論文

水中炭素アーク放電について(第三報)

中村勝一、粟田功、小倉勲*

On the carbon arc discharge in water (III)

Katsuichi NAKAMURA, Isao AWATA and Isao OGURA*

(Received: 30 November, 1994)

Following on the previous reports (1) (2), we continuously investigated whether elementary con version could occur by meens of electric arc discharge in water.

This time, the discharge was carried out in heavy water, and the results were compared to those obtained from the former experiments in ordinally water.

In both cases N₂ and O₂ were prodused, however, in the case of ordinally water these gases were obtained in larger quantities than in the case of heavy water.

In addition, the discharges in herium gas were performed. From this experiments, it was known that water was greatly related to elementary conversion because N_2/O_2 ratio was not changed through the experimental period.

前報⁽¹⁾⁽²⁾ に引きつづいて、水中でのアーク放電による原子の転換について検討した。

今回は重水での放電を行い,その結果を軽水中での それと比較した。

いずれの 場合も 窒素および 酸素の生成が 見られた が、軽水中での 方が 重水中での 放電の場合よりも窒 素、酸素とも生成量が多かった。

また、ヘリウム中での アーク 放電も 行なったが、 N_2/O_2 比に変化は無く、原子の変換に水が大きくかか

わっていることが知られた。

重水中での放電

実験装置,実験方法は前報 $^{(2)}$ 同様に行なった。 ガス クロマト グラフ に より 定量 した カバーガス (He) 中の物質の存在量は, Table 1, 2, 3 に示した 通りであった。

Table 1 Quantity variations of gaseous substances during 10V discharge

discharge	quantity of the substance (×10 ⁻⁷ mol/0.1ml)						
time (min)	CO ₂	D_2	O_2	N_2	CO	Total O2	
0	0	0	0.104	0.210	0	0.104	
10	0.019	. 0	0.016	0.162	0	0.035	
20	0.033	0.115	0.014	0.203	0.045	0.070	
30	0.052	0.268	0.031	0.266	0.090	0.128	
40	0.054	0.568	0.024	0.345	0.262	0.209	

Atomic Energy Research Institute of Kinki University 3-4-1 Kowakae, Higashiosaka 577, Osaka Pref.

^{*}Former Professor of the Institute

Table 2 Quantity variations of gaseous substances during 15V discharge

discharge	quantity of the substance (×10 ⁻⁷ mol/0.1ml)						
time (min)	CO ₂	D_2	O2	N ₂	CO	Total O2	
0	0	0	0.173	0.403	0	0.173	
10	0.019	0.957	0.027	0.192	0.328	0.210	
20	0.068	2.564	0.030	0.289	0.758	0.477	
30	0.116	1.492	0.040	0.513	0.450	0.381	
40	0.142	5.242	0.031	0.561	1.442	0.894	

Table 3 Quantity variations of gaseous substances during 20V discharge

discharge time (min)	quantity of the substance ($\times 10^{-7}$ mol/0.1ml)						
	CO ₂	D_2	O_2	N ₂	CO	Total O2	
0	0	0	0.088	0.309	0	0.088	
10	0.042	1.652	0.204	0.989	0.397	0.445	
15	0.068	3.342	0.077	0.555	0.821	0.556	
25	0.141	6.270	0.103	0.811	1.312	1.041	
30	0.186	7.296	0.068	0.729	1.696	1.102	

また重水中放電での N_2/O_2 比は Table 4 に示した 通りであった。この Table には,また軽水中放電で の N_2/O_2 比も示した。

この結果と軽水中での結果とを比較すると、軽水中 放電での N_2 存在量 $N_2(H_2O)$ および O_2 存在量 O_2 (H_2O) と重水中での N_2 存在量 $N_2(D_2O)$ および O_2 存在量 $O_2(D_2O)$ とのそれぞれの存在比 $N_2(H_2O)/N_2$ (D_2O) および $O_2(H_2O)/O_2(D_2O)$ は Table 5 に示した通りであった。

Table 4 N₂/O₂ ratio in the cover gas at the discharge in H₂O or D₂O

1.	applied	discharge time					
media	voltage	0	10	20	30		
	10	2.019	4.664	2.921	2.078		
D_2O	15	2.329	0.914	0 606	0.529		
	20	0.351	2.222	(0.961)	0 662		
H ₂ O	10	4.159	4.479	3.344	2.930		
	15	4.135	1.813	1.456	1.231		
	20	3.854	1.792	0.283	0.679		

Table 5 Existence ratio of the substances produced by the discharge in H_2O compared with those in D_2O

	•		
applied voltage (V)	discharge time (min)	N ₂ (H ₂ O)/N ₂ (D ₂ O)	$O_2(H_2O)/O_2(D_2O)$
	10	2.654	2.743
10	20	2.586	2.243
	30	2.842	2.016
	10	3.031	1.526
15	20	3.405	1.417
	30	2.203	2.409
	10	1.510	1.872
20	20	2.386	1.313
	30	1.826	1.779

discharge					
time (min)	CO ₂	O ₂	N_2	total O2	N_2/O_2
0	0	0.214	0.525	0.214	2.453
. 5	0	0.153	0.375	0.153	2.451
10	0	0.155	0.342	0.155	2.206
15	0	0.207	0.566	0.207	2.734
20	0.010	0.183	0.443	0.193	2.295
25	0.008	0.227	0.582	0.235	2.248
30	0.010	0.257	0.608	0.267	2.277
35	0.013	0.251	0.647	0.264	2.451

Table 6 Quantity variation of gaseous substances in He atmosphere during 10V discharge (×10⁻⁷mol/0.1ml)

Table 7 Quantity variation of gaseous substances in He atmosphere during 15V discharge (×10⁻⁷mol/0.1ml)

	discharge (**				
discharge time (min)	CO ₂	O_2	N_2	total O2	N ₂ /O ₂
0	0	0.120	0.238	0.120	1.983
5	0	0.110	0.249	0.110	2.264
10	0	0.079	0.201	0.079	2.544
15	0.006	0.109	0.298	0.115	2.591
20	0.008	0.130	0.299	0.138	2.167
25	0.010	0.137	0.341	0.147	2.320
30	0.017	0.148	0.367	0.165	2.224

ヘリウム中での放電

水に替えて、ヘリウム中で同様の放電を行なった。 ガス中の物質存在量は Table 6,7 に示した。 Table 6,7 には N_2/O_2 比も示した。

結果の検討

Table 1, 2, 3 を見ると、 N_2 , O_2 とも放電時間とともに増加していることがわかる。とくに O_2 は明らかに増加していることが、Table 4 からも知られる。この増加は、軽水中におけるほうがより大きい。また N_2 , O_2 とも軽水中における方が増加が著しいことが Table 5 から知られる。

これらのことは、 N_2 、 O_2 の生成は水の電解により生ずる H^+ 、 D^+ が、大きく寄与していることを示唆する。 すなわち、この H^+ 、 D^+ が電極を構成する炭素原子核と反応(融合)することにより、原子番号1 または 2 上位の窒素または酸素を生じる、と考えることが

できる。

また H^+ の方が D^+ より素早く反応する,したがって残った OH^- から生ずる O_2 は, OD^- から生ずる O_2 よりも多くなると解釈できる。このように考えると,水中での放電に意義があることになる。このことは,ヘリウム中の放電結果が明確に示している。

ヘリウム中放電では、Table 6、7 にしめしたように、 N_2/O_2 比はバラツキがあるもののほぼ一定値を示していることから、上のような考え方は、おおむね妥当なものと思われる。

参考文献

- (1) 小倉 勲, 粟田 功, 滝川隆代, 中村勝一, 堀部 治, 古賀妙子; Chemistry Express, Vol. 7, No. 4, pp. 257-260 (1992).
- (2) 中村勝一, 堀部 治, 小倉 勲, 小田切瑞穂; Chemistry Express, Vol. 8, No. 6, pp. 341-344 (1993).