近畿大学原子力研究所年報

単結晶 TLD の製作と特性*

丹 羽 健 夫,河 合 廣, 森 嶋 彌 重,古 賀 妙 子

> (1989年7月26日受理) (1989年11月27日再受理)

Preparation of Single Crystal LiF TLD and Its Characteristics

By Takeo NIWA, Hiroshi KAWAI, Hiroshige MORISHIMA and Taeko KOGA

KEYWORDS

thermoluminescence, lithium fluoride, single crystal, chemical preparation, sensitivity, activator

個人の被曝線量の測定には従来、フィルムバッジが 広く使用されてきた。近年これを補うものとして熱ル ミネッセンス線量計(TLD)が登場し、使用されている。 TLD は、Li₂B₄O₇, BeO, LiF のように、生体組織 に等価な物質であるが感度の小さいものと、CaSO₄, CaF₂, Mg₂SiO₄のように、生体組織に等価ではない が感度の大きいものに大別される。我が国で最も広く 普及されているのは CaSO₄(硫酸カルシウム)素子 である。

現在使用されている TLD 素子の形状には、粉末を ガラス管に封入したもの⁽¹⁾⁽²⁾,あるいは耐熱樹脂と 混合成形したホイル型、板状および棒状のものがあ る⁽³⁾。しかし、これらのほとんどは多結晶である粉 末を加工したものであり、不透明または半透明のため 熱発光光線の自己吸収が避けられない。これを単結晶 化して透明にすれば自己吸収が減少し、より感度の高 いものが得られ、摩擦による発光量の変化もなくなる ものと期待される。また、単結晶 TLD は、希望の形 状、大きさのものを容易に製作することができる。

われわれは以上の考え方から、単結晶 TLD の調製 を試み、製作する単結晶の主成分物質として LiF を 選んだ。その理由は、LiF は生体等価であること、 立方晶形で分割が容易であること、また融点が845℃ と比較的低く単結晶化が容易であること、などであ る。融点がCaSO₄などのように1,000℃を越えると単 結晶製作装置の規模が大きくなり、単結晶化がかなり 難しくなる。

1.実験

(1)単結晶の製作

内底部を尖らせた円筒形の黒鉛るつぼに,活性剤と して Mg, Cu, P⁽⁴⁾を添加した LiF 粉末を入れ, 真 空中で900℃に加熱し,加熱コイルヒータを2 mm/ h の速度で引き上げ,30h かけてるつぼの下部尖端か ら単結晶を成長させた(ブリッジマン法⁽⁵⁾)。Fig.4 以外はすべてこの条件で製作した。Fig.4 は成長時間 を20,30,50h と変えた。生成した単結晶から,へき 開面に沿って12×3×2 mm³(Table 1.2 と Fig.1 はこの素子を使用した)および5×5×2 mm³(Fig. 3,4 はこの素子を使用した)の素子を切り取った。そ の質量はそれぞれ約200と140mg である。

^{*〔}日本原子力学会誌, 32, (4)374-376〕

(2) 粒状素子の製作

単結晶素子と、従来一般に使用されている LiF 素 子と比較するため、粒状素子を製作した。すなわち、 LiF を Ar ガス雰囲気中で900℃に加熱溶解し、冷却 後、砕いて80~150メッシュの粒状にしたものを外径 2 mm、長さ15mm のパイレックスガラス管に15mg 封入した。

(3)γ線照射と測定

製作された素子はγ線照射の前に,残存捕獲担体ま たは不用捕獲担体消去のため,Arガス雰囲気中で300 ℃,20min間加熱アニーリングを行なった。

 γ 線照射は 3.3×10^8 Bq (9mCi) の⁶⁰Co 線源を使用し,照射線量 2.58×10^{-4} C/kg (IR) で照射を行なった。なお,直線性については $2.6 \times 10^{-6} \sim 2.4 \times 10^{-4}$ C/kg の範囲で照射した。

発光量の測定に使用した熱ルミネッセンス測定装置 は、Table 1, 2 および Fig.1 についてはアロカ TR -1010, Fig.3, 4 については HARSHAW-2000 で ある。いずれも50~300℃の範囲で測定した。発光量は アロカ TR-1010 では mR で、HARSHAW-2000 では C で表示される。それぞれの装置での直読値を relative intensity と定義して示した(ただし、Fig. 1 は第 1 回目の測定値を100%として表わした)。

2. 結果と考察

(1)再現性

製作した単結晶 TLD 素子について、アニーリン グ、γ線照射,測定の操作を繰り返し、その回数と発 光量の変動の関係を調べた。測定は空気中および Ar ガス雰囲気中で行い、第1回目の測定値を100%とし て、切取り部位 D において両者を比較した(Fig. 1)。空気中では上記操作を繰り返すことにより発光 量の減少が見られるが(第2回目では60%まで減少), Ar ガス中では減少が現れず、再現性が良好である。 したがって、以後の測定はすべて Ar ガス雰囲気中で 行なった。

(2) P 量と発光量

単結晶中に活性剤として添加する Mg を0.2mol/ Λ , Cu を0.5mol/ Λ と一定にし、P を0.10, 0.15, 0.2 0, 0.25mol/ Λ と変えて製作した素子に、同一線量の γ 線照射を行なった場合の相対発光量を Table 1 に 示す。この場合、活性剤 P は (NH₄) H₂PO₄の化学 形で添加し、素子質量は200mg に換算した。P 量を 増すと発光量は増加するが、0.25mol/ Λ 以上では 単結晶に成長しなかったり,単結晶化しても結晶全域 にわたって無数のヒビ割れを起こし,良質の素子を

FREQUENCY OF MEASUREMENT Fig.1 Influence of measurement atomsphere

切り取るのが困難であった。したがって、Pを(N H₄) H₂PO₄で添加して単結晶を生成させる場合の 濃度の限界値は0 25mol 4である。製作した単結晶

on reproducibility of measured value

の感度分布は, Fig.2 に示す切取り位置の A~E 部か

 Table 1
 Influence of phosphorus contents on luminescence intensity

	Relative intensity				
Mole percent of P	0.10	0.15	0.20	0.25	2.30
Single crystal †	259	499	310	976	
Powder † †	0	; 0	4	8	967

† Intensities of single crystal TLD were normalized to that of the weight of TLD 200mg.

†† The weights of powder TLD's were 15mg.

Fig.2 Dimension of single crystal cross section

- 24 -

ら切り取った素子について測定した場合, Fig.3 に示 すように, 最上部から切り取った素子の発光量が若干 高くなる傾向を示した。

Fig.3 Influence of chemical forms of activator on relation between relative intensities of thermoluminescence and cutting positions in single crystal

PをLi₃PO₄の化学形で添加して単結晶を生成させ た場合の P 濃度の限界値は0.25mol \wedge 以上にな り、発光量も (NH₄) H₂PO₄を添加した場合より増 加することがわかった。Fig.3 は切断部と発光量の関 係を示すが、Li₃PO₄、0.5mol \wedge の場合、切断部 位 B で発光量が最大になるが、C,D,E と上部へ行 くほど発光量が低下する。その理由は、上部では単結 晶化が不十分で透明度が低いためと考えられる。

(3) 粒状素子との比較

比較のため製作したガラス管封入粒状 LiF 素子の 配合 P 量は2.3mol んとした。この発光量は単結 晶素子の最良のものと同程度であった(Table 1)。

(4) 直線性

照射線量と発光量との関係は2.6×10⁻⁶~2.6×10⁻⁴ C/kg(0.01~1R)の範囲で良好な直線が認められ た。

(5) 単結晶成長時間と発光量

配合活性剤 Mg, Cu, P量が, それぞれ0 20, 0.05, 0.25mol / の LiF について, 単結晶成長時間を20, 30, 50h (ヒータ引上げ速度では, それぞれ3, 2, 1.2 mm / h) としたときの発光量を比較した (Fig.4)。 30h かけて製作した単結晶から切り取った素子が最大 の発光量を示した。20h 素子は透明度が悪く単結晶化 が不十分と思われ, 50h 素子では添加活性剤が上方に 押し上げられ (ゾーニング), 下部の活性剤が不足し て発光量が減少したものと思われる。 単結晶 TLD 素子を加工する場合,一面のみを透明 にした素子の発光量と全面を透明にした素子の発光量 を比較した結果, Table 2 に示すように,全面透明素 子の方が発光量が大きいことがわかった。全面が透明 であれば,何回か境界面で全反射した光が結局すべて 出口に集められるが,境界面が不透明のときは反射率 が減少するためと考えられる。しかしながら,不透明 な面は識別番号など書くのに好都合である。

Fig.4 Influence of crystalization periods on relation between relative intensities of thermoluminescence and cutting position in single crystal

(7)フェーディング

単結晶 TLD 素子の室温における発光量の経時変化 を 5 min から20min まで調べたが,変化はほとんど 認められなかった。

 Table 2
 Difference of intensities between all side transparent TLD and one side transparent TLD

	Relative intensity			
Position	All side transparent	One side transparent		
Е				
D	499	265		
С	394	188		
В	400			
	E D C B	All side transparent E D 499 C 394 B 400		

3. 結 論

発光量は活性剤の量に大きく依存するが、同種、同 量の活性剤の場合、単結晶化すると粒子状のものより かなり単位質量当りの発光量が多いことがわかった。 含有させる活性剤の量に限界があるが、現段階では、 丹羽他:単結晶TLDの製作と特性

相対的に同等またはそれより少し上回る感度のものが 得られた。

現在得られている単結晶から、より大きな素子を製 作使用すれば(リーダーの試料皿の改造により測定可 能),直ちにかなりの感度の向上が期待できる。また 今後さらに、るつぼの形状や活性剤等の研究により一 層の感度の向上も期待できる。

単結晶素子は粒子状において良く見られるトリボル ミネッセンス(振動による影響)も全くなく,形状, 大きさも任意なものが容易に調整可能で,将来の素子 として大いに期待できる。

本研究を行うに当り,技術上のご助言を賜った近畿 大学原子力研究所の鶴田隆雄教授,放射線医学総合研 究所の中島敏行氏および応用光研工業(株)の門脇武 彦氏に感謝いたします。

参考文献

- HARVERY, J. R., TOWNSEND, S., The response finely powdered thermoluminescence lithium fluoride to beta radiation, Berkeley Nucl. Lab., *RD/B/N*1372, (1969).
- (2) OBERHOFER, M., SCHARMANN, A. : *"Applied Thermoluminescence Dosimetry"*, Adam Hilger Ltd., 97~99 (1981).
- (3) HARTIN, W. J. : An Improved thermoluminescence dosimetry system, *Health Phys.*, 13, 567~573 (1967).
- (4) NAKAJIMA, T., MURAYAMA, Y. : Preparation and dosimetric properties of a highly sensitive LiF Thermoluminescence dosimeter, ibid., 36, 79~82 (1979).
- (5) NIWA, T., MORISHIMA, H., KOGA, T., KAWAI, H., NISHIWAKI, Y. : Single crystal LiF thermoluminescence dosemeters, *Radiat. Prot. Dosimetry*, 6, 333~334 (1984).