コモンレール噴射系を用いたディーゼル噴霧の可視化解析

嶽間沢秀孝*,平野裕也**,児島忠倫*

Visualization of Diesel Spray with Common Rail System

Hidetaka GAKUMASAWA, Yuya HIRANO

and Tadatomo KOJIMA

Synopsis

In this research, in order to carry out visualization analysis of the atomization mechanisms of the diesel fuel of a common rail system, the injection system of the electronic control injected once from a nozzle was created. The high-speed spray visualization system by the digital high speed camera system (framing rate of 10^4 f.p.s.) which synchronized with injection of this common rail system was produced. The state of the diesel spray formation process injected from the injection system of a common rail system and the fuel at the time of an injection end was continuously visualized with the high speed camera using this system.

Key Words : Fuel Injection, Diesel Spray, Common Rail, Visualization

1. はじめに

ディーゼル機関はその耐久性と高い熱効率 のため、小型機関から大型機関まで幅広い利用が 進められている.しかし、燃料噴射による不均一 な拡散燃焼を特徴として、空気との混合が十分に 行われない希薄な領域と過濃な領域で、それぞれ NOxと黒煙・微粒子が不可避的に生成・排出さ れる⁽¹⁾⁻⁽²⁾.特に,この微粒子状物質はPM (Particulate Matter) またはDEP (Diesel Exhaust Particle) と呼ばれ、燃料および潤滑油 の不完全燃焼による黒煙, 硫黄化合物, 燃料が未 燃焼のまま排出される炭化水素などから生成され ている. PM は大気中に溜まり,高濃度で肺や気管 支に沈着して呼吸器に悪い影響を及ぼす可能性も 報告されている⁽³⁾.このため近年,ディーゼル機 関搭載車両に対する排気浄化、とりわけ黒色排気 中の黒煙, PMの低減が求められ厳しい規制 (4) が設けられている.

燃焼改善による排気ガス対策は、トレードオフ の関係にあり、燃焼温度を下げれば NO x の発生 を抑制できるが、PM の発生が増える.また、拡 散燃焼を促進させ PM の発生を抑制しようとする と、NO x の発生が増える傾向がある.そこで、 コモンレールシステム⁽⁵⁾による高圧燃料噴射を 用いて NO x と PM の低減を同時に行う方式が、 現在注目されている.このコモンレール方式では、 従来の噴射装置より噴射圧がさらに上昇し、現象 がより高速となることから燃料の微粒化機構は未 だに解明されていない部分が多く残されている. このような現象に対しては、三次元の情報が得ら れる可視化法^{(6) - (8)}が有効であると思われる.

本研究では、コモンレール方式の燃料微粒化機 構を可視化解析することを目的として、ディーゼ ルノズルからコモンレールの1回噴射が可能な電 子制御噴射システムを構築した.さらにこのコモ ンレールシステムのコントローラーと同期したデ

*近畿大学工学部システムデザイン工学科

**(株)ウェルアクセス

Department of System Design Engineering, School of Engineering, Kinki University Well Access ジタルハイスピードカメラによる高速噴霧可視化 システムを作製した.このシステムを用いて,コ モンレール方式の噴射系から噴射されるディーゼ ル噴霧形成過程及び噴射終了時の燃料の状態を連 続的に可視化し,さらにデジタル画像処理により 詳細な解析を行い,コモンレール噴射システムの 初期燃料微粒化機構について考察した.

2. 実験装置および方法

実験装置の概略を図1に示す.噴射ポンプは手動で最高噴射圧は70MPaである.噴射ポンプと 高圧パイプでコモンレール(蓄圧室)を介して噴射 弁を取り付けた.撮影には,デジタルハイスピー ドカメラ(Nac 社製 MEMRECAM fx-K3:最大10,000 コマ/秒)を用いた.光源には出力300Wのキセノ ンランプ用いた.図1(a)のように噴霧の斜め 前方に光源を設置して,6噴孔から噴出する噴霧 を噴射弁の中心軸上から撮影した.また,1つの 噴孔から噴出する噴霧の高速撮影は,図1(b) のように噴霧の後方に光源を設置して透過光で行った.撮影は噴射弁コントローラーの同期信号で 開始し,噴射終了後,撮影された多数のフレーム の中から指定したフレームをパーソナルコンピュ ータに取り込み,画像を調整して可視化した.

噴射弁にはデンソー製 10C10010(噴孔径 φ 0.136mm×6噴孔)を使用し,電子制御式の噴射弁 コントローラーにより,噴射期間を 0~9.9m s, 0.1m s 間隔で任意に設定できるようにした.図2 に噴射弁コントローラーの制御信号とノズルリフ トの関係を示す.ニードルの立ち上がりからフル リフトに達するまでの開弁時間は 0.28ms,閉弁時 間は 0.2ms である.開弁圧力Pは14~70Mpa の範 囲で変化させ,通常では用いない低い噴射圧から コモンレール噴射方式の高噴射圧までの広い圧力 範囲で実験を行った.噴射は常温の大気中に行い, 噴射液体には JIS 2 号軽油を用いた.

3. 結果と考察

3.1 6 噴孔から噴出する燃料噴霧の観察

噴射弁の軸上にカメラを設置し、キセノンラン プの反射光で、6噴孔から噴出する燃料噴霧を撮 影した結果を図 3、4 に示す.いずれも設定噴射 期間 ts=3.0msで,撮影間隔は0.5ms(2000fps), シャッター速度 1/10,000 sとした.図 3 は噴射圧 カP=70MPa の高圧噴射の場合である.図 3(a) 噴射開始からの経過時間 t=0.1ms では、各噴孔 から噴出する噴霧(微粒化していない液柱を含む 場合があるが以下噴霧と表記する)の形状は少し 違いが見られるがほぼ同形状で、噴霧の到達距離 は一致していることがわかる.図 3(b) t=0.6ms

(a) 6 噴孔から噴出する噴霧の撮影

(b) 1つの噴孔から噴出する噴霧の撮影

図1 噴射装置と撮影システムの概略

図2 噴射弁コントローラーの出力とノズル リフト

では、ニードルはフルリフトに達しており、各噴 孔から噴射された噴霧の形状は、図 3(c)t = 1.1msとほぼ一致していることから、定常噴射状 態になっていると考えられる.各噴霧とも噴孔か ら近い領域では、噴孔からの距離が大きくなるに つれて、噴霧が太くなりほぼ円錐形状となり、下 流部で円錐外部に液糸のようなものが多数現れ、 急激に微粒化しているようすが観察される.時計 の3時方向に噴射される噴霧は,他の5噴霧より 上流から微粒化が進行している.これは噴孔の形 状の差異か,噴射弁の内部構造により,噴孔内の 流れが他の噴孔と異なっているものと考えられる. 図3(d) t=2.6msでは,ニードルが下がり始め た噴射弁から噴射弁から噴射される噴霧が観察さ れる.燃料は噴射弁内で乱されるため,噴射直後か ら激しく微粒化している.図3(e) t=3.1msは, 弁が完全に閉じた直後の燃料が観察される.3時方 向に噴射する噴孔は,他の5噴孔より閉弁直前の

(a) t = 0.1 ms

(b) t = 0.6 ms

(c) t = 1.1 ms

(d) t = 2.6 ms

(e) t =3.1ms
 図3 6噴孔から噴出する噴霧の影画像
 P=70MPa, ts=3.0ms

燃料の噴出量が多いことがわかる.

図4 に噴射圧力P=50MPaで,一回噴射され る燃料噴霧の各時刻のようすを示す.図4(a)t= 0.1msでは、ニードルが上がり始めの噴射弁から 噴射される燃料の様子が観察されるが、6 個の噴 孔から噴出する燃料噴霧の形状には差が現れてい る.画像の右側3噴孔から噴出する噴霧は、噴射始 めの液柱が空気との摩擦で大きく外側にめくれ、 傘状になり、その後噴射される燃料が傘状の噴霧 を突き抜けている.左側の3 噴孔から噴出する噴 霧は図4(a)のP=70MPaと似た形状になってい

(a) t = 0.1 ms

(b) t = 0.6ms

(c) t = 1.1 ms

(d) t = 2.6ms

(e) t = 3.1ms
 図 4 6 噴孔から噴出する噴霧の影画像
 P=50MPa, ts=3.0ms

ることがわかる.図4(a)のP=70MPaの同時刻 の場合には、各噴孔から噴出される噴霧の形状に は大きな差はなかったが、この画像では差が現れ た.これは、今回の実験は1回噴射を行っている ため、噴射ごとに噴射直前における噴孔内の燃料 の充填状態などが異なっていることが予想される ことから、この差が現れたと考えられる.

図 4(b) t =0.6ms, 図 4(c) t =1.1ms では, 各噴孔から噴出する噴霧の形状はそれぞれ差がな く,定常噴射状態にあることがわかる.図 3 の場合 と同様に, 3 時方向に噴出する噴霧がより上流か ら微粒化している.図 4(d) t =2.6ms では,二ド ルが完全に閉まった瞬間の噴霧が観察される.噴 霧は推進力を失い周方向広がっているように見え る.図 4(d) t =3.1ms では,図 4(d)で観察され た噴霧がほとんど噴孔軸方向に進行せず,噴射弁 近傍に滞留しているようすが観察される.

2 噴射初期,定常噴射,噴射終了時の噴霧 の挙動

図5に噴射圧力P=70MPa,設定噴射期間ts =3.0msの場合の燃料噴射開始直後から噴射初期 の噴霧のようすを示す。1つの噴孔から噴出する 噴霧を、0.1ms間隔(10,000fps)で撮影した.シャ ッター速度は 1/200,000s とした. 図 5 (a) t = 0.1ms では、画像の右端に噴射弁下部がわずかに 半円形に写っており、1 つの噴孔から噴出した燃 料が左側に進行する.噴射直後の t = 0.1ms では, 液柱の先頭部が傘状にめくれ、液柱本体(濃い黒 部分)も大きく蛇行するようすが見られる.図5 (b) t = 0.2ms では、ニードルの上昇とともに 噴射量が増加し,噴霧が太くなっている.液柱は周 囲空気との摩擦により2回傘状にめくれ、大きく 蛇行している.図5(c) t=0.3ms では, ニー ドルがフルリフト状態なるため、多量の燃料が安 定して噴射されることから, 噴霧が噴孔軸に対称 な形状に近づいているようすがわかる.図5(d) t=0.4ms, 図 5 (e) t=0.5ms と時間が経過 するごとに,噴霧先端は蛇行している形のまま進 行している.図5(f) t=0.6msでは,噴霧は軸 対象形状になり,以後の経過時間の画像と差がな くなることから、定常噴射状態になっていると考 えられる.よって、t=0.5ms までが、開弁時の 影響を受ける噴射初期の噴霧であると考えられる.

図6に図5の噴射が終了する噴射終了時の噴霧 のようすを示す.経過時刻は図5から連続するも のである.(a) t = 3.3ms では、ニードルの下降 により噴射液量が急減し、噴射直後から燃料がら せん状にうねり、見かけの噴霧角が大きくなって いる.(b) t = 3.4ms で噴射が終了し、濃い液柱 (b) t = 0.1 ms(b) t = 0.2 ms(c) t = 0.3 ms(d) t = 0.4 ms(e) t = 0.5 ms(f) t = 0.6 ms図 5 噴射初期の噴霧の影画像 P = 70MPa, t s = 3.0 ms

部分の後ろに薄い噴霧の後端が確認できる.0.1ms 後の(c) t =3.5msの画像でも,噴霧後端部は噴 孔軸方向にほとんど進行せず,拡散もわずかであ る.また,濃い液柱の後端も推進力を失い,大き く蛇行しながら分裂しているようすが見られた. 実際のディーゼルエンジンで使用した場合,噴射 終了後にノズル噴孔近傍に大きな液塊や濃度の濃 い燃料が滞留することになり,黒煙,PM発生の 原因になっている可能性があると考えられる.

図7 噴霧先端到達距離と噴射時間の関係, ts=3.0ms

4.3 噴霧到達距離と噴射時間

図7に設定噴射期間を3.0msとした場合の先端 到達距離S.後端移動距離Sと噴射時間tの関係 を示す. 噴射圧力 14MPa の場合は, 噴射が安定 しなかったため、有意な結果が得られなかった. 30MPa 以上の圧力では, 噴射始めでは先端到達距 離は、噴射開始から時間に比例し、先端到達速度 がほぼ一定であるがわかる.この一定速度は,圧 力を大きくすると速くなることから,噴霧は分裂 が完了せず噴射時の運動量が保たれていると考え られる. 直噴ディーゼル機関用ホールノズルから の非定常噴霧では、噴霧が分裂する分裂時間に達 するまでは先端到達速度が一定で、噴霧が分裂す ると先端到達距離は時間の 0.5 乗に比例(到達速 度が減衰) することが知られている⁽⁹⁾.本実験で は光学系の都合で噴孔から 55mm 程度の範囲ま でしか撮影できなかったことと、大気中に噴射し ているため実機より雰囲気圧が低いため、画像か らの分裂時間は確認できなかった.

噴射終了時の噴霧後端移動距離は、ニードルが 閉じる直前の噴霧が急激に推進力を失うため、噴 射圧力によりあまり変化しない.噴射圧 30MPa 以上の場合はいずれも、噴霧の後端部が分裂せず に下流にゆっくり移動するようすが観察された.

4.4 定常噴射される噴霧の噴霧角

図8のように、噴孔から噴孔径dの150倍下流 の位置における、噴霧の外縁の角度を噴霧角θと 定義した.なお、噴霧角θは撮影条件の影響を受

けることが考えられる⁽¹⁰⁾ため,光源の位置やシ ャッター時間を変化させた複数の定常噴霧の画像 から計測した.

設定噴射期間を t s = 3.0ms とした場合の噴霧 角 θ の測定結果を図 9 に示す. 噴射圧 30MPa 以 上の場合は、ニードルがフルリフト状態になった 後で、安定した定常噴霧状態が観察された、噴霧 角θは、低圧噴射時は噴射圧力の上昇とともに増 加するが、噴射圧力 50MPa 以上ではθ=10°で 一定になる.本実験では大気圧中に噴射している ため、雰囲気圧力が大きいディーゼル噴霧では、雰 囲気との摩擦や巻き込みが大きくなり、噴霧角は より大きくなると考えられる.

5.おわりに

コモンレール噴射装置による噴射始め,噴射終わりにおける噴霧の状態を観察する目的で,大気中に燃料を一回噴射する装置を作成し,噴霧の高速連続撮影を行い,以下の所見を得た.

- (1)噴孔から噴出した直後の燃料は,空気との摩 擦で先頭部が傘状にめくれ,液柱部が蛇行す る.
- (2) 噴射終了直後に,推進力を失った燃料の塊が 噴孔近くに滞留する.
- (3) ニードルがフルリフトになった定常噴霧の噴
 霧角は,噴射圧力の増加とともに大きくなる
 が,噴射圧力 50MPa 以上の範囲では, θ =
 10°で一定になる.

参考文献

- (1) 伊藤昇平,"自動車用ディーゼル噴射装置の 現状",微粒化, Vol.8, No.22, (1999), 50-57.
- (2) 西村輝一, "大型ディーゼル噴射装置の現状

と今後の動向", 微粒化, Vol.8, No.22, (19 99), 58-66.

- (3) 伊原忠人、"ディーゼルエンジン",自動車技術, Vol.57, No.9, (2003), 4-10.
- (4) 小高松男, "新規エミッション規制と自治体における自主基準の動向",自動車技術, Vol.
 57, No.9, (2003), 4-10.
- (5) 伊藤昇平, 中村兼仁, "コモンレールによる排 気ガスの浄化", 自動車技術, Vol.55, No.9,
 (2001),46-52.
- (6) Arcoumanis C., Cho S.T., Gavaises, M., Yi H.S., "Spray and Combustion Develo pment in a Four-Valve Optical DI Diesel Engine", Proc. of Compression Ignition Combustion Processes, SAE paper 2000-0 1-1183.
- (7) 横田治之,神本武征,小林治樹, "画像計測によるディーゼル噴霧・火炎の研究",機論(B編), Vol.54, No.499, (1988), 741-748
- (8) 津江光洋,服部廣司,斉藤晃,角田敏一,"噴射ノズル近傍におけるディーゼル噴霧の内部構造",機論(B編), Vol.59, No.564, (1993), 2584-2589.
- (9) 廣安博之、"ディーゼル噴霧の噴霧特性"、エンジンテクノロジー、Vol.4、No.4、(2002)、40-46.
- (10)清水正則,新井雅隆,廣安博之,"高速噴流の 分裂長さと噴霧角",機論(B編), Vol.51, No.461, (1985), 257-264.