近畿大学原子力研究所年報

Vol. 33 (1996)

CR-39 樹脂表面の吸湿現象と除湿

(鶴 田 隆 雄¹⁾, 丹 羽 健 夫¹⁾, 邑 岡 克 哉²⁾
 大 塚 隆 生²⁾

Moisture absorption and evaporation on the surface of CR-39 resin

Takao Tsuruta¹⁾, Takeo Niwa¹⁾, Katsuya Muraoka²⁾, Takao Otsuka²⁾

(Received: 30 November, 1996)

ABSTRACT

Moisture absorption and evaporation on the surface of allyl diglycol carbonate (CR-39) resin were examined by measuring thickness and mass. The resin moistens and swells in standard conditions or in hot water. The swelling is saturated within 2 hours in water at 90°C. Drying the resin in an oven at 80°C or 100°C eliminates the swelling within 5 or 2 hours, respectively. It was found that the moisturizing and drying treatments increased the diameter of etch-pits. The increase seems to be the result of the rise in the bulk etching rate. Moisture control is essential for the accurate measurement of thickness or mass of the resin and the diameter of etch-pits.

KEYWORDS

moisture absorption, evaporation, allyl diglycol carbonate, CR-39, thickness, mass, swelling, drying, etch-pit, bulk etching rate.

I. はじめに

固体飛跡検出器をエッチング溶液に浸して,検出 器表面に生成している重荷電粒子飛跡を蝕刻,エッ チピットに拡大しようとするとき,一般に,検出器 表面も少しずつエッチング溶液に溶け出して行く。 飛跡に沿ってエッチングが進行する速さをトラック エッチング速度,検出器表面の溶出の速さをバルク エッチング速度という。トラックエッチング速度を V_T , バルクエッチング速度を V_B とするとき, 検出 器表面と成す角度が次式で与えられる臨界角 θ_c 以 下の飛跡はエッチングピットに拡大されない¹⁾。

$$\theta_{\rm c} = \sin^{-1}(V_B/V_T) \tag{1}$$

また,固体飛跡検出器の飛跡生成感度 S は,次 式で表されることが多い。

¹⁾**〒**577 東大阪市小若江 3-4-1 近畿大学原子力研究所 ²⁾**〒**577 東大阪市小若江 3-4-1 近畿大学理工学部

¹⁾Atomic Energy Research Institute, Kinki University, 3–4–1, Kowakae, Higashiosaka, Osaka 577 Japan. ²⁾School of Science and Engineering, Kinki University, 3–4–1, Kowakae, Higashiosaka, Osaka 577 Japan.

鶴田他:CR-39 樹脂表面の吸湿現象と除湿

$$S = (V_T/V_B - 1) \tag{2}$$

すなわち, V_T が V_B に比べて大きいほど, 臨界 角は小さく, したがって飛跡からエッチピットにな る効率は大きい。また, 飛跡生成感度が高くなる。 このように, バルクエッチング速度は, トラック エッチング速度とともに, 臨界角や飛跡生成感度の ような固体飛跡検出器の基本的特性を決定する重要 な要素である。バルクエッチング速度は, エッチン グ前後に検出器の厚さ又は質量を測定し, その測定 値の差から求めることが出来る。

アリル・ジグリコール・カーボネイト・プラス チック,すなわち,CR-39 樹脂は, α 線や陽子線の ような比較的軽い重荷電粒子線の検出に向いてお り,これらの荷電粒子線や中性子の検出器,また, 空気中のラドンの測定器として広く利用されてい る²⁻⁵⁾。CR-39 樹脂の最大の特徴は,「制限された エネルギー損失率 (REL)⁶⁾」のしきい値が 20MeV/ g/cm² と他の樹脂に比べて大幅に低く⁷⁾,そのた め,他の樹脂では困難な反跳陽子線の検出が可能な ことがある。

この樹脂の表面は吸湿性があり、厚さ、質量、 エッチピットの形状等の測定の際にはそのことを考 慮しなければならない。本研究は、CR-39 樹脂の吸 湿の現象と除湿のための条件を調べ、バルクエッチ ング速度等を求める際に参考となるデータを整える こと、また、吸湿及び除湿処理がエッチピットの成 長速度に与える影響を調べることを目的とする。

Ⅱ.実験材料及び実験方法

使用した C-39 樹脂は、次の2種類である。

A. ソーラ・オプティカル・ジャパン社製 (SOLA CR-39)

B. フクビ化学工業社製(BARYOTRAK)

A, B いずれも、密度は約1.3、重量比で、CR-39 (Allyl diglycol carbonate, $C_{12}H_{18}O_7$) 100に対して IPP (Diisopropyl peroxy dicarbonate, $C_8H_{14}O_6$) を3の割合で含む。厚さは、A が 1.2mm、B が 0.9mm である。

これらの樹脂板から、 3×6 cm 程度の面積の小 片をプラスチック・カッターで切り取り、切り取り の際に表面に付着した屑を水洗し、自然乾燥させ た。その後、²⁴¹ Am 線源を使用し約 3MeV の α 線 をほぼ垂直に入射させたものを実験試料とした。 α 線照射は、吸湿及び乾燥処理のエッチピット成長へ の影響を調べるためのものである。

CR-39 のエッチングは,通常60~90℃の KOH 又は NaOH 水溶液中で行われることが多い⁸⁾。そ こで,吸湿の条件としては次の3条件を採用した。

a) 実験室雰囲気での自然吸湿

b) 60℃に保った温水に浸しての吸湿

c) 90℃に保った温水に浸しての吸湿

また、乾燥の条件としては次の5条件を採用した。

a) 室内でガーゼの上に置いて自然乾燥

b) シリカゲルを入れた容器の中でガーゼの 上に置いての乾燥

c) 60℃に保った乾燥器中につり下げての乾燥

d) 80℃に保った乾燥器中につり下げての乾燥

e) 100℃に保った乾燥器中につり下げての乾燥

吸湿又は乾燥の前後に, 試料の厚さをマイクロ メータで, また, 質量を精密天秤で測定した。試料 を水又は乾燥器から取り出してから測定する場合に おいて, 取り出してから測定までの条件・時間を一 定に保つことによって, 誤差を生じないように務め た。

Ⅲ. 実験結果及び考察

1. 樹脂の自然吸湿とその除湿について

実験室の雰囲気で保管されていた試料 A1 及び B1 を,100℃に保った乾燥器中につり下げて4時間 乾燥した場合における,乾燥時間と厚さ及び質量の 変化の関係を Fig. 1~4 に示す。横軸の,4時間ま でが乾燥時間を示している。また,Fig. 1,3 の縦軸 は乾燥前と乾燥後の厚さの差を示している。Fig. 2, 4 の右縦軸は乾燥前と乾燥後の質量の差を試料の表 面積で除した値,左縦軸は試料の密度が変化しない ものとして,質量の変化から換算した厚さの差を示 している。

Fig. 1, 3 に見られるように, マイクロメータに よる厚さの測定値からは, この乾燥条件における除 湿効果は顕著には観測されない。しかしながら, Fig. 2, 4 から分かるように, 天秤による質量の測 定値からは明らかに除湿効果が観測される。質量 は,最初の30分間は急速に減少し,1時間でほぼ下 げ止まり,やがて一定値に漸近している。試料 A, Bについて,減少する質量の飽和値はそれぞれ 0.83,0.67mg/cm²程度,その値から換算される厚 さ減少の飽和値はそれぞれ12,10µm 程度である。

これらの実験結果から,通常の実験室の雰囲気で 保管されている CR-39 検出器試料は,実験開始前 にすでにある程度水分を吸収していると考えられ る。これは,通常大きな樹脂板から検出器用の小片 を切り出す際に表面に細かい切り屑が付着するので 水洗いする必要があるが,その操作中に吸湿し,又

- 2 -

Vol. 33 (1996)

は、その後の保管期間中に空気中の湿分を吸着する ものと考えられる。

2. 温水中の樹脂の吸湿について

(1) 90℃の温水

上記のように、100°Cに保った乾燥器中につり下 げて4時間乾燥した試料 A1 及び B1 を、その後 90°Cの温水中に5時間釣り下げ、その間の厚さと質 量の変化を調べた。 Fig. 1~4 の横軸の4時間を 超え9時間までの間が、この温水吸湿の時間を示し ている。厚さ、質量ともに最初の1時間は急速に増 加し、2時間でほぼ飽和に達している。Fig. 1,3 か ら、試料 A, B について、増加する厚さの飽和値は それぞれ 16,12 μ m 程度であることが読み取れる。 Fig. 2,4 から、試料 A, B について、質量増加の 飽和値はそれぞれ 1.8, 1.2mg/cm² 程度、その値 から換算される厚さ増加の飽和値はそれぞれ 27, 19 μ m 程度であることが分かる。

また、実験室の雰囲気で保管されていた試料 A2 及び B2 を、90°Cに保った温水中に5時間釣り下 げ、その間の厚さと質量の変化を調べた。Fig. 5~ 8 の横軸の5時間までの間が、この温水吸湿の時間 を示している。この場合も、厚さ、質量ともに最初 の1時間は急速に増加し、2時間でほぼ飽和に達し ている。試料 A, B について、増加する厚さの飽和 値はそれぞれ16、13 μ m 程度である (Fig. 5, 7)。 試料 A, B について、質量増加の飽和値はそれぞれ 2.0、1.3mg/cm² 程度、その値から換算される厚さ 増加の飽和値はそれぞれ30、20 μ m 程度である (Fig. 6, 8)。

(2) 60℃の温水

実験室の雰囲気で保管されていた試料 A3 及び B3 を、60℃に保った温水中に5時間釣り下げ、そ の間の厚さと質量の変化を調べた。Fig. 9~12 の 横軸は、この温水吸湿の時間を示している。60℃の 温水の場合、厚さ、質量ともに最初の1・2時間は 急速に増加し、その後増加率はやや鈍るが、5時間 でもまだ増加傾向が継続している。これらの図の増 加曲線の形と90℃の温水中の飽和値の値から、60℃ の温水中で飽和に達するには10時間程度を要するも のと推定される。

3. 樹脂の種類による吸湿量の違い等について

Fig. 1 と 3, Fig. 2 と 4, Fig. 5 と 7 及び Fig. 6 と 8 を対比させ,吸湿による厚さ及び質量の増加の 飽和値を,試料 A, B について比較すると,いずれ も1.3~1.5倍, A の方が大きい。SOLA CR-39 は BARYOTRAK より吸湿性が高いといえる。 次に, Fig. 1 と 5, Fig. 2 と 6, Fig. 3 と 7 及び Fig. 4 と 8 を対比させ,吸湿による厚さ及び質量の 増加の飽和値を見ると,温水処理前の乾燥の程度に よらず,飽和値は樹脂の種類に応じてほぼ一定の値 をとることが読み取れる。

また, Fig. 1 と 2, Fig. 3 と 4, Fig. 5 と 6 及び Fig. 7 と 8 で,天秤で求めた質量から換算した厚さ の飽和値とマイクロメータで求めた厚さの飽和値を 比較してみると,1.5~1.9倍,いずれも前者の方が 大きい。水分を吸収して膨張した表面に近い層の密 度が通常の樹脂の密度より高くなっているとする と,この現象を説明することができる。

4. 温水中での吸湿させた樹脂の除湿について

(1) 100~80℃での乾燥

90℃の温水中に4又は5時間釣り下げ,吸湿させ た試料 A1, A2を100℃の乾燥器中で乾燥しはじ めたところ、短時間の内に表面に亀裂が走り、破損 してしまった。次に、90℃の温水中に2時間釣り下 げ、ほぼ飽和まで吸湿させた試料 A4を90℃の乾 燥器中で乾燥しはじめたところ、やはり短時間の内 に表面に亀裂が走り,破損してしまった。樹脂 A にとって、これらの乾燥条件は過酷すぎるようであ る。そこで、90℃の温水中に2時間釣り下げ、吸湿 させた試料 A5を80℃の乾燥器中で乾燥したとこ ろ, 亀裂, 破損はなく, 厚さ及び質量の減少を測定 することが出来た。Fig. 5・6の5時間を超え10時 間までの間にこの乾燥の結果を示す。厚さ、質量と もにしだいに減少する様子が分かる。これらの図か らは減少はまだ継続するように見えるが、別の試料 のデータから、5時間の乾燥での厚さ、質量はとも に、ほぼその飽和値に近いものと考えられる。

90℃の温水中に4又は5時間釣り下げ,吸湿させ た試料 B1, B2を100℃の乾燥器中で乾燥したと ころ,亀裂,破損はなく,厚さ及び質量の減少を測 定することが出来た。Fig. 3・4の9時間を超え13 時間までの間と,Fig. 7・8の5時間を超え9時間 までの間がこの乾燥の時間を示す。厚さ,質量とも に最初の30分間程度で急速に減少し,その後しばら く緩慢に減少を続け,2時間程度で安定することが 観測された。安定する厚さは,吸湿処理前の厚さに 近く,質量は,吸湿前の値より低い値となった。

(2) その他の条件での乾燥

ほぼ飽和まで吸湿させた試料 A6-8を次の3つ の条件で乾燥させた場合の厚さと質量の変化の測定 結果を Fig. 13・14 に示す。これらの図の縦軸は, 乾燥直前を基準としてその後の減少の大きさを示し ている。

— 3 —

Fig. 1. Change of thickness of SOLA CR-39 A1.

Fig. 3. Change of thickness of BARYOTRAK B1.

Fig. 2. Change of mass of SOLA CR-39 A1 and derived change of thickness.

4

Vol. 33 (1996)

Fig. 5. Change of thickness of SOLA CR-39 A2&A5.

Fig. 7. Change of thickness of BARYOTRAK B2.

Fig. 6. Change of mass of SOLA CR-39 A2&A5 and derived change of thickness.

鶴田他:CR-39 樹脂表面の吸湿現象と除湿

Fig. 9. Change of thickness of SOLA CR-39 A3.

Fig. 11. Change of thickness of BARYOTRAK B3.

Fig. 10. Change of mass of SOLA CR-39 A3 and derived change of thickness.

Fig. 12. Change of mass of BARYOTRAK B3 and derived change of thickness.

Fig. 13. Change of thickness of SOLA CR-39 A6~8.

(a) 室内でガーゼの上に置いて自然乾燥

(b) シリカゲルの入った容器の中のガーゼの上に置いての乾燥

(c) 60℃に保った乾燥器中につり下げての乾燥 いずれの条件でも、厚さ及び質量の緩慢な減少が 見られる。一番減少の早い条件(c)で20時間を経過し ても、目標とされる減少飽和値の2分の1以下でし かなく、これらの条件で完全な乾燥を実現すること は困難と考えられる。

5. 吸湿, 除湿処理のエッチピット形成に与える 影響について

²⁴¹Am 線源を使用し約 3MeV の α 線をほぼ垂 直に入射させた後,吸湿及び (又は)除湿の処理を 行った試料と,吸湿・除湿処理を行なわなかった試 料を,90°Cの30%KOH 水溶液でエッチングした際 に得られたエッチピットの顕微鏡写真を Photo 1 ~4 に示す。また,これらの写真からエッチピット の直径を読み取り,その結果を Table 1 に示す。 エッチング時間は試料 A については15分,試料 B については1時間のデータを用いた。

Photo 1~4 及び Table 1 から, 吸湿・除湿処 理を行なった試料のエッチピットはそれを行わな かった試料のエッチピットに較べて大きいことが分 かる。エッチピットの成長速度はバルクエッチング 速度に比例することが知られているので, 吸湿・除 湿処理は表面付近のバルクエッチング速度を増加さ

Ⅳ. まとめ

せるものと考えられる。

1. 常温の水で数分間洗浄し,自然乾燥させたの ち保存していたような CR-39 板は表面に水分を吸 着している。

2. CR-39 板は温水中で水分を吸着し,厚さと 質量を増大させる。90℃の温水の場合,厚さ,質量 ともに最初の1時間程度で急速に増加し,2時間程 度でほぼ飽和値に達する。この飽和値は,温水処理 前の試料の乾燥の程度に依存せず,樹脂の種類に応 じてほぼ一定値となる。

温水中での厚さと質量の増大の飽和値は CR
 -39 樹脂の種類により異なる。 SOLA CR-39 と

Table 1.	Effect	of	moisturizing	and	drying	treatments	on	etch–pit	diameter
	(Treat:	men	ts were done	after i	irradiatio	n and prior	to e	tching.)	
	Etching conditions A: 30%KOH, 90°C, 15m.								
	B : 30%KOH, 90℃, 1h.								

Plate	Treatment	Etch-pit diameter (µm)		
Á 9	in water at 90°C, 2h	$10.3 {\pm} 0.2$		
A10	in oven at 80°C, 5h	$5.1 {\pm} 0.1$		
A11	none	$3.5{\pm}0.2$		
B 1	in oven at 100°C, 4h + in water at 90°C, 5h			
	+ in oven at 100°C, 4h	17.4 ± 0.3		
B 2	in water at 90°C, 5h + in oven at 100°C, 4h	16.1 ± 0.4		
В 3	in water at 60°C, 5h	$12.4 {\pm} 0.3$		
B 4	none	11.3 ± 0.3		

— 7 —

近畿大学原子力研究所年報

鶴田他:CR-39 樹脂表面の吸湿現象と除湿

Photo. 1 Etch-pits of α particles on the SOLA CR -39 A9. Etching was made under conditions of 30%KOH, 90°C for 15m after moisturizing treatment.

 $50 \,\mu$ m

Photo. 3 Etch-pits of α particles on the BARYOT-RAK Bl. Etching was made under conditions of 30%KOH, 90°C for 1h after moisturizing and drying treatments.

BARYOTRAK を比較すると前者のほうが1.3~ 1.5倍程度大きい。

4. 水分を吸着し膨張した層の密度は通常の樹脂 の密度より大きくなっているものと考えられる。

5. 自然吸着による膨張も温水中での吸湿処理に よる膨張も, CR-39 板を80-100℃の乾燥器中に一 定時間保っことによって除去することが出来る。 SOLA CR-39 の場合, 80℃で5時間程度, BAR-YOTRAK の場合100℃で2時間程度で乾燥処理は ほぼ完了する。

6. 60℃以下の乾燥器中, デシケータ入りの容器 中又は自然乾燥で乾燥処理を完了させることは難し い。

 $50 \,\mu$ m

Photo. 2 Etch-pits of α particles on the SOLA CR -39 A11. Etching was made under conditions of 30%KOH, 90°C for 15m without moisturizing and drying treatments.

50 µ m

Photo. 4 Etch-pits of α particles on the BARYOT-RAK B4. Etching was made under conditions of 30%KOH, 90°C for 1h without moisturizing and drying treatments.

7. 吸湿及び乾燥処理は、バルクエッチング速度 を増加させ、結果としてエッチピット直径を増大さ せる。

参考文献

- Durrani, S. A., Bull, R. K.: Solid state nuclear detection, Pergamon Press (1987).
- Cartwright, B.G. et al.: Nucl. Instr. Meth., 153, 487 (1978).
- Tsuruta, T., Juto, N.: J Nucl. Sci. Technol., 21, 871 (1984).
- Tsuruta, T., Niwa, T., Fukumoto, Y.: *ibid.*, 29, 1108 (1992).

— 8 —

Vol. 33 (1996)

- 5) Maged, A.F., Tsuruta, T., Durrani, S.A.: Radioanalyt. Nucl. Chem., **170**, 423 (1993).
- 6) Benton, E. V., Nix. W. D.: Nucl. Instr. Meth., 67,

343 (1969).

- 7) 道家忠義,林 考義:放射線,9,3 (1982).
- 8) 鶴田隆雄,福本義巳:保健物理,22,25,(1985)