A strong duality for separable C^* -algebras

Kiyoshi IKESHOJI

可分 C*-環の強双対性

池庄司 潔

Abstact

It is shown that every separable C^* -algebra can be reconstructed from the space of all its irreducible representations on a separable Hilbert space.

Keywords : C^* -algebra, representation, irreducible decomposition, duality

1. Introduction

In [4] Takesaki showed a duality for C^* algebras such that every separable C^* -algebra is *-isomorphic to the algebra of certain operator fields on the space of all its representations on a separable Hilbert space. It is not only a generalization of Gelfand representation theorem for commutative C^* -algebras to the noncommutative case but also the initiative duality for C^* -algebras regarding the space of representations as a dual object.

Here in this paper, we take the space of only irreducible representations as a dual object for separable C^* -algebras and prove that a strong dual version of Takesaki's duality is still valid. The name of strong duality comes from the theory of group duality.

In [3] Fujimoto accomplished a strong duality for general C^* -algebras using cp-convexity theory and crucial results in [1]. Our method in this paper is quite different. Reducing the argument to Takesaki's duality we prove a strong duality by means of the disintegration theory of representations. So our concern is to formulate and prove a strong duality within the framwork of the representation theory.

2. Operator fields on Irr(A:H)

Throughout of this paper A denotes a separable C^* -algebra and H a separable Hilbert space.

Let $\operatorname{Rep}(A:H)$ denote the set of all representations of A on H, where a representation of A on H means a *-homomorphism of A into the full bounded operator algebra $\mathfrak{B}(H)$ on H.

For each π in Rep(A:H), let H_{π} be the essential space of π , closed subspace spanned by $\pi(A)H$, and p_{π} the projection of H onto H_{π} .

By the separability of H it follows that dim $H_{\pi} = 0, 1, 2, \dots, \aleph_0$. If K is a closed subspace of H and σ is a representation of A on K, then we identify the representation $\{\sigma, K\}$ with the representation $\{\sigma \oplus O_{K^{\perp}}, K \oplus K^{\perp}\}$ belongs to $\operatorname{Rep}(A:H)$, where $O_{K^{\perp}}$ is the zero representation of A on the space of the orthogonal complement of K.

Let $\operatorname{Irr}(A:H)$ denote the set of all $\pi \in \operatorname{Rep}(A:H)$ such that $\{\pi, H_{\pi}\}$ is irreducible and let $\operatorname{Irr}_n(A:H)$ be the set of all $\pi \in \operatorname{Irr}(A:H)$ such that $\dim H_{\pi} = n$, where $n = 1, 2, \dots, \aleph_0$. Each $\operatorname{Irr}_n(A:H)$ is endowed with the coarest Borel structure which makes $\operatorname{Irr}_n(A:H) \ni \pi \mapsto$ $(\pi(a)\xi|\eta)$ a Borel function for every $a \in A$ and every $\xi, \eta \in H_{\pi}$.

Department of Mechanical Engineering, School of Engineering, Kinki University

近畿大学工学部機械工学科

The set $Irr(A:H) = \bigcup_{n=1}^{\aleph_0} Irr_n(A:H)$ has sum-Borel-structure.

Let $U \pi_1 U^* = \pi_2$ denote the unitary equivalence of $\pi_1, \pi_2 \in \text{Rep}(A:H)$ under an intertwiner U.

By the disintegration theory of representations, each non-zero π in Rep(A:H) can be decomposed as follows;

$$U\left\{\pi,H_{\pi}
ight\}U^{*}=\int_{Z}^{\oplus}\left\{\pi(\zeta),H_{\pi}(\zeta)
ight\}d\mu(\zeta)$$

where μ is a positive measure on a standard Borel space Z and $\pi(\zeta) \in \operatorname{Irr}(A:H) \ \mu - a.e.$

We shall call this decomposition an irreducible decomposition of π over Irr(A:H).

It is well known that unless A is of type-I this decomposition is not unique.

Definition 1. Let A[Irr(A:H)] denote the set of all $\mathfrak{B}(H)$ -valued function x defined on Irr(A:H) satisfies the following conditions (a),(b),(c) and (d);

- (a) $x(\pi) = p_{\pi} x(\pi) p_{\pi}$ for every $\pi \in \operatorname{Irr}(A:H)$,
- (b) $\operatorname{Irr}(A:H) \ni \pi \mapsto (x(\pi)\xi|\eta)$ is a Borel function for every $\xi, \eta \in H$,
- (c) $\sup\{\|x(\pi)\| : \pi \in Irr(A:H)\} < +\infty$ and
- (d) If $\pi \in \text{Rep}(A:H)$ and

$$U_i \, \pi \, U_i^* = \int_{Z_i}^\oplus \pi_i(\zeta) \, d\mu_i(\zeta) \quad (i=1,2)$$

are irreducible decompositions of π over Irr(A:H), then it holds that

$$U_1^* \int_{Z_1}^{\oplus} x(\pi_1(\zeta)) \, d\mu_1(\zeta) \, U_1$$

= $U_2^* \int_{Z_2}^{\oplus} x(\pi_2(\zeta)) \, d\mu_2(\zeta) \, U_2.$

For any $x, y \in A[Irr(A:H)]$ and complex numbers α, β , for each $\pi \in Irr(A:H)$ put

$$(lpha x + eta y)(\pi) := lpha x(\pi) + eta y(\pi), \ (x y)(\pi) := x(\pi) y(\pi), \ x^*(\pi) := x(\pi)^* and \ \|x\| := \sup\{\|x(\pi)\| : \pi \in \operatorname{Irr}(A:H)\}.$$

Then it is easily seen that A[Irr(A:H)] becomes a normed*-algebra with $||x^*x|| = ||x||^2$. Furthermore we have **Proposition 1.** A[Irr(A:H)] is a C*-algebra which contains the *-subalgebra isomorphic to A.

Proof. We begin with the completeness of A[Irr(A:H)]. Let $\{x_{\alpha}\}$ be a Cauchy net in A[Irr(A:H)]. Then by the preceding definition it follows that

$$egin{aligned} \|x_lpha-x_eta\|&=\sup\{\|x_lpha(\sigma)-x_eta(\sigma)\|:\sigma\in\operatorname{Irr}(A{:}H)\}\ &\geq\|x_lpha(\sigma)-x_eta(\sigma)\|\quadorall\sigma\in\operatorname{Irr}(A{:}H). \end{aligned}$$

So for each $\sigma \in \operatorname{Irr}(A:H)$, $\{x_{\alpha}(\sigma)\}$ converges uniformly to a certain operator of $\mathfrak{B}(H)$ which we denote by $x(\sigma)$ and the convergence $x_{\alpha}(\sigma) \rightarrow x(\sigma)$ is uniformly on $\operatorname{Irr}(A:H)$. It is easily seen that the operator field x, defined on $\operatorname{Irr}(A:H)$, satisfies the conditions (a), (b), (c) of Definition 1. Since it holds that

$$\begin{split} &\|\int_{Z}^{\oplus} \{x(\pi(\zeta)) - x_{\alpha}(\pi(\zeta))\} \, d\mu(\zeta)\| \\ &\leq \mathrm{ess} \, \sup\{\|x(\pi(\zeta)) - x_{\alpha}(\pi(\zeta))\| : \zeta \in Z\} \\ &\leq \mathrm{sup}\{\|x(\sigma) - x_{\alpha}(\sigma)\| : \sigma \in \mathrm{Irr}(A:H)\} \end{split}$$

for any irreducible decomposition

$$U \pi U^* = \int_Z^{\oplus} \pi(\zeta) \, d\mu(\zeta)$$

of $\pi \in \operatorname{Rep}(A:H)$ over $\operatorname{Irr}(A:H)$, it follows under the assumption of (d) that

$$\begin{split} \|U_1^* \int_{Z_1}^{\oplus} x(\pi_1(\zeta)) \, d\mu_1(\zeta) \, U_1 \\ &- U_2^* \int_{Z_2}^{\oplus} x(\pi_2(\zeta)) \, d\mu_2(\zeta) \, U_2 \| \\ &\leq 2 \sup\{\|x_\alpha(\sigma) - x(\sigma)\| : \sigma \in \operatorname{Irr}(A:H)\} \to 0. \end{split}$$

This implies that x satisfies the condition (d), so x belongs to A[Irr(A:H)]. Hence A[Irr(A:H)] is complete, so it is a C^* -algebra.

For each $a \in A$, put $\hat{a}(\pi) = \pi(a)$ for every $\pi \in Irr(A:H)$. Then it is obvious that the operator field \hat{a} satisfies the all conditions of Definition 1 and the map. $A \ni a \mapsto \hat{a} \in A[Irr(A:H)]$ is a *-homomorphism. We shall call this map. a generalized Gelfand transform. Since it holds by the plenitude of irreducible representations that

$$\begin{aligned} |\hat{a}|| &= \sup\{||\hat{a}(\pi)|| : \pi \in \operatorname{Irr}(A:H)\} \\ &= \sup\{||\pi(a)|| : \pi \in \operatorname{Irr}(A:H)\} \\ &= ||a||, \end{aligned}$$

a generalized Gelfand transform is an isometric *-isomorphism. \Box

The condition (d) enables us to extend each x in A[Irr(A:H)] to an operator field \tilde{x} on Rep(A:H) as follows;

$$\widetilde{x}(\pi):=U^*\int_Z^\oplus x(\pi(\zeta))\,d\mu(\zeta)\,U$$

for every non-zero $\pi \in \operatorname{Rep}(A:H)$, where

$$U \, \pi \, U^* = \int_Z^\oplus \pi(\zeta) \, d\mu(\zeta)$$

is an irreducible decomposition of π over Irr(A:H). For the zero representation O, we define $\tilde{x}(O)$ to be the zero operator on H.

Now we are going to verify that for every $x \in A[Irr(A:H)]$, \tilde{x} is an admissible operator field on Rep(A:H) which was defind and investigated in [4].

Lemma 1. If $V \pi V^* = \pi_1 \oplus \pi_2$ for $\pi, \pi_1, \pi_2 \in \text{Rep}(A:H)$, it holds

$$V \tilde{x}(\pi) V^* = \tilde{x}(\pi_1) \oplus \tilde{x}(\pi_2)$$

for every $x \in A[Irr(A:H)]$.

Proof. Let

$$U_i \, \pi_i \, U_i^* = \int_{Z_i}^{\oplus} \pi_i(\zeta) \, d\mu_i$$

be an irreducible decomposition of π_i over Irr(A:H) (i = 1, 2) then

$$(U_1 \oplus U_2)V \pi V^* (U_1 \oplus U_2)^*$$

= $\int_{Z_1}^{\oplus} \pi_1(\zeta) d\mu_1(\zeta) \oplus \int_{Z_2}^{\oplus} \pi_2(\zeta) d\mu_2(\zeta)$

is an irreducible decomposition of π over Irr(A:H). Hence if $x \in A[Irr(A:H)]$ we have

$$(U_{1} \oplus U_{2})V \tilde{x}(\pi) V^{*}(U_{1} \oplus U_{2})^{*}$$

= $\int_{Z_{1}}^{\oplus} x(\pi_{1}(\zeta)) d\mu_{1}(\zeta) \oplus \int_{Z_{2}}^{\oplus} x(\pi_{2}(\zeta)) d\mu_{2}(\zeta)$
= $U_{1} \tilde{x}(\pi_{1}) U_{1}^{*} \oplus U_{2} \tilde{x}(\pi_{2}) U_{2}^{*}$
= $(U_{1} \oplus U_{2})(\tilde{x}(\pi_{1}) \oplus \tilde{x}(\pi_{2}))(U_{1} \oplus U_{2})^{*}.$

Consequently, $V \tilde{x}(\pi) V^* = \tilde{x}(\pi_1) \oplus \tilde{x}(\pi_2)$. \Box

Corollary. If
$$\pi_1, \pi_2 \in \text{Rep}(A:H)$$
 and $\pi_1 = V^* \pi_2 V$, then it holds

$$\tilde{x}(\pi_1) = V^* \, \tilde{x}(\pi_2) \, V$$

for every $x \in A[Irr(A:H)]$.

Proof. Put $\pi = \pi_1, \pi_1 = \pi_2, \pi_2 = O$ in the preceding Lemma. \Box

Lemma 2. For every $x \in A[Irr(A:H)]$, it holds

$$p_{\pi} \, \widetilde{x}(\pi) \, p_{\pi} = \widetilde{x}(\pi)$$

for each $\pi \in \operatorname{Rep}(A:H)$.

Proof. Let

$$U\left\{\pi,H_{\pi}
ight\}U^{*}=\int_{Z}^{\oplus}\left\{\pi(\zeta),H_{\pi}(\zeta)
ight\}d\mu(\zeta)$$

be an irreducible decomposition of π over Irr(A:H) then we have

$$p_{\pi} = U^* \int_Z^{\oplus} p_{\pi}(\zeta) \, d\mu(\zeta) \, U$$

Hence by virture of the condition (a), for every $x \in A[Irr(A:H)]$ we have

$$p_{\pi} \tilde{x}(\pi) p_{\pi}$$

$$= U^{*} \int_{Z}^{\oplus} p_{\pi}(\zeta) x(\pi(\zeta)) p_{\pi}(\zeta) d\mu(\zeta) U$$

$$= U^{*} \int_{Z}^{\oplus} x(\pi(\zeta)) d\mu(\zeta) U$$

$$= \tilde{x}(\pi). \quad \Box$$

Lemma 3. For every $x \in A[Irr(A:H)]$, it holds

 $\sup\{\|\tilde{x}(\pi)\| : \pi \in \operatorname{Rep}(A:H)\} = \|x\|.$

Proof. Let $\pi \in \operatorname{Rep}(A:H)$ and

$$U\,\pi\,U^* = \int_Z^\oplus \pi(\zeta)\,d\mu(\zeta)$$

be an irreducible decomposition of π over Irr(A:H). Then we have

$$\begin{aligned} \|\tilde{x}(\pi)\| &= \|\int_{Z}^{\oplus} x(\pi(\zeta)) \, d\mu(\zeta)\| \\ &\leq \mathrm{ess} \, \sup\{\|x(\pi(\zeta))\| : \zeta \in \mathbf{Z}\} \\ &\leq \sup\{\|x(\sigma)\| : \sigma \in \mathrm{Irr}(A:H)\} \\ &= \|x\|. \end{aligned}$$

Now put $\|\tilde{x}\| := \sup\{\|\tilde{x}(\pi)\| : \pi \in \operatorname{Rep}(A:H)\}$, then we have $\|\tilde{x}\| \leq \|x\|$. Since it is obvious $\|\tilde{x}\| \geq \|x\|$, it holds $\|\tilde{x}\| = \|x\|$. \Box

Recall that \tilde{A} donotes the C^* -algebra of all admissible operator fields on $\operatorname{Rep}(A:H)$. In [4] it was shown that \tilde{A} can be faithfully represented as the enveloping von Neumann algebra of A.

Proposition 2. For every $x \in A[Irr(A:H)]$, \tilde{x} is an admissible operator field on Rep(A:H) and the map. $A[Irr(A:H)] \ni x \mapsto \tilde{x} \in \tilde{A}$ is an isometric *-isomorphism.

Proof. By the previous Lemmas 1,2 and Corollary it follows that \tilde{x} is an admissible operator field on Rep(A:H) for every $x \in A[Irr(A:H)]$.

It follows immediately by direct computations that for each $\pi \in \operatorname{Rep}(A:H)$

$$egin{aligned} &(lpha\,x+eta\,y)(\pi)=lpha\,\widetilde{x}(\pi)+eta\,\widetilde{y}(\pi),\ &(\widetilde{x}\,\widetilde{y})(\pi)=\widetilde{x}(\pi)\,\widetilde{y}(\pi) \quad and\ &\widetilde{x^*}(\pi)=(\widetilde{x}(\pi))^* \end{aligned}$$

for every $x, y \in A[Irr(A:H)]$ and every complex numbers α, β . These assert that the map. $x \mapsto \tilde{x}$ is a *-homomorphism of A[Irr(A:H)] into \tilde{A} . Proposition now follows from Lemma 3. \Box

Hence every $x \in A[Irr(A:H)]$ can be considered as an element of A^{**} . The conjugate space A^* is represented as $\{\omega(\pi;\xi,\eta):\pi\in \operatorname{Rep}(A:H),\xi,\eta\in$ $H_{\pi}\}$, where $\langle\omega(\pi;\xi,\eta),a\rangle = (\pi(a)\xi|\eta)$ for every $a \in A$.

The explicit dual relation of $x \in A[Irr(A:H)]$ $\subseteq A^{**}$ and $\omega(\pi; \xi, \eta) \in A^*$ is as follows;

$$\begin{split} \langle x, \omega(\pi; \xi, \eta) \rangle &= \int_Z (x(\pi(\zeta))\xi(\zeta)|\eta(\zeta)) \, d\mu(\zeta) \\ &= (\tilde{x}(\pi)\xi|\eta) \\ &= \langle \tilde{x}, \omega(\pi; \xi, \eta) \rangle, \end{split}$$

where

$$U\left\{\pi,H_{\pi}
ight\}U^{*}=\int_{Z}^{\oplus}\left\{\pi(\zeta),H_{\pi}(\zeta)
ight\}d\mu(\zeta)$$

is an irreducible decomposition of π over Irr(A:H).

3. A strong duality theorem

As in [4], the space $\operatorname{Rep}(A:H)$ is equipped with the topology of pointwise strong convergence. It means that $\pi_{\alpha} \to \pi$ in $\operatorname{Rep}(A:H)$ if and only if for each $a \in A$, $||\pi_{\alpha}(a)\xi - \pi(a)\xi|| \to 0$ for every $\xi \in H$.

It is equivalent to the topology of pointwise weak, σ -weak, σ -strong, σ -strong^{*} convergence (c.f.[2]). Because of the separability of A and H, topological space $\operatorname{Rep}(A:H)$ is a Polish space, that is, it is complete, metrizable and separable. Hence sequences are enough for us to consider with respect to the topology of $\operatorname{Rep}(A:H)$ instead of nets. The space $\operatorname{Irr}(A:H)$ has the relative topology, it is our dual object of A.

Henceforth we consider the continuity of $x \in A[Irr(A:H)]$ on Irr(A:H) which is compatible with the direct integrals of representations.

Definition 2. Let C[Irr(A:H)] denote the set of all $x \in A[Irr(A:H)]$ satisfies the following condition (e);

(e) If for each $a \in A$ a sequence

$$\left\{U_n^*\int_{Z_n}^{\oplus}\pi_n(\zeta)(a)\,d\mu_n(\zeta)\,U_n\right\}_{n\in\mathbb{N}}$$

converges strongly to

$$U^* \int_Z^{\oplus} \pi(\zeta)(a) \, d\mu(\zeta) \, U$$

in $\mathfrak{B}(H)$, where $\pi_n(\zeta)$, $\pi(\zeta) \in \operatorname{Irr}(A:H)$ a.e. then it holds that the sequence

$$\left\{U_n^*\int_{Z_n}^{\oplus} x(\pi_n(\zeta))\,d\mu_n(\zeta)\,U_n\right\}_{n\in N}$$

converges strongly to

$$U^* \int_Z^\oplus x(\pi(\zeta)) \, d\mu(\zeta) \, U$$

in $\mathfrak{B}(H)$.

Since each $\pi \in Irr(A:H)$ is itself an irreducible decomposition over Irr(A:H), we have

Cororally. For every $x \in C[Irr(A:H)]$, x is continuous on Irr(A:H).

Lemma 4. For every $x \in C[Irr(A:H)]$, \tilde{x} is continuous on Rep(A:H).

Proof. Let $\pi_n \to \pi$ in Rep(A:H) and let

$$U_n^* \int_{Z_n}^{\oplus} \pi_n(\zeta) \, d\mu_n(\zeta) \, U_n, \quad U^* \int_Z^{\oplus} \pi(\zeta) \, d\mu(\zeta) \, U$$

be irreducible decompositions of π_n , π over Irr(A:H). Then for each $a \in A$ the sequence

$$\left\{U_n^*\int_{Z_n}^{\oplus}\pi_n(\zeta)(a)\,d\mu_n(\zeta)\,U_n\right\}_{n\in\mathbb{N}}$$

converges strongly to

$$U^* \int_Z^{\oplus} \pi(\zeta)(a) \, d\mu(\zeta) \, U$$

in $\mathfrak{B}(H)$. By the condition (e), it follows for every $x \in C[\operatorname{Irr}(A:H)]$ that the sequence

$$\{\tilde{x}(\pi_n)\} = \left\{ U_n^* \int_{Z_n}^{\oplus} x(\pi_n(\zeta)) \, d\mu_n(\zeta) \, U_n \right\}$$

converges strongly to

$$\widetilde{x}(\pi) = U^* \int_Z^\oplus x(\pi(\zeta)) \, d\mu(\zeta) \, U.$$

The statement now follows. \Box

Proposition 3. C[Irr(A:H)] is a C^* -subalgebra of A[Irr(A:H)].

Proof. Let $x, y \in C[Irr(A:H)]$, $\xi \in H$ and let keep the notations in the proof of Lemma 4. Since it holds that

$$\begin{aligned} \|(\widetilde{xy}(\pi_n) - \widetilde{xy}(\pi))\xi\| \\ &\leq \|y\| \|(\widetilde{x}(\pi_n) - \widetilde{x}(\pi))\xi\| + \|x\| \|(\widetilde{y}(\pi_n) - \widetilde{y}(\pi))\xi\|, \end{aligned}$$

It follows that xy belongs to C[Irr(A:H)]. The rests of algebraic parts are obvious.

Let $C[Irr(A:H)] \ni x_{\alpha} \to x \in A[Irr(A:H)]$. Since it holds that

$$egin{aligned} &\|\int_Z^\oplus \{x_lpha(\pi(\zeta))-x(\pi(\zeta))\}\,d\mu(\zeta)\|\ &\leq \|x_lpha-x\| o 0, \end{aligned}$$

x belongs to C[Irr(A:H)]. So C[Irr(A:H)] is closed in A[Irr(A:H)]. \Box

Now we are in the position to state and to prove our strong duality theorem.

Theorem. C^* -algebra A is isomorphic to the C^* -algebra C[Irr(A:H)] under a generalised Gelfand transform.

Proof. In Proposition 1 it was proved that a generalised Gelfand transform; $A \ni a \mapsto \hat{a} \in A[\operatorname{Irr}(A:H)]$, where $\hat{a}(\pi) = \pi(a)$ for every $\pi \in \operatorname{Irr}(A:H)$, is an isometric *-isomorphism. It is obvious that \hat{a} satisfies the conditions (e), that is, \hat{a} belongs to C[Irr(A:H)] for every $a \in A$.

Contrary let $x \in C[Irr(A:H)]$ then it follows from Proposition 2 and Lemma 4 that \tilde{x} is continuous admissible operator field on $\operatorname{Rep}(A:H)$. Takesaki's duality theorem assure us that there exists uniquely $a \in A$ such that $\tilde{x}(\pi) = \pi(a)$ for every $\pi \in \operatorname{Rep}(A:H)$. Hence it follows that $x(\pi) = \tilde{x}(\pi) = \pi(a) = \hat{a}(\pi)$ for every $\pi \in \operatorname{Irr}(A:H)$. This implies that $x = \hat{a}$.

Therefore a generalised Gelfand transform is a *-isomorphism of A onto the C^* -algebra C[Irr(A:H)]. \Box

references

[1] C.A.Akemann and F.W.Shultz, Perfect C^* -algebras, Memoirs Ams. Math.soc., 326, (1985).

[2] K.Bichteler, A generalization to the nonseparable case of Takesaki's duality theorem for C^* -algebras, Invent. Math.,9,(1969), 89-98.

[3] I.Fujimoto, A Gelfand-Naimark theorem for C^* -algebras, Pacific J. Math., 184, (1998), 95-119.

[4] M.Takesaki, A duality in the representation theory of C^* -algebras, Ann. Math.,85,(1967),370-382.