

Argon-Alcohol Counting Gas

—As an alternative to Q-gas for a gas-flow counter—

Hiroshi KAWAI, Hiroshige MORISHIMA, Taeko KOGA, Takeo NIWA and Yoshihisa SUEKANE*

(Received October 5, 1981)

Argon gas mixed with methanol or ethanol was found to be excellent counting gas for a 2π gas-flow counter. Gas mixing device and GM plateau characteristics were introduced. Surface area of $30\sim64\text{cm}^2$ methanol in a flask at 0°C in the midst of argon supply system gave the best plateau characteristic and be recommended as an alternative to Q-gas. The cost of argon is about 1/16 the cost of Q-gas in Japan.

KEYWORDS

Argon-alcohol counting system, Q-gas, 2π gas-flow counter, Counting characteristics.

INTRODUCTION

Q-gas, helium mixed with 4% isobuthane, is widely used for 2π gas flow counter. For a measurement of very low radioactivities in the environmental sample 2π gas-flow counter is quite suitable, especially for the measurement of β or γ radioactivities. The cost of Q-gas will often be expensive, since the counter is usually operated several days long for the measurement of many environmental samples.

Cheaper counting gas was looked for and argon-alcohol mixed gases were examined as an alternative to Q-gas for 2π gas-flow counter, which was found to have excellent counting characteristics.

EXPERIMENTAL PROCEDURE

Fig. 1 shows the gas supply system to the counter. Argon gas for welding work was lead from an argon cylinder through a regulator to a Δ -shaped flask. The flow rate of argon gas was controlled to be 120 bubbles per minute, which corresponded to 73ml/min. Organic solvent liquid was prepared in a flask so as to make a definite evaporation area. The flask was immersed in ice water in a thermos to assure constant evaporation rate at 0°C. Several organic solvent liquids were examined, and methanol and ethanol were found to be appropriate among them. A gas-flow counter made by Fujitsu limited in Japan was used to get GM characteristics. Radioactive source used was natural uranium deposited on a stainless steel disc of which radioactivity was 500 dps (500 Bq). Voltage added was changed from 1 kV to 1.6 kV.

^{*} Dep't of Nuclear Reactor Engineering, Faculty of Science and Technology

Kawai etc: Argon-Alcohol Counting Gas

Fig. 1 Argon alcohol mixing system

RESULTS

Fig. 2~Fig. 7 show plateau characteristics of the 2π gas-flow counter using the above argon-alcohol mixed gas. Fig. 8 shows the one using Q-gas for comparison. The plateau lengths on voltage vs. counting rate curves $100\sim300$ volts. The plateau length for methanol was slightly longer the one for ethanol, and the plateau slope for methanol was smaller than the one for ethanol. Counting characteristic for $30\sim64$ cm² methanol evaporation area seems to be the best at our counting condition.

Fig. 2 Plateau Curve for Argon-methanol

Fig. 3 Plateau Curve for Argon-methanol

Fig. 4 Plateau Curve for Argon-methanol

Fig. 6 Plateau Curve for Argon-ethanol

Fig. 5 Plateau Curve for Argon-ethanol

Fig. 7 Plateau Curve for Argon-ethanol

DISCUSSION

Counting characteristics for argon-alcohol system seem to be superior to the one for Q-gas system, as seen in **Table 1**. **Table 2** shows the comparison of costs between argon and Q-gas in Japan. The cost of argon is estimated to be about 1/16 times the cost of Q-gas. Only one thinkable demerit of the system would be the troublesom work of periodic ice cube supply to the thermos

Fig. 8 Plateau Curve for Q-gas

Table 1 Plateau lengths and their slopes

Alcohol	Evaporation area(cm²)	Plateau length(V)	Plateau slope(%/100V)
Methanol	30	300	1.9
	64	250	1.4
	86	250	1.9
Ethanol	30	100	9.5
	64	200	1.6
	86	150	3.5
Q-gas		300	3.7

Table 2 Cost Comparison of argon gas and Q-gas

	Argon gas cylinder	Q-gas cylinder
Volume (litre)	52	10
Pressure (kg/cm²)	150	110
Gas volume at 1 kg/cm²(litre)	7800	1100
Cost for one cylinder (¥)	10000	22000
Cost per litre (yen)	1.28	20