
]. Fae. Sci. Engg. Kinki Univ. 34 (1998) 9-16 理工学部研究報告 第34号 ，

 

2体ディラック方程式と原点波動関数
＊

伊藤 仁之t

Two-Body Dirac Equation and Its Wave Function at the Origin 

Hitoshi ITO :f: 

A relativistic bound state equation is proposed for the Dirac particles interacting through an Abelian gauge field. 
It reduces to the (one body)Dirac equation in the infinite limit of one of the masses and has the PCT invariance, which 
assures existence of the anti-bound-state with the same mass. This symmetry is a consequence of a modification of 
the Stiickelberg-Feynman boundary condition for propagation of the negative-energy states, by which some effect of the 
crossed diagram is taken in the lowest ladder equation. This modification can be corrected back by adding counter 
correction terms in the interaction kernel when the coupling is weak and the perturbative calculations work well. The 
interaction kernel is systematically constructed by diagonalizing the Hamiltonian of the underlying field theory. The 
equation can be used for the quark model phenomenology. Its wave function at the origin(WFO) for the psuedoscalar 
state becomes finite. Some comments are mentioned for the application in the heavy quark effective theory.(l] 

Key words; two-body equation, Dirac equation, relativistic dynamics, heavy quark, PCT invariance. 

1 Introduction 

One of the unsatisfactory nature of the Bethe­
Salpeter equation for the bound state is that it does 
not reduce to the Dirac equation in the infinite limit 
of the one of the constituent mass, even when the 
interaction is assumed to be instantaneous(2]. We 
have to sum up all the crossed diagrams to recover 
the Dirac equation(3], which is impossible for the fi­
nite masses. The reducibility to the Dirac equation is 
essential in applications to the heavy flavored mesons 
or the other atom-like systems. 

Historically, the relativistic single-time equation 
for the two-body system preceded the BS equation. 
Soon after the discovery of the Dirac equation, Breit 
proposed the equation of the form(4] 

｛凡(P1) +比(P2) + V}ゆ=Eゅ， (1) 

where H; is the Dirac Hamiltonian 

凡(P;) = a; ·P; + m品

and V is a local potential. The Breit equation re­
duces to the Dirac equation in the limit mentioned 
above but does not have the "E-parity symmetry", 
by which we mean there is symmetric negative eigen­
value E for each positive one, which is interpreted as 
the bound state of the antiparticles. 
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On the other hand, in the instantaneous BS equa­
tion we have an extra projection factor 

A++ -A __ (2) 

in front of the potential V, which consists of the 
energy-projection operators 

A.11 (P1, P2) =心(P1)心(P2), c, TJ =+or -, (3) 

where 

心(P;)= {E;(p;) + c:H;(p;)}/2E;(p;), 

E; (pi) = (p; + m;) i/2. 

E-parity symmetry of this equation is a result of 
the PCT invariance: The Dirac Hamiltonian is odd 
under the PCT transformation and the interaction 
Hamiltonian is assumed to be invariant under it. We 
therefore see that the symmetry is assured by a pro­
jection factor (2). We must introduce a similar factor 
in any attempt at the construction of an improved 
two-body equation. 

The factor (2) comes from the Stiickelberg­
Feynman boundary condition for the propagation of 
the negative-energy state[5]. We will construct the 
equation for the unequal-mass constituents by im­
posing similar boundary condition. Before present­
ing it, we restrict the framework of consideration. 
We assume Abelian gauge field interacting with the 
Dirac particles. We will work in the rest frame of the 
bound system(P = (E, 0)), since we are looking for 
the non-covariant approximation of the low-energy 
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10 Two-Body Dirac Equation and Its Wave Function at the Origin 

dynamics. p and x, in the folio叫ng, are the rela­
tive momentum and coordinate, respectively, in this 
frame. 

2 The equation for unequal­

mass constituents 

By assu血ng a modified two-body propagator, we 
deduce a new single-time equation (Two-body Dirac 
equation) for the unequal-mass constituents, for 
which we assume that the mass M (= mi) is larger 
than m (=匹）．

2.1 Two-body Dirac equation 

The BS equation is based essentially on the per­
turbation theory and consists of the mutually non­
interacting propagators and the interaction kernel. 
This separation may not be a good approximation 
for the bound state. Then, let us consider to modify 
this "free" two-body propagator. 

We impose the boundary condition that the 
negative-energy states propagate backward in time. 
If we keep individuality of the constituents and use 
the usual Feynman propagator in the instantaneous 
BS equation, the equation (1) modified by the fac­
tor (2) results. However, we can choose the other 
possibility in which we incorporate the idea that the 
bound two bodies should be treated as a quantum­
mechanical unity.1 Since M is larger than m, the 
free part of the Hamiltonian has the same sign as 
that of the particle 1 in the CM system. Let us 
then modify the boundary condition as follows: A 
bound two-particle state propagates backward in time 
寸their net energy is negative. By assuming it, we 
have the propagator 

ふ(P,p) = L 
1 

切
ふE- Po - H1(-p) + ic'5 

X 
1 1 2 

入2E + Po ー 恥(p) +國
A,,,'Yo'Yo, (4) 

whereふ＋入2 = 1 and the limit J→ +o is assumed. 
By assuming (4) we obtain the single-time equa­

tion. The pseudo-4-dimensional form of it, in the 
momentum space, is 

1 We can establish the concept of individuality in the quan­
tum mechanics only through observation, which brings about 
a subtle point to the bound system: To detect an individ­
ual one in the bound constituents, we need to separate them 
by applying the 3rd interaction, which inevitably destroys the 
original state. So there is no a priori reason to apply the free 
propagator individually to each constituent. Note that "the 
free propagator" itself for the bound state is merely a conven­
tion of approximation. 

心(p) =応(P,p) J V(p, q)心(q)d4
q/(加）4, (5) 

where V(p, q) represents the interaction, which does 
not depend on the relative energies but is not nec­
essarily an instanteneous local potential. After inte­
grating out the redundant degree of the freedom, (5) 
becomes 

閲(-p) + H 2 (p) + Lt:A,r,V}ゆ=Eゅ，(6)
,r, 

which reduces to the Dirac equation in the infinite 
limit of M. It is easy to see the£-parity symmetry 
of this equation. 

If we would apply our equation to the scattering 
state, we shall have, from the time-dependent equa­
tion, the conserved probability density 

p(x, t) =ゆ(x, t)t L€A心(x,t), (7) 
<1/ 

which is in accord with the boundary condition that 
the negative- energy state propagates backward in 
time carrying the negative probability density[6]. 
However, it does not necessarily provide the nor­
malization condition for the bound state: For 
the scattering processes, the projected wave func­
tion A,'7ゆcorresponds to the physical state of the 
(free)particles with the positive or negative energy 

E. And the above interpretation of the probability 
current actually says that the state with the negative 
E is carrying the negative probability density. How­
ever, for the bound state with the positive eigenvalue 
E,A一 心orA—＋心is merely a negative-energy com­
ponent in the representation in which the energy of 
the free particle is diagonal. 

Taking the above consideration into account, we 
restore the probability interpretation of the wave 
function and normalize it by assuming the proba­
bility density 

p(x) =心(x, t)t心(x,t), (8) 

for the stationary state. Observables except the 
Hamiltonian are self-adjoint under this metric: 

(</>, 6心） = (6¢>, ゆ）． (9) 

The Ha叫tonian is the operator ruling the time de­
velopment of the system and its interaction part is 
modified by the factor L切 cA,r,. Though it is not 
a self-adjoint operator, its eigenvalue is proved to be 
real if the inner product (13) below exists. 
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2.2 Green's function and the vertex 
equation 

We define the Green's function G for (6) by the op­
erator equation 

{E - H1 - H2
ー I: c:A,'1 V}G = I: c:A,7), (10) 

'Tl C!) 

and 

G{E- H1 - H2 - VLt:A,1)} = Lt:A,1). (11) 
<1) ''1 

In the momentum representation, it can be written, 
by using the eigen-function Xn (P) of (6), as 

G(p, p') = (12) 

I: 
1 

心(E - E孔
Xn(P)Xn(P州+continuum, 

n 

where En is an eigenvalue and Nn is a normalization 
factor defined by 

Nn = (Xn , L€A,11xn )- (13) 
<1) 

When one of the constituents(labeled with 2) belongs 
to the same class of the antiparticle of the other, 
there can be an annihilation process through the 
weak interaction for which the unamputated-decay­
vertex q> is given by 

<P = C,G, (14) 

where I is the lowest vertex and C is the charge­
conjugation matrix of the particle 2. 

<I> satisfies the vertex equation 

<I>(E - H1 - H2 - V Lン知）=Cりこ cA,11 (15) 
<T/ 

and the amputated vertex is 

r =, + C<I>V. 

£1) 

(16) 

We can determine the renormalization constant Z1 

for the wave function at the origin(W FO) from (15) 
and (16), if we need it[7]. 

2.3 Interaction Hamiltoman 

We have, so far, not specified the interaction Hamil­
tonian (quasi potential). In this section, we investi­
gate it for the one-(Abelian)gauge-boson exchange in 
the Coulomb gauge as an example. For the instanta­
neous part of the interaction, V is obvious. For the 
remaining part, we can specify the quasipotential in a 
clear way from the background field theory. We have 

already shown, for the Salpeter equation, that the 
quasipotential from the one-boson exchange is given 
through the diagonalization of Fukuda, Sawada, 
Taketani[8] and Okubo(9] (FSTO)[lO]. We also ap­
ply this method to the present equation. 

We introduce the generalized Fock subspace of the 
free constituents, the bases of which are denoted by 
le, 1/, P〉, where€ and 1) are the signs of the energies of 
the particles 1 and 2 respectively.2 We then diago­
nalize the Hamiltonian in the Schr辺inger picture by 
using the FSTO method. The second-order boson­
exchange potential in this subspace is given by 

〈€, T/, PIV(Ib) le', r,', p'〉＝

晶こ叫妬 — �q;qj)a勾
ij 

q 

X ![ 1 
2 q2 - {cE1 (p)―€1 E1 (p')}2 

+ 1 
l 

q2 - {r, 恥(p)- T/'幻(p')}2 , (17) 

I where q = p - p . The retardation effects are m-
eluded in this equation. 

2.4 On the equal-mass limit 

The unequal-mass equation (6) is well applied to the 
system with M»m. For M:::::: m, the reason justi­
fiing (4) becomes obscure and we will have two dif­
ferent equations in the limit M = m. Though we 
concern ourselves in the case M > m, it is meaning­
ful to investigate the degree of ambiguity near the 
equal mass limit. For M = m, the projection factor 
in front of the interaction term of (6) includes a part 
which violates the exchange symmetry: It is shown 
that 

A(V) = A+- - A_+ 

and the Heisenberg's exchange operator 

1 
PH= -(l十U1·u2)(l + P1 ·P2)PM 

4 

(18) 

{19) 

anticommute, where the operator PM exchanges the 
momenta(or coordinates). A (V) violates the symme­
try since the remaining part of the Hamiltonian and 
粉commute.

For equal-mass limit, we have two equations. One 
is the equation (6) with M = m and another is ob­
固ned by ass1gnmg a mmus sign m front of A (v) , 

2 There was some error concerning the Fock space in 
Ref.(10]. Namely, we employed the usual(positive-energy) 
Fock space and reinterpreted the matrix elements of the in­
teraction Hamiltonian including the negative-energy indices 
as the ones in this space according to the hole theory. It, 
however, brings the procedure into confusion, since we have 
revived the negative energy in Eq.(6). However, the error is 
only conceptual for the Salpeter equation which has only pro­
jection factors A++ and A--. The result of Ref.(10] is correct. 
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which is the equal-m邸s limit of the equation with 
m > M. It is the conjugate equation of (6) in the 
sense that (6) is converted into it by the transfor­
mation PH . It is e邸y to show that these equations 
have the common eigenvalue spectrum: If an eigen­
function Xn of (6) belongs to some eigenvalue Eか

PHXn is the solution of the conjugate equation with 
the same eigenvalue. However, Xn does not have the 
definite Pwparity. 

For equal m邸ses, it is reasonable to use the 
Salpeter equation which includes the projection fac­
tor (2). The eigenvalue of this equation is different 
from the above En . The difference is, however, small 
since it is of the 4th order in the symmetry-breaking 
part of the Hamiltonian. 

3 An effect of the modified 

propagator 

We have modified the two-body propagator as (4) in 
the CM system. For general momentum, the mod­
ified propagator of the lighter particle 2 is written 
as 

辱(p;t:)三こ辱(p;t:, TJ) = 
'7 

I: 1 

Po - T/品 (p) +國 心(p),5, (20) 
” 

where t: is the signature factor in the definition of the 
propagator of the heavier particle 1: 

S} (p)三と昨(p;E) = 
c

 

I: 
1 

Po - t: 恥 (p) + id 心(p)吋，
< 

(21) 

where p = (p0, p). We have modified the (c, T/) = 
(+, -) and (-, +) parts in (20). 

Now, we justify, in the framework of the perturba­
tion theory, the above modification in the large M 
limit by considering the scattering of the mass-shell 
particles. We estimate the contribution of the mod­
ified parts to the intermediate state of the 4th order 
ladder(box) diagram and show that it can be inter­
preted as the substitute for the ordinary Feynman 
propagatoer in the crossed diagram. We, further, 
discuss the counter correction needed for the pertur­
bation theory. 

3.1 Effective inclusion of a crossed di­
agram 

We take up the 4th-order amplitude with the 
Coulomb potential which dominates the interaction 

in the large M li叫 The contribution of the inter­
mediate state with (E, T/) = (-, +) is much smaller 
(0(1/M)) than that of the state with (E, TJ) = 
(+, -) . Now, let us compare the two amplitudes 
restricted to this intermediate state: the ladder 
amplitude(M1 (+, -)) with the propagators defined 
by (20) and (21) and the amplitude from the crossed 
diagram(Mc(+,-)) with the Feynman propagators. 

机 (+, -) is given by 

za 
. 2 

M1(+, 一） ＝戸Jがq
1 

q刊q -P2 + P; 

x,5S} (P1 +q;+),5,5S} (p2 -q;+-),5, 

(22) 

where a=炉/ 4rr and Pt, P2 and p�, p�are the initial 
and final momenta respectively. 

If we take the large M limit in (22) and retain only 
the leading term, it becomes 

a 
2 

如＋， ー） �
-;-

(1 +対）／心

l 社Aど (P2 - q) 
X 

q2(q - p2 + p;)2 E2(P2) + E2(P2
― q)" 

(23) 

We compare this with the same approximation to the 
Mc(+,-) which is given by 

ぷ2

Mc(+, ー）～了 (1 +吋）J炉q

1 社A巴（松一q)
X 

q2(q + P2 - P2F E2(Pら） + E2(P2一q)'
(24) 

The equation (23) approximates (24) for the mo­
menta p� �p2. Since the forward scattering is dom­
inant for the Coulomb force, we can regard the mod­
ification of the propagator in (4) or (20) as the sub­
stitute for including a part of the crossed diagram. 

The (pseudo)potential model is effective in the 
strong coupling theory, for which the effective inclu­
sion of the crossed diagram is desirable. 

3.2 The counter correction 

For the weakly binding system, the two-body Dirac 
equation (6) offers a good basis for the perturba­
tion theory, becuase we can start with the (one­
body)Dirac equation for the unperturbed system. 
Then, we can develop the systematic expansion in 
the power series of 1/ M and the coupling constant. 

We should correct back the modification of the 
propagator in this series of the approximation, by 
adding the counter correction term to the propagator 
of the light particle in the calculation of the crossed 

- 12 -



理工学部研究報告 第34 号 13 

diagram, for example. A similar correction is needed 
wherever, in a diagram, the ladder iteration of the 
modified parts of the propagator (4) may contribute. 
The counter correction term is given by taking the 
difference of the modified propagator defined by (20) 
and (21) and the Feynman propagator: that is 

2it: 祠(po - r,E2 (p))15,, ,-, 

for each inner line of the particle 2 with (c, T/) = 
(+, -) or (-, +), where p is the momentum flowing 
on the line. 

4 Application to the Quark 

Model of Mesons 

We can use our equation as the basic equation of the 
quark model, if we add the phenomenological confin­
ing potential. We mention some related properties in 
this section. 

4.1 WFO of the 15。 state

When the equation is applied to the system in which 
the pair annihilation of the constituents can occur, 
an important physical quantity is the wave function 
at the origin(WFO). For example, the decay ampli­
tude of the pseudo-scalar Qq meson via a weak boson 
is proportional to the average WFO Tr{ 1釘o'11(0)},
where'11(0) is the charge conjugated(with respect to 
the particle 2(q)) WFO. We investigate, in the Ap­
pendix, the asymptotic behavior of the momentum­
space wave function by using the method given in 
Ref.[7]. We assume instantaneous exchange of a 
gauge boson3 . The average WFO thus obtained is 
finite. This result is consistent with a consideration 
on the structure of the covariant bound state. 

There are many "two-body Dirac equation" pro­
posed. An interesting one from the point of view 
of the present paper is the one by Mandelzweig and 
Wallace(ll]. They intended to include the effects of 
the higher-order interaction (the crossed Feynman 
diagram) and got an equation which has the proper 
one-body limit and the E-parity symmetry. An im­
portant difference from our equation is in the aver­
age WFO considered above. It is divergent in their 
equation if the transverse part of the gauge-boson 
exchange is included(l2]. 

4.2 On application to the heavy 
quark effective theory 

One of the research fields in which we can utilize the 
two-body Dirac equation is the physics of the heavy 

3 The analysis in the Appendix cannot be applied to the 
retarded interaction. 

flavored mesons. The recent trends in this field are 
led by the heavy quark effective theory(HQET)[13]. 
The Qij system is well described by using the two­
body Dirac equation with some phenomenological 
(pseudo)potential. If we take the heavy quark 
limit(M → oo) of the quark Q, the equation itself 
becomes the one-body Dirac equation, which is the 
underlying b函c equation of HQET. 

There are, however, divergent(邸 M → oo) por­
tions in the perturbative correction to the WFO. For 
example, the matrix element of the current for the 
annihilation decay of a pseudoscalar meson is given 
by 

< OliJ'Yv'Y5QIQiJ >= -C(µ)tr{,v,5炉(O)}, (25) 

where紆(0) is the renormalized WFO of the one­
body Dirac equation[14). C(µ) is determined from 
the perturbative loop corrections summed up by us­
ing the renormalization group equation [15)[16). 

叫M) d ） C(µ)=( , d=-6/(33 - 2的） • (26) 
叫µ)

One of the subjects to be investigated in HQET is 
to solve directly the bound state equation. We can 
use the two-body Dirac equation supplemented the 
expansion in 1 / M for this purpose. 

4.3 Another approach to the heavy 
quark phenomenology 

An alternative way of investigating the heavy quark 
systems is due to direct application of the two-body 
Dirac equation. The binding interaction, in this for­
mulation, consists of the Coulomb and the confining 
potentials. We further add the gluonic correction 
term to the potential, for which we should attach 
the high momentum cutoff in the case of the heavy 
quar konia(l 7]. 4 

The heavy mass(M) dependence is properly de­
scribed by (6). However, for the annihilation decays, 
M dependence of the amplitude comes also from the 
high momentum of the loop corrections, which is rep­
resented by a similar factor to C(µ) above. C(µ) de­
pends on the cutoff to the gluonic correction. If we 
take the cutoff of the QCD scale, we should include 
all the corrections from the high momenta, except for 
the Coulomb contribution to the vertex correction. 
By subtracting its effect, we get d = 10/(33 - 2的）
for the exponent. 5 

4 We note that we may include the gluonic correction from 
the momentum region larger than M in the equation, since 
the light quark is not sensitive to the inner most interaction 
and we may avoid the singular behavior of the mass spectrum. 

5 The correction was calculated for < Olii'Yo'YsQ IQ ii>. And 
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5 Summary and discussion 

By assuming a proper boundary condition for the 
two-body propagation in the negative-energy state, 
we have modified the propagator and proposed a 
new bound-state equation of the unequal-mass con­
stituents for Abelian gauge interactions. The effect 
of a part of the crossed diagram are included in the 
ladder model by this modification of the propagator. 

The equation has the symmetrical energy eigenval­
ues En and -En and reduces to the (one-body)Dirac 
equation in the infinite limit of one of the con­
stituents masses. Secondly, we have discussed the 
normalization of the wave function and pointed out 
that the positive-definite probability density should 
be assumed. We can consistently calculate the ob­
servables of the bound state by assuming this nor­
malization. 

The interaction Hamiltonian of the equation is 
constructed by diagonalizing the field theoretic 
Hamiltonian in the generalized Fock subspace of the 
two particles. Relativistic effects such as the retar­
dation are taken into account in systematic way in 
the framework of the perturbation theory. 

We can use this two-body equation as the founda­
tion of the perturbation theory of the weak-coupling 
theory. In this case, we should correct back the mod­
ification of the propagator. 

We have further investigated the W FO's of the 
proposed equation in some detail for the instanta­
neous interaction and shown that the average W F O  
in the 1S。 state which determines the leptonic decay 
rate of a pseudo-scalar meson is finite, which is in 
accord with an expectation from the structure of the 
covariant bound state. 

One of the field for which we may utilize the two­
body Dirac equation is the heavy quark effective the­
ory. There are various possibilities of choosing the 
framework of the approximation according to the 
treatment for the high-momentum interaction. We 
have briefly discussed the correction factor to the 
leptonic decay width caused by the high momenta. 
The equation affords a good foundation of the heavy 
quark effective theory. 

Finally, we discuss some feature of the spectrum 
of the equation (6). There are physical eigenvalues 
品 which reduce to M + m in the weak coupling 
limit and the corresponding negative ones which are 
interpreted as the bound states of the antiparticles. 
Besides those , there may be a series of eigenvalues 
which reduce to M - m in the weak-coupling limit 
and its negative counter part, which are unphysi-

we have assumed the counter correction which compensates 
the modification of the two-body propagator, since it cannot 
be regarded as a substitute for crossed diagram in QCD. If 
we do not include the counter correction we shall get d = 
2/ (33 - 2Nt )(18]. 

cal. Fortunately, we can identify and discard these 
unphysical spectra by inspecting the weak-coupling 
limit. 
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Appendix 

We examine the asymptotic (p → oo) behavior of the 
momentum-space wave function and show that the 
average W F O  Tr{ 1訂o 心 (O) }/v2 is finite.6 

There are 4 partial amplitudes 加(p) in the 1 S。
state , with which the wave function is expanded as 

x(p) = Iごこ 叶叫(-p)v『(p)加(p)(
1 

) 1 / 2 

16?T恥E2 '
''1 r 

(27) 
where Cl / 2 = -C- 1/ 2 = 1/Vう and the spinors u and 
v, for the particle 1 and 2 respectively, are defined in 
[7] . 

The average W F O  for the annihilation decay 
through the axial-vector current is given by 

1 1 1 
-Tr{, 釘o ゆ(O)} = ― j(—_) 1/ 2 

J 汎T 砧 E2

x L { ,j(E1 + cM)(E叶 TJm)
<1) 

-ETJ V(E1 - 1oM)(E2 - rJm)}加(p)p2dp.

(28) 

We first assume the Coulomb potential. The 
partial-wave equation for the 1 S。 state is given by 

{E 
a 

- € 局(p)- T/恥(p)}加(p) = -€ 石 z:J dq 
心

x釘 1
] 1 /2  

p 柘 (p)砧(q)妬(p)局(q)

x[{A:,, A盆 + ff' 吋Aし,_, , A:_ T/_T/, }Qo(z) 

+ {EE'A : , _ , , A盆 ＋ 刑AしA:_T/ _T/, }Q 1 (z) ]h, ,T/ '(q), 

(29) 

where z = (炉 +q2)/2pq and Ql(z) is the Legendre's 
function. Aし、 is defined by 

A�, , = ./(E;(p) + cm;)(E;(q) + c'm;). 

6 See Ref.(19] and references therein, for the Salpeter 
equation. 
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The asymptotic behavior of the wave function is 
determined from the integral region near the infin­
ity. We then expand the both sides of (29) into the 
series of 1/p and 1/  q . We assume the power behav­
ior of the wave function for large p. The indepen­
dent amplitudes are chosen to be 似 (p) 三 江 h,, (p) , 
hs (p) 三 I:, e加 (p) , hc (p) 三 江 h,_, (p) , and 
肋 (p) 三 L, €h,-, (P) , which are expanded , in the 
high-momentum region, in power series of 1 /p: 

hx (P) = � c如p-f3x -2n- 1

n 

Integrals on the right-hand side can be done if 
we neglect infrared- divergent terms which are ir­
relevant to the leading asymptotic behavior . Now , 
we can determine the asymptotic indices f3x 's from 
consistency[7] : We get ,  for hA and h8 , 

and 

2C1p望A - EC店p―f3町 1 = 
a 
- C1 

7r 7r 
cot ( 一む ）p

― む

7r 1 — ふ 2 

2cip望B - EC�p― む — 1 = 

a 
-ci 叩 — 咋 ） T tan ( 一咋 ）p項B ,
T 知 (2 - 咋 ） 2 

(30) 

(3 1 )  

where the terms of the higher power i n  1 /p are 
neglected . If we neglect the second term in the 
left-hand sides of (30) , we find /3 A in the range 
l く 知 < 2 7 and get 知 ＝ 応 + 1 from (3 1 ) . 
We obtain another series by neglecting the second 
term in (3 1 ) . For this , f3B is found to be in the range 
2 < /Jo < /JB く 3 , where the lower bound /3。 cor­
responds to the upper bound 4/1r of a above which 
the index f3A from (30) becomes complex.  ふ of the 
second series is given by ふ ＝ 咋 + 1 .  

The asymptotic amplitudes h e  and h n  are deter­
mined dependently on hA and hB . We get , for the 
minimum indices 

/3c = min(ふ + 2 , 咋 + 1 ) 

f3D = ふ + 1 .  

( 32) 

(33) 

We see that the average WFO (28) is finite,  because 

知 > 1 and (Jc > 2 

hold for the asymptotic amplitudes. This conclusion 
is valid even if the instantaneous exchange (transverse 
part) of the gauge boson is added . 

7 See Ref. [7] for the details 
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