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A remark on the Riccati equation associated with 
        a hypergeometric equation 

       Takashi AOKI * Xiaohan WANG **

 The Riccati equation associated with a hypergeometric equation is solved by using expansion with respect to parame-

ters. This construction of solution provides a point of view about the Gauss formula which gives the special value of 
hypergeometric function at the unit.
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We consider 

equation:

  1. Introduction 

the following hypergeometric differential we have another form of the Gauss formula:

where x, y and z are complex constants. 

hypergeometric series

The classical

defines a holomorphic solution to (I) at the origin. Here 

(x),1 = x(x + 1) • • • (x + n — 1) denotes the Pochhammer 
symbol. In this article, we construct a solution to (I) in 
that Fr rm

Here 4'(n) denote the Riemann zeta values. The aim of this 

article is to interpret the Gauss-Kummer formula to the 
Riccati equation for hypergeometric equation and obtain 
an intriguing property of S which is obtained by solving 
the system of infinitely many differential equations com-
ing from the Riccati equation. We obtain (7) directly with-
out using (6). Our proof is based on an idea given in [2].

2 Riccati equation corresponding to 
hypergeometric differential equation and its 

             solution

Putting (3) into (I), we have the following Riccati equa-
tion for S:

where S = Sn(x, y, z; 1) are homogeneous polynomials 
of x, y, z of degree n. We revisit the Gauss-Kummer for-
mula (cf. [1]) for the value of hypergeometric function at 
the unit:

If S has an expansion of the form (4), each homogeneous 

part S of degree n with respect to x, y and z should satisfy 
the following system of differential equations:

Combining this and the expression
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with initial data 

 Sn(0) = xyzn-2(12) 

for n >— 2. This system can be solved recursively and we 
have 

          S2(t)=—xylogtl—t),(13) 
                                               trn1-1       S

3(t) _ (x +y + z)xy7 
                                mi>tn>>l mlm2 

tm-1(14) —(x+y)xy~ 2 , 
m=1 m 

        x+y+zSn-1(u)d
u—X                               x+y    S"(t) —

tJo 1 — u 
        n-2(15) 

     Sn_i(u)du — I 0u E Sm(u)Sn-m(u)du           t m=2 

for n>-4. 

Theorem 1. Let Sn(t) (n L. 2) be as above. We set S(t) = 

Sn(t). Then we have 
n=2 

   f1       S (t)dt =~ann)(z`t+ (x + y + z)n16 
Jo() 

                         n=2 

—(x+z)"—(y+z)n) . 

Hence we obtain 

              Olt)             (n+(x+y+z)nfSn(t)dt=(17) 
—(x+z)n —(y+z)n) 

for each nL.2. 
Remark. The right-hand side of (16) converges if 14 lyl, 
Mare sufficiently small.

        3. Proof of Theorem 1 

Taking the change of integration variable u = tv in (15), 
we find that each Sn(t) is holomorphic at t = 0. Let sn, j be 
the coefficient of tj in the power series expansion of Sn in 
t: 

Sn(t) = E 
J-a 

By the definition, we have 

xy 
          52,j=j
+l(18) 

and 

                       j 4-1 
  530; (x+y + z)xy(

.I +11)m (j + 1)2(x + y)xy(19)                            m-1

Recurrence formula (15) for Sn (n L. 4) yields the follow-
ing: 

 1i   Sn,j=j+ l(x+y+z)ESn_1k 
k=0(20) 

n-2 j-1 
—(x + Y)Sn_i,j — EE Sfn,kSn-rn,j-l-k • 

m=2 k=0 

for n = 2, 3, 4, .... Hence 5 (t) = E Sn(t) is well-defined 
n=2 

                                                     t 

as a formal power series in (t, x, y, z) and so isS(u)du. 

        f By the construction, 

         w = expS(u)du(21) 

                        0 satisfies (1) as a formal power series in t and who = 1. 
Uniqueness of formal power series solution satisfying this 
condition implies 

       F(x, y, 1 — z;1) = expS (u)du. (22) 

                            0 Taking the limit t -9 1 from the left, we find that 

            ir
S (u)du (23) 

                    0 exists if IxI, IYI, lzi are sufficiently small and it can be ana-
lytically continued to the set 

{(x,y,z) E Cx XCyXCZIzCtN,x+y+z ctN}. 

Next we consider the following differential operator: 

 T= Ix      (1 —x—z)(1—y—z) (24) 

               ((1-02+1—x—y—z). 

As is well-known, T F(x, y, 1— z; t) = F(x, y, 2 — z; t) holds 
(see [1]) and hence 

      (ftTexpS(x,y,z;u)dur (25) 
            = exprS (x, y, z — l; u)du. 

                 Jo

On the other hand, 

1—z

the left-hand side of (25) becomes

(1 —x—z)(1 —y—z) 

+(1—x—y—z))e

((1 — 06'(x,Y,z; t) 

r

Taking the limit t —3 1, we have 

  (r'1 fIJS(x,Y,z;u)du=S(x,Y,z— l;u)du 
   a

(1 —z—x)(1 —y—z)
+ log

z)

(26)

(1 — z)(1 — x y —



Therefore we obtain 

rf1 
  jS(x,y,z;u)du=JS (x, y, z - k; u)du 
  oko

(J–z–.x)(J–y–z)(28)  +E  log 
                   j=1                      (j–z)(j–x–y–z) 

Since we know 

IimF(x,y,I–z+k;1)= 1,(29) 
k—)00 

we can conclude that 

         lim S(x,y,z– k;u)du = O. (30) 
             k—oo o 

Thus we have 

    f1S(x,y, z; 
(31)     .E log------------------- 

             J=1 (.')(JxYz) 

The right-hand side of (31) is expanded easily in a power 
series of x, y and z: 

EE—1 (z,n+(x+y+z)" n32  j=1 n=I() 
—(x+z)n –(y+z)n) . 

This power series converges locally uniformly if 
(z(are sufficiently small. Hence we may change the order 
of summation. Note that the summand vanishes if n = 1. 
Thus we obtain 

 EEinn(33)         y+z)n33 
 n=2 j=IJ() 

–(x + z)n – (y + z)n), 

or equivalently, 

    E-122.(e+ (Xy + 7)n                             (34) 
n=2 

—(x + z)n — (y + z)n). 

This completes the proof of the theorem.
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