007 中国第1回,第2回核実験およびソ連地下核実験による放射性降下物の観測(1)

河合 広,本田嘉秀,森嶋弥重
古賀妙子,木村雄一郎,西脇 安*

Observations on the Radioactive Fallout originated from the first, the second Chinese nuclear explosions and a Soviet underground nuclear explosion

> By Hiroshi KAWAI, Yoshihide HONDA, Hiroshige MORISHIMA, Taeko KOGA, Yuichiro KIMURA and Yasushi NISHIWAKI*

Observations on the radioactive fallout originated from the first, the second Chinese nuclear explosions and a Soviet underground nuclear explosion have been carried out with respect to rain water, dry fallout and air-borne dust. The peaks of radioactivities in dry fallout were observed in 5—7 days after explosion. The differences in radioactive decay characteristics and γ -ray spectra of samples are discussed with relation to the fractionation in highly radioactive fallout particles originated from different burst conditions one another.

1. 緒 言

1962年以来米ソの核実験停止により,環境試料の放 射能は漸次減少してきていたが1964年10月16日に中 国第1回核実験,1965年1月15日にソ連地下核実験, 1965年5月14日に中国第2回核実験が行われたことに より再び放射性降下物が急増した。そしてこれらの核 実験による放射性降下物についてはすでに多くの報告 があるが,われわれもかねてより放射性降下物を含め て各種の環境試料についてその放射能調査⁽¹⁾²⁾³⁾を続 行しており,これらの3回の核実験による放射性降下 物の放射能の観測を雨水,落下塵埃,空中浮遊塵埃に ついて行ったのでそれらの結果を報告する。

2. 試料採取と放射能測定

2.1 雨 水

降り始め 100 ml の雨水と降雨全量の雨水を気象庁 所定の装置⁽¹⁾で採取し,各々全量を加熱濃縮の後試料

皿に移し,赤外線電球下で乾燥した。

2.2 落下塵埃

落下塵埃は 30×30 cm² の大きさのガムドペーパー を本研究所屋上に一日間露出して採取した。試料採取 の終ったガムドペーパーは電気炉で約500°Cで略10時 間灰化を行った。灰化試料は全量を試料皿に入れ,う すいコロジオンでかためた。

2.3 空中浮遊塵埃

神戸工業製の Large Volume Air Sampler DS-8B 型集塵装置に直径 9.5cm の沪紙 (Staplex No41) を装着し、3~5時間集塵採取した。(吸引総空気量 は約 60~90 m³)

2.4 放射能测定

全 β 放射能は GM 計数装置あるいは Low Background Counter により, また r 線スペクトルは Na I (Tl) 結晶 (1¾"×2") と 512 チャンネル多重波 高分析器により測定した。 なお全 β 放射能の測定値 は Rn, Tn の娘核種による影響を除外した。

* 東京工業大学原子炉工学研究所

3. 結果と考察

3.1 放射能の変動

それぞれの核実験の前後における雨水,落下塵埃, 空中浮遊塵埃の放射能の変動を Fig. 1~3に示した。

これらによるといずれの場合も核実験後の試料には 鋭敏に放射能の上昇が認められたが雨水、落下塵埃に ついてはともに中国核実験の方がソ連地下核実験の場 合より放射能レベルが高かった。これに反して空中浮 遊塵埃では逆にソ連地下核実験の方が放射能レベルが 高かった。これらの試料についていわゆる強放射能巨 大粒子の混在の有無は直接検索しなかったが、上記の 結果は真室らも指摘しているように核実験場からの距 離の影響による可能性が大きいと思われる。すなわち ソ連地下核実験場の方が距離が離れているので、より 落下沈降し易い放射性降下物の影響は少なかったもの と思われる。また Fig, 4 に核実験後の経過日数と落 下塵埃の放射能の変化の関係を示した。中国の核実験 ではともに爆発後5~7日に放射能のピークが現わ れ、その後徐々に減少し、平常レベルに戻った。ソ連 地下核実験は測定開始が遅れたのではっきりしなかっ たが、このような関係はもちろん爆発場からの距離, 爆発の条件、爆発後の気象条件などによって影響され

- 40 -

Vol. 4, 5. (1965, 6)

るものと思われる。

3.2 全 *β* 放射能の減衰特性

cpm

10

10

10

Counting rate

第1回中国核実験は雨水,落下塵埃,空中浮遊塵埃, ソ連地下核実験は空中浮遊塵埃,第2回中国核実験は 雨水についてそれぞれその放射能の減衰を両対数紙に 描いた結果を Fig. 5~7 に示す。Fig. 5 は第1回 中国核実験による試料の放射能減衰特性であるがこれ によると雨水(降り始めの100ml)と落下塵埃につい てはともに爆発後15~20日でその勾配が約1.9から約1.0に屈曲するのが認められるのに対して空中浮遊 塵埃についてはこのような変化がはっきりしない。すなわちこのことは雨水,落下塵埃中には半減期の比較的短い核種(Fig.8に示すr線スペットルより¹³¹I, ²³⁹Npの存在が考えられる。)の存在が空中浮遊塵埃よりも多いことを示唆している。真室等⁽⁶⁾⁽⁷⁾が第1回中 国核実験による強放射能粒子についてのFractionationの研究により強放射能粒子には空中浮遊塵埃に くらべて¹⁰³Ru とともに¹³¹I,²³⁹Np,の放射能が大 きいことを示していることから,雨水,落下塵埃中に は当然のことながら粒子成分が浮遊塵埃中より多く含

- 41 -

まれていたものと推定される。また Fig. 6 に示すソ 連地下核実験による空中浮遊塵埃では第1回中国核実 験の同様な試料に比べて減衰が遅い様であるが、これ がどのような核種成分の相違によるものかについては 明らかにすることができなかった。さらに Fig. 7 に 示す第2回中国核実験による雨水の放射能減衰を、

Fig.5 に示す第1回中国核実験による同様な試料と比 べてみると前者においては後者にみられる様な比較的 短半減期の核種の存在がはっきりしない。このことは 第1回中国核実験が小規模な地上爆発であるのに対し て第2回中国核実験は空中爆発であるとされており, この両者に由来する強放射能粒子の間には真室等⁽⁸⁾の 指摘するように Fractionation に明確な相違が認め られているが,このような影響によるものであるかも 知れない。

3.3 r線スペクトル

第1回中国核実験による雨水試料,ソ連地下核実験 による空中浮遊塵試料,第2回中国核実験による雨水 試料についての7線スペクトルをそれぞれ Fig. 8~10 に示す。これらの試料についていわゆる強放射能粒子 の混在の有無は直接には検索していないが Edvarson

et al⁽⁹⁾, さらに真室等⁽⁶⁽⁽⁷⁾⁽⁸⁾⁽¹⁰⁾の強放射能粒子につ いての Fractionation に関する精細な研究によると, 強放射能粒子は

(1) いわゆるソビエト型すなわら 95Zr+95Nb の

Fig. 10-1 7-ray spectra of rain water from the second Chinese explosion

> 含有率が高く,¹⁰³Ru の含有率が低い一大規 模空中水爆

(2) いわゆる中国型すなわち ⁹⁵Zr+⁹⁵Nb の含有
率が低く ¹⁰³Ru の含有率が高い 一地上原爆

- 42 -

(小規模)

に分類される。われわれの得た 7 線スペクトルはいず れも典型的な(1)あるいは(2)の型には属さないが,

放射能の減衰特性の項で論じたように Fig. 8 の第1 回中国核実験による雨水では ¹³¹I, ²³⁹Np などの存在 が,また Fig. 9 のソ連地下核実験による空中浮遊塵 埃では ¹⁴⁰Ba+¹⁴⁰La の存在が認められた。 真室等⁽⁶⁾ によると ¹⁴⁰Ba+¹⁴⁰La は一般により微細な粒子に分 布し易いことを指摘している。 また Fig. 10 の第2 回中国核実験による雨水では²³⁹Np の存在が認めら れた。

4. むすび

中国第1回,第2回,およびソ連地下核実験による 放射性降下物に関して雨水,落下塵埃,空中浮遊塵埃 などの試料について,放射能の変動,放射能減衰特性, r線スペクトルを検討し若干の考察を行った。

文 献

- 本田嘉秀,森嶋弥重,木村雄一郎,古賀妙子他: 近畿大学原子力研究所年報1,91 (1962)
- 2)本田嘉秀,森嶋弥重,木村雄一郎,古賀妙子: 近畿大学原子力研究学所年報 2,89 (1963)
- 3)河合広,本田嘉秀,森嶋弥重,木村雄一郎,古賀 妙子:近畿大学原子力研究所年報 3,89 (1964)
- 4)科学技術庁:放射能測定法(1957)
- 5) 真室哲雄,藤田晃,松並忠男:日本原子力学会誌7,485 (1965)
- 6) 真室哲雄,吉川和子,松並忠男,藤田晃:日本原 子力学会誌 8,242 (1966)
- 7) T. MAMURO, K. YOSHIKAWA,T. MATSUNAMI and A. FUJITA : HealthPhys. 12, 757 (1966)
- 8) T. MAMURO, and T. MATSUNAMI: Health Phys. 13, 51 (1967)
- 9) K. EDVARSON, K. LOEW and T. SISEFSKY : Nature, 184, 1771 (1959)
- 10) 真室哲雄,吉川和子,松並忠男,藤田晃,東俊雄;日本原子力学会誌 4,860 (1962)

正。 表							·
頁	行	誤	Ē	頁	行	誤	Æ
9	左 4	調	滑	50	左14	20	2 1
"	右 5	熊	態	50	Table 2	Particles	partic les
11	左 11	"	"	"	写真	photo 18 5th	photo 18.5th
"	左13	"	"	"	"	exp. No. 27	exp. No.26
"	左14	"	"	53	Table 4	No 3. 1,255	1.255
"	左16	"	"	54	文献 1)	4,15,(1966)	4,5,39,(1965,6)
"	左17	"	"		文献10)	Nature Lond.,	Nature, Lond.,
"	右 9	"	"	96	四,	保安規定改良後	保安規定改正後
"	右 15	"	"	97	8	沈泥	沈泥,
"	右 16	"	"	108 ·	第15表	乾燥土	乾燥沈泥
"	右 18	"	"	113	右 9	これの	chbo
"	右19.	"	"	117	Fig 1	platinumn	platinum
12	左 1	"	· //	118	左19	(4)	(2)
"	左 2	"		119	左 2	5.0∇,とした	5.0 v とした
42	Fig10-1	7 daye	7 days	- 11	左 5	LT	L
43	右13	原子力研究学所	原子力研究所	"	Fig 4	G M counting	β counting
47	Fig 6-1	⁹⁷ Zr + ⁹⁷ ND	$9^{7}Zr + 9^{7}Nb$	121	左 5	電解開始圧	電解開始電圧
		143 Ce	¹⁴³ C0	"	左 7	pH 7.0	7.0
		13 ¹ 2 I	132I	"	Table 5	R ecovery	Recovery (%)
"		132	132 I	"	Fig 16	U raniu m	Uranium in sol-
48	Table 1 中の12	14	1.4				ution
49	Fig 9	Ru	^{10 3} Ru	122	左 1	蓚酸アンモニウ溶液	蓚酸アンモニウム溶液
"	"	o M ^{ee}	o M ^{e e}	"	右 2)	1149	1149-
		⁹⁵ Zr + ⁹⁵ ND	⁹⁵ Zr + ⁹⁵ Nb	"	/// 4)	project	Project