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A remark on the Riccati equation associated with
a hypergeometric equation

Takashi AOKI * Xiaohan WANG **

The Riccati equation associated with a hypergeometric equation is solved by using expansion with respect to parame-
ters. This construction of solution provides a point of view about the Gauss formula which gives the special value of

hypergeometric function at the unit.
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1. Introduction

We consider the following hypergeometric differential
equation:

d*w dw
«(l - t)-ﬁ +{l-z-(x+y+ I)E}E —xyw=0, (1)
where x, y and z are complex constants. The classical
hypergeometric series

S DO

Flx,y,l =z0) = T )

n=0

defines a holomorphic solution to (1) at the origin. Here
(x), = x(x+ 1)+ (x + n - 1) denotes the Pochhammer
symbol. In this article, we construct a solution to (1) in

the form
W = exp ( f S(x,y,z u)du)
0

with § having an expansion

&)

SEyzn =) S, @)
n=2

where §,(1) = S,(x,y, z; 1) are homogeneous polynomials
of x, y, zof degree n. We revisit the Gauss-Kummer for-
mula (cf. [1]) for the value of hypergeometric function at
the unit:

[(l-zll-x-y-2)

F(x,y,1-z;1) = sy B

&)

Combining this and the expression
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[(l-x= exp(yl + ; Tx’ ) (6)
we have another form of the Gauss formula:
F(x,y,1-z1)=exp (Z s ey ey
n=1 # (7)

-(x+2)" -+ z)")).

Here #(n) denote the Riemann zeta values. The aim of this
article is to interpret the Gauss-Kummer formula to the
Riccati equation for hypergeometric equation and obtain
an intriguing property of § which is obtained by solving
the system of infinitely many differential equations com-
ing from the Riccati equation. We obtain (7) directly with-
out using (6). Our proof is based on an idea given in [2].

2. Riccati equation corresponding to
hypergeometric differential equation and its
solution

Putting (3) into (1), we have the following Riccati equa-
tion for §':

11 'r)(i,'—s: +sz)+{1 —z—-(x+y+DAS —xy=0. (8)
If § has an expansion of the form (4), each homogeneous

part 5, of degree n with respect to x, y and z should satisfy
the following system of differential equations:

t(l—r)d&+(1—t}51-xy=0, (9)
di
dSs
(1 - t)—a]- +(L=DS3=-((x++252=0, (10)
i(L-1 d;n +(L =08, —((x+ )t +2)Sn
n=2 (11)
~(1=0 ) §8.;=0 (24

p)
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with initial data

$,(0) = xy 2 (12)

for n > 2. This system can be solved recursively and we
have
xylog(l-1)

§a(0) = — (13)

S t’"l‘l

M=((x+y+2)x

(D =x+y+2) ymlg& ey

Sty (14)
—(-’H‘)’)x)"; W’
L x+
S,,(t)=x+y+zfsl_l(:)du—rzyx

. (15)

t
1
Sn-1(w)du — %

L

forn = 4.

n-2
S (1S p_m()d
j: u ; (1) ()du

Theorem 1. Let S,(1) (n 2 2) be as above. We set S5(1) =

Z Su(1). Then we have
n=2

1 oo
‘f; Sdt=) Q(éﬂ(z" itatpid
n=2
=(x+2)" = (y+2)).

(16)

Hence we obtain

1
f Sp(ndt = @(z” +(x+y+2)°
ﬂ 2 .

~(x+2" -0 +2")

(In

Jforeachn = 2.
Remark. The right-hand side of (16) converges if |x], |y,
z] are sufficiently small.

3. Proof of Theorem 1

Taking the change of integration variable « = (v in (15),
we find that each S_,, (1) is holomorphic at f = 0. Let s, ; be
the coefficient of ¢/ in the power series expansion of §, in
foe

oo

Sa(®) = D Sujt.

=0
By the definition, we have
_
52, [ (18)
and
j+1
_ , 1 (x +y)xy
53, = (x+y+&)xy; GiDm Gzt (19)

Recurrence formula (15) for S, (# = 4) yields the follow-
ing:

1 J
Sn,j = :m {(I + y+ Z) Z Sh-1k

k=0
n=2 j-l
—(x+ y)sn—l.j -2.

m=2 k=

(20)

Sk Sn—m, j—1-k } .

=

forn=2,3,4,.... Hence 5(1) = Z §,.(0) is well-defined
n=2

'3
as a formal power series in (7, x, y, z) and so is f S (wydu.
0
By the construction,

W = exp (f S(u)du)
0

satisfies (1) as a formal power series in f and w],¢ = L.
Uniqueness of formal power series solution satisfying this
condition implies

@1

F(x,y,1 —z;1) = exp ( f hY (u)du) . (22)
Q
Taking the limit ¢ — 1 from the left, we find that
i
f S (w)du (23)
0

exists if [, [¥l, 2] are sufficiently small and it can be ana-
Iytically continued to the set

(53,20 €C,XxCyxClz¢ N, x+y+z ¢ N}
Next we consider the following differential operator:

_ 1—g .
T (l-x-2(l-y-2)
((1—t)t?t+1-x—y-z).

T

(24)

As is well-known, TF(x,y, | —z;1) = F(x,v,2-2z;1) holds
(see [1]) and hence

T exp (f' S{x9% u)du)
0

= exp(f Stx,yz-1; u)du).
0

On the other hand, the left-hand side of (25) becomes

25)

l-z
(I-x-2(1-y-2)

(I -DSx,y.z10)

¢ (26)
=X =F- Z))exp(f S5 u)du)-
0
Taking the limit 7 — 1, we have
1 L
f S(x,y, zwdu = f S(x,y,z=1; wdu
’ "(-z-x-y-n @7

+lo

El-ol-x-y-2)



Therefore we obtain

1 1
f S(x,y,zu)du = f S(x,y, 7 - k; wydu
0 0
k

[—z=x)(j-y-z 2%)
* ) log Ei 90 = = 5
Since we know
"Iﬂf(ryl-f+kl)-1 (29)
we can conclude that
lim IS(vc v,z -k u)du=0. (30

k= _Jo

Thus we have

1
f S(x,y,z wdu
0

- R 31
_Zlo {f=z2=20j-y—3

TR T

The right-hand side of (31) is expanded easily in a power
series of x, yand z:

>

J=1

1
— (T +(x+y+2)
j"r; St (32)

—(x+2)"=(y+2)").

_M8

t—

This power series converges locally uniformly if [x], [y,
|| are sufficiently small. Hence we may change the order
of summation. Note that the summand vanishes if n = 1.
Thus we obtain

"22;—(., +(x+y+2) 33
={x+f =+,

or equivalently,

Z D s vy
n=2
—(x+2)" - +2").

This completes the proof of the theorem.

(34)
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