Vol. 26 (1989)

近畿大学原子力研究所年報

録 再

〔日本原子力学会誌, 31, 679-681〕

中性子ラジオグラフィにおけるトラック画像の印画装置

丹 33 健 夫、河 合 廣,古 曶 子 妙 嶋 磩 重。鶴 隆 雄 森 田

Imaging Apparatus for Etched Track Neutron Radiographs

By Takeo NIWA, Hiroshi KAWAI, Taeko KOGA, Hiroshige MORISHIMA and Takao TSURUTA

KEYWORDS

neutron radiography, plastic films, etched track image, image intensifiers, Schlieren method, visibility

現在実用化されている中性子 ラジオ グラフィは, NE-426 のように ${}^{6}Li(n, \alpha)$, ${}^{10}B(n, \alpha)$ 反応あるいは Gd(n, γ) 反応を利用したコンバータを用いて中性子 画像をX線フィルム上に形成させるものである。しか しながら,用いられる中性子源は大抵 γ 線を伴い,使 用済み核燃料の検査では被検物自体が γ 線を放出す る。これら γ 線による被りは,Bi 板などで遮蔽して も完全に免れることはできない。そこで, γ 線にほと んど不感である硝酸セルロースまたは CR-39 など, 透明なプラスチック上にトラック画像を形成させる方 法が考えられているが,まだ解決すべき点も多く実用 化に至っていない。

この画像は,重荷電粒子線で形成された極めて細い 放射線損傷からなるトラックをアルカリ液でエッチン グ処理して拡大したエッチピットの集合で,問題点の 1つは光を投射して印画する場合,そのエッチピット 画像の S/N 比 (S:エッチピット画像による弱い散 乱光,N:光源からの強い直接透過光) が小さいこと である。すなわち,このエッチピット画像を記録した フィルムを印画面に引き伸して焼き付けても,またフ ィルムを直接密着して焼き付けても S/N 比が極めて 小さいことから,焼付け画像のコントラストが悪く, 満足すべき鮮明度が得難い。そのため従来,フィルム に斜方向から光を当ててカメラで撮影する方法などが とられているが,鮮明度はまだ十分でない。 そこでわれわれは、印画紙上にエッチピット画像か ら明瞭な画像を得るための新しい方法を考案し、その 装置を試作して基本的特性を確認したので、それにつ いて概説する。

1. 光学系を中心とした装置の概要

光学系は, Fig. 1 に示すように, 点光源 S, コン デンサレンズ C, 引伸しレンズ E, 中性子ラジオグラ フィエッチピット画像を記録したプラスチックフィル ムNおよび印画面 Qからなる。エッチピット画像を鮮 明に印画するため, フィルムを直接通過する光線を完 全に遮り, フィルム上のエッチピット点での散乱光の みを引伸しレンズ EでQ上に結像させる, いわゆるシ ュリーレン法⁽¹⁾ (「ゼロカット方式」ともいう)を試み た。

光源 Sから出る光線は C, Nを経て S' に集光する ので,S' に小さい遮光板を置けば直接透過光は ここ で吸収され,散乱光のみが Eを経てQに結像する。光 源が平面光源などのように 大きいと S' に完全に集 光させることが困難になり,一部は Eを経て印画面 Q に被りを生ずる。一般に,近軸光線はそうでない光線 より球面収差が少なく,良質の画像が得られるので点 光源が望ましい。そのため,できるだけ小型で輝度が 大きく,点光源に近いランプを使用する必要がある。

- S: Point light source, S': Image of S C: Condenser lens, N: Plastic film
- B: Bellows, E: Lens for enlargement
- Q: Image of N
- Fig. 1 Main beam from light source S focuses at S' on optical axis between N and E

本稿では、フィラメント径約1mmの米国製ミニハ ロゲンランプを使用した(レーザー光源は上記2条件 を十分充す理想的光源と一応考えられるが、単色のた め縞ができ易く使いものにならない)。光軸上の集光 点 S' に遮光板を置けば直接透過光を完全に吸収でき るが、CE 間は狭いのでこの位置に遮光板を製作配置 することは困難である。また Fig. 2 のように、S' を 引伸しレンズの結像側に位置させることも考えられ る。この場合、上記の問題はなくなるが、引伸しレン ズEを光軸に沿って上下し、引伸し倍率を変更する時 S' も上下に動くので、遮光板の位置もその都度調節 する必要が生ずるなど、煩わしい問題が生ずる。

そこで Fig. 3 に示すように,点光源 Sを光軸と直 角の水平方向 S₀ に少し移動させることにより,主光 線の集光点 S'を引伸しレンズの口径の外側に移動さ せ,主光線をすべて黒い蛇腹上で吸収させることにし た。これにより印画面Qにはエッチピットによる散乱 光線のみが結像し,明瞭な画像が得られる。

光源を光軸上のS位置に戻せば,Qにはエッチピットの影の像が上記と陰陽逆軸して得られる。点光源が S₀の位置にあるときの印画紙の所要露光時間は,点 光源がSの位置にあるときの約10倍であった。

2. 実験結果および考察

試験用被写体としては中性子ラジオグラフィ用標準

Position of S' moves along the optical axis as the magnification is changed. Same remarks apply here as to Fig. 1.

Fig. 2 Main beam from light source S focuses at S' below E

S₀: Point light source shifted from S Same remarks apply here as to Fig. 1.

Fig. 3 When S shifts to S₀, S' deviates from optical axis onto black bellows and main beam from light source S is almost absorbed there

体 (ASTM 545-81, RISO, Sensitivity Indicator, Beam Purity Indicator)⁽²⁾ を用いた。中性子源には 近畿大学原子炉 UTR-KINKI (1W) とその上部に設 けられた中性子ラジオグラフィ設備⁽³⁾ を利用した。 適当な時間,被写体,コンバートと共に,中性子照射 された硝酸セルロースフィルム CN-85 Type B (Kodak Pathé 社製, 100 μ m 厚) または CR-39 フィル ム (アリルジグリコールカーポネート,ソーラオプテ ィカル社製, 1.5 mm 厚) はそれぞれ NaOH 10%,

(a) Point light source S₀
(b) Point light source S
Photo. 1 (a), (b) Picture of ASTM indicators when light source is at S₀ and S in Fig. 3

60℃, 90 min; KOH 30%, 80℃, 90 min の条件でエ ッチングされ,乾燥後上記装置で被写体のエッチピッ ト画像を印画した。

光源が S₀ にある場合 (Fig. 3) の印画の1例を Photo. 1(a), S にある場合の印画の1例を Photo. 1 (b), 装置の外観を Photo. 2 に示す。Photo. 1 (a)と (b)とを比較すると, この場合 Photo. 1(b), すなわちゼ ロカット方式によらない直接画面の方が, 暗いゼロカ ット方式画面よりむしろ明るく鮮魚に見える。エッチ ピット密度が大きくなると散乱光線の割合が増加する ので, ゼロカット方式画像はより明るくなるであろ う。被写体の種類と物体の判別目的により両画面のど ちらが 適当かを 選ぶことができる。いずれの 場合も 鮮明度は, 被写体の厚み, 中性子線量, L/D, エッチ ング条件, 印画紙の露光時間などにより微妙に変化す る。

印画紙の現像定着には乾式で行う装置も開発され, 時間と手数が大幅に省略できて便利であるが,仕上り は従来の湿式法に比べて画面が荒れた印象を受ける。 したがって,今回の現像定着は湿式法で行うことにし た。将来は,この機器を利用して,トラックエッチ法 による中性子ラジオグラフィの開発研究を進めて行き たいと考えている。

この機器の設計について,専門的立場からご助言を 頂いた筑波大学名誉教授三宅和夫氏,富士写真光機㈱

Photo. 2 Outside view of imaging apparatus

の金谷元徳氏,および実験協力者本堂直之氏に深く感 謝します。

参考文献

(1) 筒井 俊正,神山 雅英,三宅和夫,土井康弘: 光学測定法,第5編シュリーレン法;工学物理学 講座光学編一1,(1956),日刊工業新聞社. 丹羽他:中性子ラジオグラフィにおけるトラック画像の印画装置

 von der Hardt, P., Rottger, H.: "Neutron Radiography Handbook", (1981), D. Reidel Publ.
(3) 丹羽健夫,古賀妙子,森嶋彌重,鶴田隆雄,河合 廣:近畿大学原子炉中性子ラジオグラフィ設備の 概要と特性,原子力誌,29(10),904~912(1987).