 6 月 21 日受理
 ＊電気電子工学科

