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A strong duality for separable C*-algebras
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It is shown that every separable C*-algebra can be reconstructed from the space of all its irreducible

representations on a separable Hilbert space.
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1. Introduction

In [4] Takesaki showed a duality for C*-
algebras such that every separable C*-algebra
is *-isomorphic to the algebra of certain opera-
tor fields on the space of all its representations
on a separable Hilbert space. It is not only
a generalization of Gelfand representation the-
orem for commutative C*-algebras to the non-
commutative case but also the initiative duality
for C*-algebras regarding the space of represen-
tations as a dual object.

Here in this paper, we take the space of only
irreducible representations as a dual object for
separable C*-algebras and prove that a strong
dual version of Takesaki’s duality is still valid.
The name of strong duality comes from the the-
ory of group duality.

In [3] Fujimoto accomplished a strong duality
for general C*-algebras using cp-convexity the-
ory and crucial results in [1]. Our method in this
paper is quite different. Reducing the argument
to Takesaki’s duality we prove a strong duality
by means of the disintegration theory of repre-
sentations. So our concern is to formulate and
prove a strong duality within the framwork of
the representation theory.

2. Operator fields on Irr(A:H)

Throughout of this paper A denotes a separa-
ble C*-algebra and H a separable Hilbert space.

Let Rep(A:H) denote the set of all representa-
tions of A on H, where a representation of A on
H means a *-homomorphism of A into the full
bounded operator algebra B(H) on H.

For each 7 in Rep(A:H), let H be the essential

space of T, closed subspace spanned by 7(A)H,
and p, the projection of H onto H,.
By the separability of H it follows that dim H, =
0,1,2,---,No. If K is a closed subspace of H and
0 is a representation of A on K, then we identify
the representation {o, K} with the representation
{o®0k., K&K} belongs to Rep(A: H), where
Ogx. is the zero representation of A on the space
of the orthogonal complement of K. ’

Let Irr(A:H) denote the set of all 7 €
Rep(A:H) such that {7, H,} is irreducible and
let Irr,(A:H) be the set of all m € Irr(A:H)
such that dim H, = n, where n = 1,2,---,Np.
Each Irr,(A:H) is endowed with the coarest
Borel structure which makes Irr,(A:H) > ® >
(r(a)é|n) a Borel function for every a € A and
every &,m € H,.
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The set Irr(A:H) = |32, Irr,, (4:H) has sum-
Borel-structure.

Let Um U* = w3 denote the unitary equiva-
lence of 71,72 € Rep(A:H) under an intertwiner

U.

By the disintegration theory of representa-
tions, each non-zero 7 in Rep(A:H) can be de-
composed as follows ;

[¢2]
UhﬂﬂWth@ﬂMWMO

,where u is a positive measure on a standard
Borel space Z and 7({) € Irr(A:H) p— a.e.

We shall call this decomposition an #rreducible
decomposition of m over Irr(A:H).

It is well known that unless A is of type-I this
decomposition is not unique.

Definition 1. Let A[lrr(A:H)] denote the
set of all B(H)-valued function z defined
on Irr(A:H) satisfies the following conditions

(a),(b),(c) and (d) ;
(a) z(m) =prz(m)pr for every 7w € Irr(A:H),

(b) Irr(A:H) > 7~ (z(r)&]n) is a Borel
function for every &, € H,

(c) sup{||z(m)]| : * € Irr(A:H)} < +o00 and
(d) If 7 eRep(A4:H) and
® :
vinU; = [ m(Qdu(©) (=12
Z;

are irreducible decompositions of 7 over

Irr(A:H), then it holds that
(<]
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For any z,y € A[Irr(A:H)] and complex num-
bers a, 3, for each 7 € Irr(A:H) put

(az+ By)(r) = az(r) + By(m),
(@y)(m) = 2() y(m),
z*(7) == z(7)* and

lz|| := sup{||z(7)|| : = € Irr(A:H)}.

Then it is easily seen that A[Irr(A:H)] becomes
a normed*-algebra with ||z*z|| = ||z)|®. Further-
more we have

Proposition 1. A[Irr(A:H)| is a C*-algebra
which contains the *-subalgebra isomorphic to A.

Proof. We begin with the completeness of
AlIrr(A:H)]. Let .{zo} be a Cauchy net in
AlIrr(A:H)]. Then by the preceding definition it
follows that

|2e — ]l = sup{llza (o) — z5(0)|| : o € Irr(A:H) }
> |lte (o) — z5(0)|| Vo € Irr(A:H).

So for each o €lrr(A:H), {za(0)} converges uni-
formly to a certain operator of B(H) which we
denote by z(o) and the convergence zo(0) —
z(o) is uniformly on Irr(A:H). It is easily seen
that the operator field z, defined on Irr(A:H),
satisfies the conditions (a), (b), (c) of Definition
1. Since it holds that

D
wéwwm»wm«M¢«m

< ess sup{|z(m(¢)) — za(m({))l] : ¢ € Z}
< sup{||z(o) — za(0)] : 0 € Irr(A:H)}

for any irreducible decomposition

vrv= [ " (0 du(©)

of m € Rep(A:H) over Irr(A:H), it follows under
the assumption of (d) that

nwﬁhmmmmm

(<]
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< 2sup{||za(0) — z(0)|| : o € Irr(A:H)} — 0.

This implies that x satisfies the condition (d), so
z belongs to A[lrr(A:H)]. Hence Allrr(A:H)) is
complete, so it is a C*-algebra.

For each a € A, put () = 7(a) for every m €
Irr(A:H). Then it is obvious that the operator
field @ satisfies the all conditions of Definition
1 and the map. A 3 a — & € Allrr(4A:H)] is
a *-homomorphism. We shall call this map. a
generalized Gelfand transform. Since it holds by
the plenitude of irreducible representations that

lla]} = sup{lla()|| : m € Trr(A:H)}
= sup{||7(a)|| : 7 € Irr(A:H)}

= |lall,

a generalized Gelfand transform is an isometric

*.isomorphism. [



A strong duality for separable C*-algebras 71

The condition (d) enables us to extend each
xz in A[Irr(4:H)] to an operator field % on
Rep(A:H) as follows ;

) =0 [ 2(e(©)du()U

for every non-zero m € Rep(A:H), where

Unv = [ w0 du(0)

is an irreducible decomposition of 7 over
Irr(A:H). For the zero representation O, we de-
fine Z(O) to be the zero operator on H.

~ Now we are going to verify that for every z €
A[Irr(A:H)}, % is an admissible operator field on
Rep(A:H) which was defind and investigated in
[4].

Lemma 1. If VaV* = m & m for
T, 1, T2 € Rep(A:H), it holds

VE(m)V* = Z(m) & Z(m2)
for every x € AlIrr(A:H)).
Proof. Let

®
Uym U =/ m3(C) dps
Z;

be an irreducible decomposition of m; over

Irr(A:H) (i = 1,2) then
(Th e U)V V(U & Up)*

1) [$3)
= [ m(Qam(©e [ 0 du(©

is an irreducible decomposition of 7 over

Irr(A:H). Hence if € A[lrr(A:H)] we have
(U1 @ U)V &(m) V*(Ur & Up)*

1) 53]
= / z(m1(C)) dpa(¢) @ / z(m2(C)) dp2(C)
Z1 Z2

= U1 .’77(7l'1) Uf (<) Uz 57(7!'2) Uz*
= (U1 @ U2)(5:(7r1) (3] 5:(71'2))((]1 (3] Uz)*.

Consequently, V (7)) V* = &(m) @ &(x2). O
Corollary. If m,m2 € Rep(A:H) and
m =V*mV, then it holds
E(m) =V*&(m) V
for every ¢ € AlIrr(A:H)).

Proof. Put m = m, m, = m3, 73 = O in the
preceding Lemma. [

Lemma 2. For every = € A[lrr(A:H)), it holds
Pr &() pr = &(7)
for each w € Rep(A:H).
Proof. Let '

<]
U {m, Hy}U" = /Z {r(0), Ha(O)} du(©)

be an irreducible decomposition of 7 over

Irr(A:H) then we have

pe=U" [ " pn(Q) QU

Hence by virture of the condition (a), for every
z € AlIrr(A:H)] we have

Pr &(T) pr
53

—y / P (Q) 2(m(C)) P (¢) dp(Q) U
Z

@
—U /Z 2(n(Q)) du(Q) U
=Z(r). O

Lemma 3. For every z € AlIrr(A:H)), it holds
sup{||Z(7)|| : * € Rep(A:H)} = ||z||.
Proof. Let m € Rep(A:H) and

Unv” = [ w0 (0

be an irreducible decomposition of 7 over

Irr(A: H). Then we have

el =1 [ ® a(n(0)) du(l

< ess sup{|lz(x({))]| : ¢ € Z}
< sup{||z(0)|| : o € Irr(A:H)}
= ||z]|.

Now put ||Z]| := sup{||Z(r)|| : # € Rep(A:H)},
then we have ||Z|| < ||z||. Since it is obvious
€]l = [ll], it holds ||Z|| = ||z||. O

Recall that A donotes the C*-algebra of all ad-
missible operator fields on Rep(A:H). In [4] it was
shown that A can be faithfully represented as the
enveloping von Neumann algebra of A.

Proposition 2. For every z € Allrr(4:H)],
Z is an admissible operator field on Rep(A:H)
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and the map. Allrr(A:H)]| > — & € A is an
isometric *-isomorphism.

Proof. By the previous Lemmas 1,2 and Corol-
lary it follows that Z is an admissible operator
field on Rep(A:H) for every z € Aflrr(A:H)].

It follows immediately by direct computations
that for each ™ € Rep(A:H)

(az + By)(r) = a@(r) + Bi(r),
(&D)(r) = &(r) §(r) and
& (1) = (&(m))"

for every z, y € A[lrr(A:H)] and every complex
numbers «, 3. These assert that the map. z
& is a *-homomorphism of A[Irr(A4:H)] into A.
Proposition now follows from Lemma 3. O

Hence every z € A[Irr(A: H)] can be considered
as an element of A**. The conjugate space A* is
represented as {w(m;&,n) : ™ € Rep(4:H),{,n €
H,}, where (w(r;&,7),a) = (n(a)€}n) for every
a€ A

The explicit dual relation of z € AlIrr(A:H)]
C A** and w(m;€,7m) € A* is as follows ;

(@ w(m; 6,7)) = /Z ((=(©)EQ) Q) du(©)

= (E(m)¢|n)
= (.'E,w(ﬂ'; '3 77))9

where

.
U {m, Ho} U* = /Z {n(0), Ha(Q)} (<)

is an irreducible decomposition of T over

Irr(A:H).
3. A strong duality theorem

As in [4], the space Rep(A:H) is equipped with
the topology of pointwise strong convergence. It
means that 7, — 7 in Rep(A:H) if and only if
for each a € A, ||7(a)é — w(a)]] = 0 for every
(e H.

It is equivalent to the topology of pointwise
weak, o -weak, o -strong, o -strong* convergence
(c.f.[2]). Because of the separability of A and
H, topological space Rep(A:H) is a Polish space,
that is, it is complete, metrizable and separable.
Hence sequences are enough for us to consider
with respect to the topology of Rep(A:H) in-
stead of nets. The space Irr(A:H) has the relative
topology, it is our dual object of A.

Henceforth we consider the continuity of z €
AlIrr(A:H)] on Irr(A:H) which is compatible
with the direct integrals of representations.

Definition 2. Let C[Irr(A:H)] denote the set
of all z € A[Irr(A:H)] satisfies the following con-
dition (e);

() If for each a € A a sequence

{v: [ w00 (001}

neN

converges strongly to

v [ w0 @) e

in $B(H), where 7, (), 7(¢) € Irr(A:H) a.e. then
it holds that the sequence

{0 [ atrni©) din(©) 01}

nenN

converges strongly to

v [ ata(©)du(c) U
in B(H).

Since each m € Irr(A:H) is itself an irreducible
decomposotion over Irr(A:H), we have

Cororally. For every z € ClIrr(A:H)], z is
continuous on Irr(A:H).

Lemma 4. For every x € Cllrr(A:H)), & is
continuous on Rep(A:H).

Proof. Let m, — 7 in Rep(A:H) and let
®
s

5]
A / Q) Uy U /Z Q) du(Q)U

be irreducible decompositions of m,, ™ over
Irr(A:H). Then for each a € A the sequence

{: [ 0@ dun(c) 02}

nenN

converges strongly to

(2]
U /Z (¢)(a) du(¢) U

in B(H). By the condition (e), it follows for
every & € C[Irr(A:H)] that the sequence

G ={o: [ @ (50(€) () Vs |
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converges strongly to

®
5 =U" [ an(0) Q) U
The statement now follows. O

Proposition 3. ClIrr(4:H)] is a C*-
subalgebra of AlIrr(A:H)). '

Proof. Let z,y € ClIrr(4A:H)], £ € H and
let keep the notations in the proof of Lemma 4.
Since it holds that

l@y(mn) — zy(m))E]l
< Nyl @(mn) — E(m)EN + 2l (@) — F(m))E],

It follows that zy belongs to C[Irr(A:H)]. The
rests of algebraic parts are obvious.

Let ClIrr(A:H)|3 zo — = € AlIrr(A:H)]. Since
it holds that

D
I [ @a(w(0) ~ =(x(C)} dulc)]

< ||za — || — 0,

x belongs to C[Irr(A:H)). So C[Irr(A:H)] is closed
in Allrr(A:H). O

Now we are in the position to state and to
prove our strong duality theorem.

Theorem.  C*-algebra A is isomorphic to
the C*-algebra C[Irr(A:H)] under a generalised
Gelfand transform.

Proof. In Proposition 1 it was proved that a
generalised Gelfand transform; 4 3 a — @ €
AlIrr(A:H)], where a(r) = n(a) for every 7 €
Irr(A:H), is an isometric *-isomorphism. It is
obvious that a satisfies the conditions (e), that
is, @ belongs to C[Irr(A:H)) for every a € A.

Contrary let « € C[Irr(A:H)] then it fol-
lows from Proposition 2 and Lemma 4 that
Z is continuous admissible operator field on
Rep(A:H). Takesaki’s duality theorem assure us
that there exists uniquely a € A such that
Z(r) = m(a) for every m €Rep(A4:H). Hence
it follows that z(m) = Z(m) = w(a) = a(w) for
every w € Irr(A: H). This implies that = = a.

Therefore a generalised Gelfand transform
is a *-isomorphism of A onto the C*-algebra

Clir(A:H)]. O
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