球状黒鉛鋳鉄の衝撃特性に及ぼす基地組織の影響

信木 関*, 塩田 俊雄**, 旗手 稔**

Influences of Matrix Microstructure on Impact Characteristics of Ductile Cast Irons

Tohru NOBUKI, Toshio SHIOTA, Minoru HATATE

Synopsis

The influence of matrix microstructure on impact characteristics of ductile cast iron was investigated by using three kinds of heat-treated ductile cast irons whose matrix structures are ferrite, pearlite and bainite (ausferrite). The instrumented Charpy impact tests were carried out with un-notched and V-notched specimens in the temperature range from 123 K to 423 K. The results obtained are summarized as follows:

In the ductile region, the impact value becomes larger in the order of pearlite, bainite and ferrite matrix, which is the same order in elongation. In the brittle region, the difference in matrix microstructure does not affect impact value. The impact transition temperature becomes lower in the order of pearlite, bainite and ferrite matrix. Addition of an external notch to impact specimens results in rising in transition temperature in every matrix. The external notch factor (impact value of un-notched specimen divided by impact value of notched specimen) becomes larger in the order of ferrite, pearlite and bainite matrix, which is the same order in hardness, and this means that a sample with a harder matrix is more largely affected by external notches.

Key words : Ductile cast iron, Impact characteristics, Matrix microstructure, Ferrite, Pearlite, Bainite, Transition temperature, Absorbed energy, Crack initiation energy, Crack propagation energy, Fractography

1. 緒言

**近畿大学工学部機械工学科

鋳鉄は、基地中に炭素の供給あるいは凝集源である黒 鉛を有するため、熱処理により基地組織を任意に変化さ せ得るという特徴がある.このため、鋳鉄の熱処理は材 質を決定する上で重要な意味を持つ.延性の求められる 用途にはフェライト基地材を、強度や耐摩耗性を必要と する用途にはパーライト基地材を、あるいはそれらの中 間的な特性としてはフェライトとパーライトの混合基地 材を利用でき、このことにより工業的に要求される広範 な材料特性に対応している^{1,3)}.また、鋼材などで強靱化 のために行われているオーステンパ処理を鋳鉄にも適用 すれば、ベイナイト基地となり、高強度、高靱性及び高 硬度を示すとともに、耐摩耗性も優れているので、チェ ーンスプロケット、エンジン用タイミングギヤ、ダイス など近年鋼材の代替材料として注目されている^{3,4)}.

しかし,鋳鉄には黒鉛が種々の形状で分布し,有効断 面積を減少させるとともに,黒鉛が切欠きとして作用す るために,鋼材などと比較して耐衝撃性が劣るが,外部 *近畿大学工学部研究員、同非常勤購師 切欠きの影響は受けにくいといわれている ^{5~8)}. これま でに,塩田らは,球状黒鉛鋳鉄の静的及び疲労特性に及 ぼす外部切欠きの影響を検討し,疲労強度と黒鉛の切欠 き効果 9.10),黒鉛の存在による有効断面積の減少との関 係^{11,12)}について明らかにしている.また,近年では,衝 撃だけでなく静的曲げによる切欠き靭性試験も行われて おり,試験温度やひずみ速度の影響といった観点からの 報告 13~16)や著者らの球状及び CV 黒鉛鋳鉄の切欠き衝 撃・曲げ特性の詳細な研究^{17,18)}があるが,衝撃特性に及 ぼす基地組織と外部切欠きの影響といった観点からまと めた研究報告は皆無である.このため,更なる鋳鉄の信 頼性確保,用途拡大のためには,衝撃特性に及ぼす基地 組織の影響について明らかにしておく必要がある.

そこで、本研究では、球状黒鉛鋳鉄を溶製し、熱処理 によって基地組織をフェライト、パーライト、ベイナイ ト(オースフェライト)とした衝撃試験片を作成し、無切 欠き材、V切欠き材について計装化シャルピー衝撃試験 を行い、衝撃値、遷移温度、亀裂発生及び伝播エネルギ Researcher and part time lecturer, School of Engineering, Kinki University.

Department of Mechanical Engineering, School of Engineering, Kinki University.

ーなどの衝撃特性に及ぼす基地組織の影響及び切欠き効 果について検討した.

2. 実験方法

2.1 供試材

供試材は、原料銑鉄として低 C 高純度銑鉄と高 C 高純 度銑鉄を使用した.溶製方法は次の通りである.20kVA の高周波誘導電気炉を用いて溶解し、溶湯の温度が 169 3K に達すると Fe-75%Si 合金を添加し溶湯の温度が 18 23 K に達すると,あらかじめ 873 K に加熱しておいた 黒鉛るつぼを使用して希土類市販球状化剤と Fe-45%Si-8%Mg 合金を 1.6%添加して、置注ぎ法で黒鉛球状化処 理し、Fe-50%Si 合金を 0.4%接種した後、底部厚さ 30 mm,高さ 100 mm,長さ 160 mmのYブロック CO2 鋳型に 鋳込んだ.

その後,電気炉を用いて,Fig.1に示すように,フェ ライト化焼鈍(1223K×7.2ks保持後炉冷,993K×18ks 保持後炉冷)以後FDI,パーライト化焼準(1223K×3.6ks 保持後強制空冷)以後PDI,オーステンパ熱処理(1173K ×3.6ks保持後653K×3.6ks保持後空冷)以後ADIの熱 処理を施した.

2.2 衝撃試験

衝撃試験は、容量 300 Jの計装化シャルピー衝撃試験 機を使用し、荷重測定は、ハンマに埋設された抵抗線ひ ずみゲージ電圧を 1MHz でサンプリングし、12 bit ADC によって量子化を行った.変位は.時間関数として得ら れる衝撃波形を初期荷重からエネルギーの損失による速 度低下分を補正し、荷重一時間曲線から求めた.試験温 度は、123 K ~ 423 Kの範囲で行った.試験片温度測 定は、 ϕ 0.32 mmのT熱電対を試験片側面にスポット溶 接機で溶着してデジタルサーモメータで測定し、メータ が所定の試験設定温度となると同時に試験した.

ハンマ持ち上げ角の設定は, 無切欠き材は 90°とし, 切欠き材は 45°とした.この場合のハンマ打撃速度, ハ ンマ打撃エネルギーは, それぞれ 3.8 m/s, 2.1 m/s 及び 163 J, 48 J である.

衝撃試験片は、Fig. 2 に示すように、8×10×55 mm

(i) Unnotched test piece. ($\alpha = 1.0$)

の無切欠き材と, 10×10×55 mm の切欠き材を使用した.外部切欠き材の応力集中係数(α)は,西田¹⁹によると無切欠き材のαは1,R0.25の45°V切欠き材(JIS Z 2202 に準拠)のαは 3.9 となる.

2.3 静的試験

引張試験は、平行部径 8 mm,標点間距離 28 mm の試 験片を用いて、インストロン万能試験機を使用して負荷 速度 8.33×10^{-3} mm/s の条件で室温中で試験を行った. 硬さ試験は、ブリネル硬さ試験を(10/3000/30)の条件で 行い、基地硬度については、マイクロビッカース硬さ試 験を負荷荷重 0.49 N,負荷時間 15 s の条件とし 10 点測 定した.

3. 実験結果及び考察

3.1 供試材の組織及び静的機械的性質

3.1.1 供試材の化学組成及び組織

Table 1 に得られた供試材の化学組成を, Fig. 3 に得られた供試材の組織写真を示す.

これらの図,表より,得られた供試材は,3.6%C, 2.1%Si 組成の球状黒鉛鋳鉄であり,また,黒鉛球状化率 は82%,黒鉛面積率13.3%,平均黒鉛粒径は27μmの ものである.

Table 1 Chemical compositions of specimens. (mass%)

	C	Si	Mn	Р	S
FDI	3.74	2.07	0.07	0.010	0.005
PDI	3.44	2.16	0.06	0.010	0.005
ADI	3.64	2.15	0.03	0.005	0.006

100 µ m

Fig. 3 Microstructures of specimens. (Nital etched)

Table 2 Mechanical properties of specimens. (R.T.)

	FDI	PDI	ADI
Tensile strength (MPa)	364	862	1066
0.2%Proof stress (MPa)	215	556	828
Elongation (%)	27.4	4.8	9.0
Reduction of area (%)	24.3	4.5	3.3
Hardness (HB)	122	255	302
Hardness (HV)	191	350	380

3.1.2 供試材の静的機械的性質

得られた供試材の静的機械的性質を Table 2 に示す. 引張強度及び伸び率は, FDI, PDI, ADI それぞれ 364MPa, 27.4%, 862MPa, 4.8%, 1066MPa, 9%で, FDI は低強度であるが, 伸びが大きく, ADI は高強度で 伸びもかなり大きい. しかし, PDI は強度はかなり高い が一番伸びが小さいことが分かる.基地硬度については, FDI, PDI, ADI それぞれ HVが 191, 350, 380 であり, ADI が最も硬度が高く, 次いで PDI, FDI の順となって いる.

3.2 衝撃特性と基地組織

3.2.1 荷重一変位曲線

Fig.4に,各供試材の延性域で得られた衝撃試験の荷 重-変位曲線を示す.この図から明らかなように,基地 組織により波形に大きな違いが現れていることが分かる.

すなわち, 無切欠き材, V切欠き材ともに, 破断までの最大荷重で比較すると, ADI が最も高く, 次いでPDI,

最後に FDI の順となり, 引張強度と同じ傾向となる. また, 最大荷重点での変位で比較すると, FDI が最も大きく, 次いで ADI, PDI の順となり, これは伸び率と同じ傾向を示す. 特に FDI のものは, 最大荷重点の変位が大きいばかりか, 最大荷重点からのなだらかな荷重の減少 過程が認められる. また, V 切欠きのものは, 無切欠き材のものに比べ, 三軸応力状態の塑性拘束^{20,21)}によって, 破断までの変位が大きく減少していることが分かる.

Fig. 5 に、衝撃荷重-変位曲線中の最大荷重点(Pmax) と基地組織との関係について示す.この図より、Pmax は、無切欠き材の場合、ADI が最も高く、次いで PDI, FDI の順となり、強度の高いものほど高くなっており、 FDI は ADI の半分程度の荷重である.また、V 切欠き材 のものは、無切欠き材のものに比べ Pmax は減少してい るが、FDI のものは、ADI、PDI のものに比べてその減

Fig. 4 Load-displacement curves of specimens on instrumented Charpy impact testing in ductile region.

Fig. 5 Comparison of *P*max in Load-displacement curves of instrumented Charpy impact testing.

少幅は小さい.このことから,切欠きを付すことにより, 衝撃値が大きく減少しているのは,最大荷重が減少する よりも,破断までの塑性変形量が大きく減少するためで あると考察される.

3.2.2 衝撃遷移曲線

Fig. 6 に,各供試材について得られた衝撃遷移曲線を示す.この図から,温度が低下するとともに遷移挙動を示しており、V 切欠き材の衝撃値は,無切欠き材のものに比べて大きく劣っている.また,FDIの373 K,ADIの423 K で延性域衝撃値が低下しているのは,材料の高温軟化のため²²⁾であると考えられる.

Fig. 6 Charpy impact transition curves of specimens.

3.2.3 延性域, 脆性域衝撃値

Fig. 7に、各供試材の延性域におけるシャルピー衝撃 値, 脆性域におけるシャルピー衝撃値との関係を示す. 同図より, 延性域では、シャルピー衝撃値は FDI のもの が最も高く、次いで ADI、PDI の順となる. 脆性域にお いても、衝撃値は FDI のものが最も高いが、その差はわ ずかしかなく、基地組織による衝撃値の差異は脆性域で は、明確ではないことが分かる.

3.2.4 衝撃遷移温度

Fig.8に、衝撃遷移温度と基地組織との関係について 示す.この図から、衝撃遷移温度は、FDI が最も低く、 次いで ADI、PDI となっており、FDI と PDI の遷移温 度の違いは 100 K 程度認められる.このことは、基地の 延性が大きいものほど、低い遷移温度を示すと考察され る.また、V 切欠きのものは無切欠き材のものに比べて

Fig. 7 Relation between impact value and specimens in ductile and brittle regions.

Fig. 8 Relation between impact transition temperature of specimens and matrix microstructure.

遷移温度は高くなっており,応力集中の増加は,衝撃遷 移温度を上昇させる.

3.2.5 破断エネルギー特性

Fig. 9に, 計装化シャルピー衝撃試験で得られた荷重 -変位曲線の最大荷重点(Pmax)を亀裂発生点として取 り扱い^{17,18,23~25)},破断エネルギーEnを亀裂発生エネル ギーEiと亀裂伝播エネルギーEpに分割し,延性破壊の 場合の基地組織との関係について示す.

この図から、無切欠き材の Ei及び Epは、FDI が最も 高く、次いで ADI、最後に PDI の順となっており、Enの大きいものは、Ei、Epも大きいことが分かる、V切 欠き材では、Enは、FDI が最も高く、次いで ADI、PDI の順となり、無切欠き材と同様の傾向となるが、Eiは、 いずれの基地組織のものも無切欠き材に比べて大変小さ い値を示し、また、基地組織によって、大きな相違は認 められない、一方、Epについては、ADI、PDI に比べ て FDI が高く、Enと同様の傾向を示している.

次に, Enに占める Eiの割合が基地組織によってどの 様に違うのかを検討するために, 亀裂発生エネルギーの 占有率 Erを(Eq. 1)の様に定義し, Fig. 10 に示した.

Fig. 10 Relation between *Er* and matrix microstructure in ductile region.

$$Er(\%) = \frac{Ei}{En}$$
 · · · (Eq.1)

同図から、無切欠き材についての Erは、ADI が最も 高く、次いで PDI、FDI の順となり、基地硬度の高いも のほど、Erは高い値を示している.また、いずれの基地 組織についても、Erは高い値を示し、特に ADI、PDI は Enのほとんどが Eiによって占められていることが分 かる.V 切欠き材では、Erは無切欠き材のものと比べて、 *Er*は小さな値を示し,特に,FDIの低下の割合は,ADI, PDIのものに比べて大きく,ほとんどが *Ep*によって占 められていることが分かる.

これらのことから, FDI の *En* が高い値を示すのは, *Ei*, *Ep* が ADI, PDI に比べてともに大きいためであり, V 切欠きを付しても, *Ei*は大きく減少するが, *Ep*が ADI, PDI に比べて大きいために優れた耐衝撃性を示すと考え られる.

3.3 外部切欠き係数と基地組織

基地組織によって,外部切欠きがどの程度衝撃特性に 影響を与えるのかを検討するために,外部切欠き係数 βn を, (Eq. 2)のように定義し, Fig. 11 に示した.

$$\beta n = \frac{E_s}{E_n}$$
 · · · (Eq.2)

ここに, *E*_s: 無切欠き材の衝撃値, *E*_n: 切欠き材の衝 撃値である.

この図から、 βnは、ベイナイト基地のものが最も高 く、 次いで PDI、最後に FDI の順となる. このことは、 基地硬度の高いものほど βn は高く、基地硬度の高いベ イナイト基地のものが、外部切欠きの影響を大きく受け るということを示している.

microstructure.

3.4 破面と基地組織

Fig. 12 に, 無切欠き材の延性域(373 K)における衝撃 試験後の破断面の SEM 観察写真を示す. 観察箇所は, いずれの供試材とも,引張応力の作用した外縁部直下と した.

この図から, FDI, PDI, ADI いずれの供試材ともに, 球状黒鉛を核とする大きなディンプルが形成されており, 球状黒鉛部周囲にはボイドが観察され,基地の大きな塑 性変形を伴った明らかな延性破面を呈している. ADIの 破面は, FDI, PDI に比べて細かい粒状の破面が多量に 観察される.基地組織の塑性変形の程度は,FDI のもの が最も大きく,優れた衝撃特性を示したことが,破面観 察から明らかである.また,V切欠き材の破面は,無切 欠き材の破面と同様の延性破面を呈していた.

impact fracture surfaces in ductile region.

Fig. 13 SEM fractographs of impact fracture surfaces in brittle region.

. 14 SEM fractographs of impact fracture surfaces at

R.T.

Fig. 13 に, 無切欠き材の各基地の脆性域 (FDI:123 K, PDI, ADI: 173 K) における SEM 観察写真を示す. この 図から, FDI はフェライト基地部のリバーパターンを伴 った劈開破面, PDI はパーライト基地部での擬劈開破面, ADI はベイナイト基地部での擬劈開破面であり, いずれ の破面も基地部の塑性変形は認められず, Fig. 12 に示し たものに比較して, 破面上への黒鉛の現出率はきわめて 低いことが分かる.

Fig. 14 に, 無切欠き材の常温(298 K)における SEM 観察写真を示す. 同図より, 298 K においての破面は, FDI では,衝撃の延性域であるため, Fig. 12 中に示し た破面と同様の延性破面である. PDI では,常温におい ては遷移域であり,球状黒鉛周囲の基地部に僅かな塑性 変形が認められるが,パーライト基地部の擬劈開破面と なっている. ADI では,常温で遷移域に差し掛かるため に, Fig. 12 中に示した破面と比較して,ベイナイト基地 部の塑性変形の程度,ボイドの大きさは小さい傾向にあ り,ごく一部擬劈開破面も見られるが,明らかに延性破 面を呈している.

4. 結営

基地組織をフェライト,パーライト,ベイナイト(オー スフェライト)とした球状黒鉛鋳鉄の衝撃試験片を作成 し,無切欠き材,V切欠き材について計装化シャルピー 衝撃試験を行い、衝撃特性に及ぼす基地組織及び外部切 欠きの影響について検討し以下の結果を得た.

- 延性域衝撃値は、フェライト基地が最も優れ、次い でベイナイト、パーライト基地の順となる. 脆性域 衝撃値は、基地組織によって大きな影響を受けない
- (1) 雪撃遷移温度は、フェライト基地のものが最も低く、 ベイナイト基地、パーライト基地の順となり、基地の延性が大きいものほど、低い遷移温度を示す。
- ・破断エネルギーに占める亀裂発生エネルギーの割合 は、ベイナイト基地のものが最も高く、次いでパー ライト基地、フェライト基地の順となり、基地硬度 の高いものほど、高い割合を示す。
- 4. 亀裂伝播エネルギーは、亀裂発生エネルギーに比べ て著しく小さいが、フェライト基地のV切欠き材で は、亀裂伝播エネルギーが大きい。
- 5. 外部切欠き係数は、ベイナイト基地のものが最も高く、次いでパーライト、フェライト基地の順となり、 基地硬度の高いベイナイト基地のものが、外部切欠 きの影響を受けやすい.

5. 文献

- 1) 小林俊郎:材料強靱学, アグネ技術センター, p111, 2000
- 2) 中江秀雄:鋳造工学, 産業図書, p17, 1995

- 3) 素形材センター(編): 鋳鉄の生産技術, p93, 1996
- 4) 井川克也, 喜多新男, 草川隆次, 新山英輔, 松本弘: 球状黒鉛鋳鉄の基礎と応用, 丸善, p223, 1992
- 5) 高橋達,嵯峨浩一,柴田鐐三:鋳鉄の疲労強度に及 ぼす黒鉛の切欠き効果,トヨタ技術, Vol. 15, p24, 1963
- 6) 井川克也,田中栄一:日本金属学会報, Vol. 13, p665, 1974
- 7) 草川隆次,中田栄一: 鋳鉄の強さと破壊機構について, 鋳物, Vol. 36, p128, 1966
- 信木関,塩田俊雄,旗手稔:球状および CV 黒鉛鋳鉄の衝撃特性に及ぼす黒鉛の影響,近畿大学工学部研究報告,No37, p59, 2003
- 9) 塩田俊雄,小松眞一郎:黒鉛形状の異る鋳鉄の疲労 強度と切欠き効果及び有効断面積との関係について, 材料, Vol.27, p291, 1978
- 10) 塩田俊雄,小松眞一郎: 鋳鉄の有効断面積と静的強 さとの関係について, 鋳物, Vol.49, p602, 1978
- 11) 塩田俊雄,小松眞一郎,松岡敬:鋳鉄のシャルピー 衝撃試験特性に及ぼす黒鉛形状の影響,近畿大学工 学部研究報告, No.18, p55, 1984
- 12) 信木関,塩田俊雄,旗手稔:基地組織の異なる球状 および CV 黒鉛鋳鉄の衝撃特性における切欠き効果, 近畿大学工学部研究報告, No36, p37, 2002
- 13) 永井恭一,成重厚,岸武勝彦,大和田野利郎:フェ ライト球状黒鉛鋳鉄の静的及び動的切欠曲げ特性, 鋳造工学, Vol.75, p669, 2003
- 14)山本博、小林利郎、藤田秀嗣:球状黒鉛鋳鉄の延性
 一脆性遷移挙動のひずみ速度依存性、 鋳造工学、
 Vol.72、 p107、 2000
- 15) 永井恭一,大和田野利郎:フェライト球状黒鉛鋳鉄の切欠き及び無切欠き棒の曲げ特性,鋳造工学, Vol.71, p603, 1999
- 16) T.Luyendijk, H.Nieswaag : Ductile cast iron instrumented impact tests made at different impact speeds, International Foundry Congress, Vol. 49, No,7, pl
- 17) 信木関,塩田俊雄,旗手稔:フェライト基地球状及 び CV 黒鉛鋳鉄の切欠衝撃・曲げ特性, 鋳造工学, Vol.75, p749, 2003
- 18)信木関,塩田俊雄,旗手稔:パーライト基地球状及び CV 黒鉛鋳鉄の切欠衝撃・曲げ特性,鋳造工学, Vol.76, p555,2004
- 19) 西田正孝: 応力集中, 森北出版, p572, 1966
- 20) 野口徹:片状黒鉛鋳鉄の破断条件,材料, Vol.32, p509, 1983
- 21)小林俊郎,村中康成,山田伸弥:球状黒鉛鋳鉄の延 性破壊に及ぼす応力3軸度及び基地組織の影響,鋳造 工学, Vol. 69, p924, 1997
- 22) 原田昭治,小林俊郎:球状黒鉛鋳鉄の強度評価,ア グネ技術センター, p77, 1999

- 23) 小林俊郎: 鋳鉄の衝撃破壊とその評価について,鉄 と鋼, Vol. 59, p1578, 1973
- 24) 木口昭二,曲田淳:球状黒鉛鋳鉄と鋳鋼の衝撃特性 の比較, 鋳造工学, Vol.69, p499, 1997
- 25) 砂田八吉,深浦健三,佐藤隆之:フェライト基地球 状黒鉛鋳鉄の組織と衝撃強度,材料, Vol.45, p316, 1996