技術資料

近畿大学炉における原子炉運転特性の 計算機によるデータ集録と解析(II)

三 木 良 太, 伊 藤 哲 夫,杉 田 彰 朗*, 宮 島 信 昭*

Computer-Controlled Data Acquiistion and Analysis System for Reactor Operating Characteristics in UTR-KINKI (II)

Ryota MIKI, Tetsuo ITOH, Akio SUGITA* and Nobuaki MIYAJIMA*

(Received October 12, 1985)

1. はじめに

近畿大学炉 (UTR-KINKI) は熱出力 1.0W のい わゆるゼロ出力原子炉で, 各種の炉物理実験や学生の 運転実験などにしばしば使用され、このため頻繁に起 動,停止,出力変更が行なわれ,炉心内部に検出器, 実験体系,大型試料等を挿入して運転することが多い など他の大学研究炉の運転パターンとは大きく異なっ ている。昭和56~59年度文部省科学研究費補助金,特 定研究(1)「原子炉の安全性向上に関する研究」の一部 として,研究用原子炉の安全性向上のための計算機利 用の研究を進めるに当って,近畿大学炉ではこの特異 性に着目して炉運転特性に関するデータ集録と解析に 重点をおくこととした。昭和56年度から開始した本研 究においては、(1)原子炉運転特性と運転者の操作状況 の記録と表示,(2)炉特性の監視と確認,(3)異常検出と 異常診断,(4)運転者に対する指示と警告,(5)誤操作発 生時あるいは異常発生時のデータ集録と解析,(6)記録 情報のデータ・ベース化などを通じ,計算機の利用に よる研究炉の安全性向上を目的として実施し、その成 果の一部については既に発表したが¹⁾、 今回は原子炉 運転特性記録のグラフ化処理プログラムを改良し,一 日の炉運転特性に関する合計8チャンネルのアナログ 情報とスクラム信号発生による割り込みロジック入力

*理工学部原子炉工学科

を, A4用紙にまとめてグラフとして出力できるよう にした。また正ペリオド法による反応度測定におい て,線形出力計の集録データを計算機による解析する 実用的プログラムを作成したので,技術資料として報 告する。

データ集録/解析システムの 概要

近畿大学炉におけるデータ集録/解析システムの概 要および集録の対象とする情報信号(核計装系統,炉 制御系統などのアナログ信号,スクラム系,警報系, インターロック系などのステータス・ロジック信号お よび割り込みロジック信号)は,昨年度の年報に発表 したとおりで¹⁾,その構成ブロック図を Fig. 1 に,ま た集録対象の情報信号のリストを Table 1 に示す。

原子炉運転特性の記録と グラフ化

研究炉の運転に際しては,運転に関する主要な事項 を運転記録表に記入することが保安規定に定められて おり,また定常運転時には,一定時間(近畿大学炉で は1時間を越えない時間)ごとに記録表に所定の事項 を記入することになっている。しかしながらこの運転 記録表のみでは,運転者の細かい操作状況や運転特性 三木他:近畿大学炉における原子炉運転特性の計算機によるデータ集録と解析(Ⅱ)

1.	原子炉核計装系統						
	起		動		系	レート・メータ アナログ出力 1	
	山	問	出	カ	系	Log N 計 *アナログ出力 1	
	.1	11-0	124	/3	211	ペリオド計 *アナログ出力 1	
	約月	ŦĽ	<u>н</u> н	-+1	玄	ピッマンメータ *アナログ出力 1	
	ψ×	10	щ)]	সং		
	安		全		系	レンシリ省 SW ロシック山刀 1 % 出力計 *アナログ出力 2	
9	百乙居	14日 2日	衣姑				
2.	原丁が	- աղլար։	不心し		+転	広 翠 北 二 卦 *マエロが山 力 1	
	前		£		倅		
	ι.		++				
	シ	4	安	全	犘	位置指示計 「アナロク出力」	
						操作SW ロジック出力 2	
	安	全	2	棒	(2)	位 置 指 示 灯 ロジック出力 2×2	
						操作SW ロジック出力 1×2	
	サ			ボ	系	% 偏 差 計 *アナログ出力 1	
						手動・自動切替SW ロジック出力 1	
	制	御	棒	電	磁	電 流 計 アナログ出力 3	
	7	ラ		チ電	流	ロジック出力 3	
3.	ステー	- タス	表示	関係	0.0		
01	ス	7	5	ム関	係	*ロジック出力 8	
	壑	、執		閲	瓜	*ロジック出力 5	
		ソター	- 11	い	固係	*ロジック出力 A	
4	この川	h ∩≣LI	це, —	//0			
4.	その恒		бà JH	nh a	~1.		
	3 <u>9</u> -1	ı L	徧	閔	ĔΤ	アナログ出力 1	
	r.		65		-11	ロシック出力 1	
	7K		貿		訂	アナログ出力 2	
5.	放射緩	モニ	ター	関係			
	ガ	ス・	モ	ニタ		アナログ出力 1	
	ダス	<h td="" •="" •<=""><td>モニュ</td><td>9 —</td><td>(α)</td><td>アナログ出力 1</td></h>	モニュ	9 —	(α)	アナログ出力 1	
	ダス	(• -	モニュ	9 — (B	$\cdot \gamma)$	アナログ出力 1	
	7k	Æ	<u> </u>	\$		アナログ出力 1	
	γ γ 紙	コエリ	7.=	E	×	アナログ出力	
	野	风、	, F :		_	アナログ出力 1	
	勤	15	<u> </u>	_ /	靵		
	E				TK		

Table 1 List of input signals from UTR-KINKI for data acquisition system.

*は既設分を示す。

Fig. 1 Block diagram of data acquisition system.

の時間的な変化の様子などを詳細に知ることは困難で ある。計算機を用いたデータ集録・解析システムの採 用により、集録したデータの処理を行なってグラフ化 すれば、炉運転特性全般と操作状況を一目で把握する ことができ、日常の炉運転管理に極めて有用である。

Fig. 2~7 に、合計 8ch のアナログ情報とスクラム 信号発生による割り込みロジック入力を、一日の運転 終了後、A 4 用紙にグラフとして出力したものの代表 的例を示す。1段目は安全系 #1 と #2 の出力計(%)、 2段目左はサーボ偏差計(%)、右は線形出力計(10⁻¹¹ A~10⁻⁸A)、3段目左は調整棒位置指示計(%)、右は シム 安全棒位置指示計(%)、4段目左はペリオド計 (sec)、右はログ N 計(A) のそれぞれの出力で、横軸 はデータ取り込み回数である。下欄に運転年月日、デ ータ集録開始および終了時刻、記録一連番号、データ 集録時間間隔を表示してある。

Fig. 2 は, 最も一般的な単純照射のため 1W, 2時 間連続自動運転を行なった場合の運転特性グラフであ る。全運転経過を表示するために横軸が縮小されてい るが、中性子源挿入時の短ペリオドによるスクラム信 号の発生 (×印), 安全棒 #1 と #2 の順次引き抜き 後に、調整棒とシム安全棒を同時に引き抜き開始した こと、起動後約12分を経過した時点で中性子源を引き 抜いたため生じたペリオド計の負側への偏れ, 10mW の低出力自動運転と点検を経て、定格出力 1W の自 動運転に入った状況がはっきりと示されており、従来 の運転記録表に比べると遙かに的確に原子炉運転特性 全体を把握することができる。また運転停止時の×印 は、手動スクラムによって炉を停止させたことを示 し、調整棒をスクラム発生後、手動で降下させたこと もグラフ上で読み取ることができる。なおサーボ偏差 計も±1%以内の変動で,正常にサーボ機構が動作し ていることが判る。

Fig. 3は,検出器の較正のために,炉出力を10mW, 100mW,0.5W,1W と階段的に変更して運転した場 合のグラフで,低出力時の調整棒の上下動とサーボ偏 差計の変動が特徴的である。なおパス・コントロール ・プログラムによって炉運転特性の連続長時間データ 集録が可能で,データ取り込みサイクルが2.3secの 場合,フロッピー・ディスクを交換することなく約20 時間連続集録ができる。炉運転特性のデータ集録にお いて,どの程度まで短い取り込みサイクルを必要とす るかについては,現在蓄積中のデータの解析から最終 的に判断する予定である。異常発生時等の場合,短い 取り込みサイクルを特定の1チャンネルに限定すれ ば,現在使用中の機器で最短 0.17sec サイクルの集 録が可能である。なおコンピュータのメモリーからフ ロッピー・ディスクへのデータ転送に際して,集録デ ータをそのまま転送せずに,各チャンネル別に配列し 直して転送するように処理しており,転送時間は若干 長くなるが,オン・ラインのデータ解析時間を短縮で きるよう配慮してある。

Fig. 4 は, 正ペリオド法によってシム安全棒および 調整棒の引き抜きによる反応度測定を行なった際のグ ラフで, ログN計にほぼ直線的な上昇が認められる。 正ペリオド法による反応度は,後述する解析プログラ ムを用いて精度良く算出できる。

Fig. 5 は,10mW 自動運転時に,炉心に挿入されて いた γ 線検出器を引き抜いた場合のグラフで,線形出 力計とペリオド計の出力にはわずかな上下変動しか認 められないが,サーボ偏差計が瞬間的に大きくプラス 側に振れており,また投入された正の反応度を補償す るため調整棒が急激に下降する様子が良く判る。

Fig. 6 は, 1W 自動運転中に偶然に外部から落雷に よる電源ノイズが入り,異常な信号が捉えられた貴重 なケースのグラフである。この場合も線形出力計には ごく小さな変化が記録されているに過ぎないが,サー ボ偏差計と調整棒位置指示計の記録に明瞭な変動が示 されている。この種の外部ノイズの集録データはこれ までのところわずか1例のみであるが,多くの炉運転 データの処理・解析の経験を通じて,自動運転時の炉 特性の変化はサーボ偏差計の出力に最も顕著に現れる ので,"自動運転時の異常検出"に有望であると考え られる。

Fig. 7 は, 炉がわずかに未臨界の時の運転特性のグ ラフで,中性子源を挿入したまま調整棒とシム安全棒 を完全に引き抜いても,出力の上昇は極めてゆるやか で,中性子源を引き抜くとペリオド計はわずかにマイ ナス側に振れ,線形出力計とログN計が次第に下降し ていく様子が記録されており,炉が未臨界であること を示している。

ステータス・ロジック信号の 集録

ステータス・ロジック信号は発生時に割り込みを行 って,発生系統と発生時刻が記録される。スクラム信 号や警報信号など異常状況の発生と特に関係の深い重 要なステータス・ロジック信号発生時には,通常のデ ータ集録とは別個の集録プログラムに切り替えて集録

Fig. 2 Graph output of operating characteristics of UTR-KINKI. (A) (Normal, 1W-2hr continuous automatic, operation pattern)

Fig. 4 Graph output of operating characteristics of UTR-KINKI. (C) (Positive period method for shim-safety and regulating rod)

Fig. 5 Graph output of operating characteristics of UTR-KINKI. (D) (Withdraw of detector from core during automatic operation)

Fig. 6 Graph output of operating characteristics of UTR-KINKI. (E) (Effect of external noise during automatic operation)

Fig. 7 Graph output of operating characteristics of UTR-KINKI. (F) (Sub-critical condition)

を行う。Fig. 2~7 に示した炉運転特性グラフ上では、 中性子源挿入による短ペリオドおよび手動停止の際の スクラム発生点を単に×印により示した。これらのス クラム発生は異常状態によるものでないため,内容の 表示を省略してあり,異常信号によるスクラムが発生 した場合は、発生系統番号と発生時刻を表示する。現 在のシステムでは、2つのステータス信号が120msec 以内の時間間隔で入った場合, ソフトおよびハード上 の制約のため弁別できないが、130msec 以上では確実 に弁別集録が可能である。通常は余り問題にならない が、異常発生時に重要な情報が欠けるおそれもあるの で、この場合は2つ以上のステータス信号系の番号を 16進法で表わした数の和が記録されるようにプログラ ムを変更した。また一旦割り込みが起こるとその集録 と処理に約 550msec を要し、集録プログラムを変更 しない場合、再び集録サイクルの最初からスキャンし はじめるので, サイクル中のどの時点で割り込みが生 じたかによって、約 0.6sec から 2.9sec のブランク ができる。

正ペリオド法による反応度測 定への計算機利用

正ペリオド法による反応度測定は,原子炉の定期検 査や定期自主検査などに際して行なわれる以外にも, 近畿大学炉の利用形態においては高い頻度で実施され る。通常の正ペリオド法では,線形出力計の指針の上 昇速度をストップ・ウォッチによる倍加時間として測 定し,ペリオドに換算して反応度を算出しており,定 期検査における立会検査でも,この方法によることが 検査要領書に定められている。

一方,原子炉運転特性の自動集録データを解析する ことによって,目視による正ペリオド法より精度の高 い反応度測定が可能であると考えられるので,双方の 測定を併行して実施し,それぞれの方法によって求め た反応度の 差を定量的に検討した。近畿大学炉の場 合,約 1.2~1.5mW の低出力で手動臨界をとってか ら,目的の御制棒を引き抜いて正の反応度をステップ 状に印加し,線形出力計の 10⁻¹⁰A から 10⁻⁸A のレ ンジにわたって3→6,4→8 (10⁻⁸A のレンジは2

**** COMPUTER ANALYSIS ****

*** E-10 RANGE *** channel 148 - 173 Doubling time : 30.639 [sec] Reactor period : 44.203 [sec] Reactivity : .12322 [%dk/k] *** E-09 RANGE *** channel 186 - 212 Doubling time : 31.207 [sec] 45.022 [sec] Reactor period : Reactivity : .12175 [%dk/k] *** E-08 RANGE *** channel 229 - 248 Doubling time : 31.170 [sec] 44.969 [sec] Reactor period : Reactivity : .12184 [%dk/k] *** RESULT *** 31.005 [sec] Doubling time : Reactor period : 44.731 [sec] : .12227 [%dk/k] Reactivity

Fig. 8 Graph output of positive period method data for reactivity measurement.

→4)に上昇する倍加時間をストップ・ウォッチで測 定し、その平均値からペリオドを求めて反応度を計算 している。正ペリオド法による測定時の人力による測 定結果の一例を Fig. 8 の左下部に示す。同図の左上 部には、同時に自動集録システムに記録された線形出 力計の出力をグラフとして示しており, このデータを 解析して各レンジにおいて指数関数に最も良くフィッ トする範囲(グラフ上に×印で示す)から求めたペリ オド及び倍加時間と算出した反応度を図の右側に示し ている。この場合,両者の差は0.0002%δk/k以内で、 ストップ・ウォッチによる 測定の 誤差 より十分小さ く、実用的に全く問題がない。これまで約40回にわた って双方の同時測定及び解析を行った結果、両者の差 はすべて±0.0002%8k/k 以内に収まっている。なお 計算機によるデータ解析において、線形出力計のゼロ 調整の不完全さが、解析結果に若干の影響を及ぼすこ とが明らかになり, 起動前点検時に目視によるゼロ調 整に加えて, ディジボルでゼロを合わせる必要が認め られた。

6. ま と め

計算機によって制御される原子炉運転特性データ集 録システムの導入により,近畿大学炉の運転特性の詳 細な把握が可能となり,炉の日常の運転管理上非常に 役立つことが今回発表したグラフ化プログラムによっ てはっきりと示された。また既に発表した臨界点の判 定¹⁰のほか,正ペリオド法による反応度測定において も,集録データの解析によって実用的な誤差範囲で十 分に利用しうることが確認された。更に自動運転時の 外部ノイズによる異常信号がサーボ偏差計の出力に顕 著に現れ,自動運転時の異常診断に有望であることが 判った。本研究の当初の目標はこれまでの成果によっ て一応達成されているが,今後は入力回路数の増加と 併行して,更にシステム・コントロール・プログラム の改良を計ると共に,日常運転時のデータ蓄積を継続 して行ない,研究炉の安全性向上に役立てたい。また 異常信号の検出についても,実際の異常時の集録デー タを蓄積してその解析を行なう一方,人為的に異常信 号を発生させた場合の集録データの解析について研究 を進めており,それらの結果については次回に発表の 予定である。

参考文献

- 三木良太他4名:UTR-KINKI における原子炉 運転特性のデータ集録と解析(I),近畿大学原子力 研究所年報, Vol. 21, p.p. 29~36 (1984)
- 三木良太他4名:近畿大炉における原子炉運転特 性のオン・ライン/オフ・ライン・データ集録と 解析,「原子炉の安全性向上のための計算機利用」 短期研究会報告書 KURRI-TR-234, p.p. 114~ 120 (1983)
- 三木良太,伊藤哲夫:近畿大炉における原子炉運 転特性データ集録と解析(I),日本原子力学会昭和 58年秋の分科会,F-5(1983)
- 三木良太,伊藤哲夫:近畿大炉における原子炉運 転特性データ集録と解析(II),日本原子力学会昭和 59年年会,C-23 (1984)