

Radiation Hazard Control Report

Taeko Koga, Masayo Inagaki, Hiroshige Morishima, Yasusuke Araki, Chizuko Takiguchi, Hideki Matsubayashi and Chihiro Hiraji

1. まえがき

近畿大学原子力研究所における平成12年4月よ り平成13年3月までの1年間の放射線管理の結果 を報告する。平成12年度における放射線業務従事 者は原子力研究所、理工学部および薬学部など教員 36名、卒業研究のため原子炉施設利用の原子炉等 規制法に係る放射線業務従事者として理工学部学生 23名、放射線障害防止法に係る放射線業務従事者 として理工学部、薬学部学生など16名、計75名が 放射線管理の対象となった。

平成12年度の原子炉運転状況は、最高熱出力1 W、積算熱出力463.74W・hおよび延運転時間 777.34時間であった。中性子発生装置の運転は、今 年度は実施されなかった。科学技術庁(現文部科学 省)による平成12年度の原子炉施設定期検査は平成 12年2月24日および平成12年3月8~9日、そ れぞれ性能検査IIと性能検査Iとに分けて実施され、 また従来の保安規定遵守状況調査は、今年度より四 半期ごとに保安検査という形で実施されることにな り、平成12年9月19~20日、11月21~22日、 平成13年3月15~16日に行われ、炉室内クレー ンの利用上の注意、定期的な人口分布・社会環境状 況調査の必要性、保安規定遵守上の放射線の測定結 果および管理区域の立入記録、また責任者への報告 の周知徹底などについて指導を受けたが、無事、合 格終了した。

本報では、平成12年度に定期的に実施した環境 放射能調査等の結果について報告する。

2. 個 人 管 理

2.1 健康診断

原子力研究所原子炉施設保安規定、放射線障害予 防規定および電離放射線障害防止規則(労働安全衛 生法)に基づく放射線業務従事者に対する健康診断 は、放射線業務に従事する前および従事してからは 年1回とし、年度初めに実施している。これは、前 年度の放射線業務従事者の1年間の被ばく線量当量 が実効線量当量限度(50mSv/y)および組織線量当 量のそれぞれ 3/10 を超えず、またそのおそれがな く、当大学の管理医師が省略を認めたため年1回と している。検査は当大学医学部附属病院に測定を委 託しており、その結果を第1~4表に示した。これ によると白血球数において 3000 ~ 4000/mm³の範 囲の者が4名いたが、再検査および管理医師の問診 等により、生理学的変動の範囲内にあり、放射線被 ばくによると思われる異常は認められなかった。そ の他皮膚、爪の異常および水晶体の混濁などについ ても放射線被ばくによると思われる異常はなかった。

-11 -

		平成 12	年4月		
使省	4 7 1	教職員	学生		
白	9000 以上	8	1		
血球	5000~9000	40	32		
数	4000~5000	2	8		
(/mm ³)	4000 未満	3	1		
	計	53人	42人		

第1表 白血球数

笛	3	表	而色	憲冊
	J	-1.X		. ※ 里

*	. /=		平成 12	年4月		
快道	: 4	л п	教職員	学生		
血	16.0	以上	7	13		
色素	14.Ò-	~16.0	35	24		
量	12.0	~14.0	11	5		
(g/dl)	12.0	未満	0	0		
	計		53人	42人		

2.2 個人被ばく線量当量の管理

個人被ばく線量当量の測定は、昨年度までと同様 にフイルムバッジを主な測定用具として、必要に応 じて電子ポケット線量計を補助線量計として用いて いる。フイルムバッジは広範囲用(X、γ、β線)、 中性子線用あるいはγ線用が用いられ、作業者の利 用頻度などにより1カ月あるいは3カ月ごとに実効 線量当量等の測定を業者に依頼している。フイルム バッジ、電子ポケット線量計による1年間の実効線 量当量を第5表に示した。これによると年間の実効 線量当量は最高 0.264mSv で実効線量当量限度およ

第2表 赤血球数

检 本	年	B	-	平成 12	年4月		
19, 1		н	щ	教職員	学生		
赤	550	以上		2	1		
血球	450~550			42	37		
数	400~450			9	3		
(万/mm ³)	400	未満		0	1		
	計			53人	42人		

第4表 白血球百分率

	and the second s		
		平成 12	年 4 月
快迎	<u>с</u> т <u>д</u> <u>д</u>	教職員	学生
+7 ch 1#	桿状核	0~11 %	1~8 %
好甲球	分葉核	39~79 %	42~78 %
IJ	ン パ 球	10~52 %	13~47 %
単	球	1~7 %	1~7 %
好	酸球	0~11 %	0~7 %
好	塩基球	0~3 %	0~2 %

び組織線量当量限度に達した者はなく、中性子線用 フイルムバッジによる測定では検出限界以上の者は 皆無であった。なお、フイルムバッジの測定結果で 検出限界以下は0として集積した。また、作業時の 実効線量当量の管理目標値、調査レベルを超えた場 合は皆無で、原子炉施設およびトレーサー・加速器 棟における作業時に、内部被ばくの予想される事例 もなかった。

		線	出当量	 分布(m	Sv)		総線量	平均線量	最大線量	
	<5	5~15	15~25	25 ~ 50	50 <	合計	当 重 (人·mSv)	≝ ± (mSv)	(mSv)	
教員	36	0	0	0	0	36	1.050	0.029	0.264	
学生	39	0	0	O	0	39	0.252	0.007	0.059	
8†	75	0	0	0	0	75	1.302	0.017	_	

第5表 放射線業務従事者の被ばく実効線量当量

※ "0.1 mSv 以下" (検出限界以下)は0として集積した。

3.研究室管理

3.1 場所における線量当量率の測定

原子炉施設およびトレーサー・加速器棟における 線量当量率の測定は電離箱式エリアモニタによる連 続測定および記録のほか、電離箱式サーベイメータ (Aloka 製 ICS-311 など)、GM 管式サーベイメー タ(Aloka 製 TGS-121 など)、シンチレーション式 サーベイメータ(Aloka 製 TCS-166 など)を用いて 行った。また平均 γ 線線量当量率は個人被ばく線量 測定用のフイルムバッジおよびTLD(松下電器産 業製、UD-200S、CaSO₄(Tm))を用いて1カ月間 の積算線量当量から計算により求めた。場所の線量 当量率の単位としては、 μ Gy/h など空気吸収線量 率を用いるべきであるが、法令に係る線量限度およ び放射線業務従事者の被ばく線量を考慮して測定値 μ Sv/h で表示している。

3.1.1 フイルムバッジによる測定

第6表にフイルムバッジによる月間積算線量当量 の測定結果を示した。これによると、γ線線量当量 は原子炉施設内原子炉遮蔽タンク上部および核燃料 物質使用場所において、月間γ線線量当量で最高値 0.2mSv、年間γ線積算線量当量においては、原子 炉遮蔽タンク上部が最高で1.1mSv となった。中性 子線量は、核燃料物質使用場所においてのみ平成 12年10月と平成13年1月に検出されており、年 間中性子線量当量は3.4mSvとなった。このことは 原子炉室南東に位置する核燃料物質使用場所におけ る中性子源の利用時間に影響している。なお、7月 にも中性子源を長時間利用しているが、中性子源使 用場所がフイルムバッジ設置地点より少し離れてい たため検出限界以下になったと思われる。その他の 場所では全て0.1mSv以下、すなわち"検出限界以 下"であった。

3.1.2 TLDによる測定¹⁾

TLDによる月間平均γ線線量当量率(μ Sv/h) は1カ月間の積算線量(μ Sv)を設置時間で割り、計 算した。原子炉施設内8点(第1図)における月間平 均γ線線量当量率の1年間の経時変動を第7表、第 2図に示した。これによると、平成12年12月に原 子炉遮蔽タンク南下部において最高値0.46 μ Sv/h を示した。最高値を示した原子炉施設内原子炉遮蔽 タンク南下部において、放射線業務従事者が1週 48時間作業を行ったとしても22 μ Sv/W となり、 作業場所における線量限度1mSv/W をはるかに下 回っている。第2-1図において、原子炉室入口にお いて若干変動しているのは、原子炉定期検査、原子 炉実験研修会、特性実験等において燃料要素の外観

														(mSv)
					म	成	12 年				平成 13 年		年 間	
ربين 	に 12 直	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	積算線量当量
	原子炉遮蔽タンク上部	х	0.2	0.2	х	х	0.2	0.2	0.1	0.2	х	х	х	1.1+6X
原子炉施設	中性子源照射場所	×	X	×	x	x .	X	$\begin{array}{c} 2.3 * \\ \left(\begin{array}{c} \gamma & : \ 0.2 \\ fn & : \ 2.1 \end{array} \right) \end{array}$	×	x	$ \begin{array}{c} 1.4 * \\ \left(\begin{array}{c} \gamma &: 0.1 \\ fn &: 1.3 \end{array} \right) \end{array} $	×	×	3.7 * + 10X $\begin{pmatrix} \gamma : 0.3 \\ fn : 3.4 \end{pmatrix}$
トレーサー・ 加速器棟	加速器操作室	х	х	X	×	x	х	х	×	x	×	×	x	12X
竺 珥 姞	X 線 室 1		x		x		X		X		4X			
吕 - 红 1休	X 線 室 2		х			X :			х			Х		4X
研究棟	22 号 館 A 棟 6 階	х	х	х	х	X	х	X	X	Х	X	х	х	12X
周辺監	ā 視 区 域 境 界 NW	х	х	х	х	Х	X	Х	X	Х	х	х	х	12X
	″ N E	х	х	х	х	х	X	×	×	X	X	X	х	12X
	″ SW	х	х	X	х	х	X	х	X	X	X	Х	×	12X
	″ S E	х	х	X	х	х	X	х	X	X	Х	х	х	12X
原子炉運転	・延熱出力(W・h)	22.42	38.25	59.94	19.24	19.83	80.26	68.66	52.84	65.70	26.14	8.05	2.41	463.7
中性子调	〔利 用 時 間(h)	0	0	0	65.0	0	0	89.0	0	0	66.5	0	0.8	221.3

第6表 各施設におけるフイルムバッジによる月間積算線量当量

X:<0.1mSv(検出限界以下)

*:γ線量(γ)+速中性子線量(fn)

第1図 原子炉施設におけるγ線線量当量率測定点

第7表 原子炉施設における TLD による月間平均 y 線線量当量率の変動

$(10^{-2} \mu \text{ Sv}/\text{I})$	h)
-------------------------------------	----

No.	測定場所	変動範囲	平均值
1	モ ニ タ 室	7.10 ~ 8.70	7.85 ± 0.50 *
2	コ ン ト ロ ー ル 室	6.69 ~ 9.35	7.96 ± 0.78
3	原子炉室入口	7.80 ~ 16.53	11.23 ± 3.03
4	核燃料物質保管場所	8.27 ~ 11.58	10.12 ± 1.06
5	核燃料物質使用場所	7.61 ~ 20.97	11.10 ± 3.59
6	核燃料物質取扱場所	6.83 ~ 14.78	10.38 ± 2.18
7	原子炉遮蔽タンク上部	6.40 ~ 27.55	17.01 ± 7.07
8	原子炉遮蔽タンク南下部	9.40 ~ 45.69	26.64 ± 12.06

* 標準偏差

-14-

Vol. 38 (2001)

(µSv/h)

第2-2図 原子炉施設内における月間平均γ線線量当量率の変動

第3図 トレーサー・加速器棟におけるγ線線量当量率測定点

第4-1図 トレーサー・加速器棟内における月間平均γ線線量当量率の変動

第4-3図 トレーサー・加速器棟内における月間平均y線線量当量率の変動

-17-

第4-5図 トレーサー・加速器棟内における月間平均γ線線量当量率の変動

	·						($10^{-2} \mu\text{Sv/h}$
No.	測定	場 所	変	動 範	囲	平	均	値
1	廊下(+	┥ 室 前)	7.64	~	8.66	8.17	± –	0.35 *
2	н –	2 室	7.68	· ~	9.59	8.65	±	0.53
3	Н —	1 室	8.17	~	9.32	8.77	±	0.40
4	L –	2 室	7.65	~	9.45	8.56	±	0.47
5	L –	1 室	7.17	~	9.11	8.06	±	0.57
6	加速器	操作室	6.71	~	8.03	7.24	· ±	0.41
7	排水ポ	ン プ 室	5.87	~	6.98	6.61	±	0.39
8	排気機	械室	6.69	~	8.14	7.44	±	0.46
9	測 定	室	7.73	~	10.12	8.75	±	0.63
10	放射線	管理室	7.50	\sim	9.67	8.29	±	0.63
11	R 1 実	験 室	7.17	~	8.57	7.82	±	0.44
12	廊 下 (L	室前)	6.72	~	9.28	8.03	±	0.65
13	貯 蔵	室前	7.26	~	35.60	13.15	, ±	7.27
14	暗	室	8.42	~	10.32	9.25	±	0.68
15	汚染 検	查室	7.18	~	8.89	8.03	±	0.57
16	廃棄物保	管庫扉	6.35	~	7.86	7.09	± .	0.59
17	廃棄物保	管庫裏	7.54	~	9.18	8.13	±	0.60
18	L – 1	室外	6.57	~	8.22	7.28	±	0.60

第8表 トレーサー・加速器棟における TLD による月間平均 y 線線量当量率の変動

*標準偏差

検査等によるものである。トレーサー・加速器棟 18点(第3図)における月間平均γ線線量当量率の 経時変動を第8表、第4図に示した。最高値は平成 13年1月、貯蔵室前で0.36 μ Sv/hであったが、そ の他の場所では年平均値でほぼ0.09 μ Sv/h以下で あった。貯蔵室前で1月のみ通常の3倍以上線量が 高くなっているのは、前月末に貯蔵室の棚卸し作業 を行い、保管してあった²²Naの保管位置が少し変 わったためで、このTLDの結果により、鉛で遮蔽 し貯蔵室奥へ移動させた結果、次月より通常レベル の線量値になった。しかし、いずれの場所において も、調査レベル以下の線量であった。

3.1.3 連続放射線総合モニタによる測定

原子炉施設およびトレーサー・加速器棟において は、いずれも富士電機製 γ エリアモニタ、ダストモ ニタ、ガスモニタ(原子炉施設のみ)、水モニタを設 置する連続放射線総合モニタにより放射線の測定、 監視および連続記録を実施している。原子炉施設内 の線量当量率の測定は電離箱式エリアモニタ(富士 電機製、容量 5 ℓ)により行い、測定した月間平均 γ 線線量当量率、原子炉運転中および原子炉運転休止 時(バックグラウンド)のそれぞれ月間平均γ線線量 当量率について**第9表**に示した。バックグラウンド は年平均0.16 ~ 0.25 μ Sv/h で、月間全平均値の最 高値は、原子炉遮蔽タンク上部で平成12年9月の 0.87 μ Sv/h、その原子炉運転中におけるγ線線量 当量率の月間平均値は4.08 μ Sv/h であった。月平 均原子炉運転中の線量当量率の最高は4月に5.28 μ Sv/h であったが、月平均線量当量率は原子炉運 転による月間の積算熱出力量に大きく影響されてい るものと思われる。

3.2 空気中および水中放射性物質濃度の測定

3.2.1 空気中放射性物質濃度の測定

原子炉施設およびトレーサー・加速器棟における 排気口の空気中放射性物質濃度は富士電機製連続ろ 紙式ダストモニタを用いて測定し、第10、11 表に 測定結果をまとめた。原子炉施設においては排気フィ ルター後で連続測定を、トレーサー・加速器棟にお いては排気フィルター後、施設使用時に限って連続 吸引測定を行っている。原子炉施設およびトレーサー・

-19-

第9表 原子炉施設におけるエリアモニタによる y 線線量当量率

测空在日	原 子 炉 遮 蔽 タ ン ク 上 部		原 子 炉 遮 蔽 タンク南下部		原	子炉室西	互壁	実	験	脷	積算熱		
测 定 平 力	原子炉 運転中	原子炉 休止時	全平均	原子炉 運転中	原子炉 休止時	全平均	原子炉 運転中	原子炉 休止時	全平均	原子炉 運転中	原子炉 休止時	全平均	山り重 (W・h)
平成12年 4月	5.28	0.22	0.41	2.78	0.14	0.24	0.53	0.22	0.23	, 0.28	0.24	0.25	22.42
5月	4.58	0.22	0.55	2.41	0.15	0.31	0.47	0.22	0.24	0.27	0.24	0.25	38.25
6月	4.22	0.24	0.75	2.28	0.16	0.42	0.44	0.22	0.25	0.27	0.25	0.25	59.94
4~6月	4.36	0.23	0.57	2.32	0.15	0.33	0.46	0.22	0.24	0.27	0.25	0.25	Σ120.61
7月	2.84	0.23	0.33	1.75	0.15	0.21	0.40	0.23	0.23	0.27	0.25	0.25	19.24
8月	3.84	0.21	0.34	2.37	0.17	0.24	0.45	0.22	0.23	0.27	0.25	0.25	19.83
9月	4.08	0.21	0.87	2.36	0.16	0.53	0.49	0.22	0.26	0.26	0.23	0.24	80.26
7~9月	3.51	0.21	0.51	2.15	0.16	0.32	0.45	0.22	0.24	0.27	0.24	0.25	Σ119.33
10月	4.92	0.24	0.84	2.68	0.16	0.48	0.54	0.23	0.27	0.27	0.24	0.24	68.66
11月	4.49	0.22	0.66	2.67	0.16	0.42	0.47	0.22	0.24	0.25	0.24	0.24	52.84
12月	4.97	0.22	0.74	2.92	0.15	0.46	0.51	0.22	0.25	0.26	0.24	0.24	65.70
10~1 <u>2</u> 月	4.76	0.22	0.75	2.73	0.16	0.45	0.50	0.22	0.26	0.26	0.24	0.24	Σ187.20
平成13年 1月	3.92	0.22	0.43	2.27	0.16	0.27	0.45	0.23	0.24	0.26	0.25	0.25	26.14
2月	3.51	0.23	0.30	2.66	0.17	0.22	0.41	0.24	0.25	0.27	0.26	0.26	8.05
3月	4.41	0.21	0.22	2.72	0.15	0.16	0.49	0.22	0.22	0.28	0.26	0.26	2.41
1~3月	3.90	0.22	0.32	2.41	0.16	0.22	0.45	0.23	0.24	0.27	0.26	0.26	Σ36.60
 年 平 均	4.19	0.22	0.54	2.42	0.16	0.33	0.47	0.22	0.24	0.27	0.25	0.25	Σ463.74

加速器棟の管理区域内(それぞれ炉室内および各使 用施設内)の空気中放射性物質濃度(全β放射能濃度) の測定は富士電機製固定ろ紙式ダストモニタ(NAD -1、NHR)により行い、その結果を第12表および 第13表に示した。これによると、原子炉施設の管 理区域における放射性物質濃度の年平均値は、ダス ト吸引中の飽和値では、原子炉運転中 3.9×10⁻⁶ Bq/cm³、休止時 3.1×10⁻⁶Bq/cm³、ダスト吸引停 止 10 時間後および 17 時間後については、原子炉運 転中および休止時ともほぼ同じレベルで、それぞれ $(1.5 \sim 1.8) \times 10^{-7}$ Bq/cm³ および (0.9 ~ 1.1) × 10⁻⁷ Bq/cm³であった。トレーサー・加速器棟の管理区 域内の空気中放射性物質濃度(全β放射能濃度)の年 平均値は、ダスト吸引中飽和値、吸引停止 10 時間 後および 17 時間後、それぞれ 1.5×10⁻⁶Bg/cm³、 $2.3 \times 10^{-7} Bq/cm^{3}$ および $1.5 \times 10^{-7} Bq/cm^{3}$ とバッ クグラウンドレベルで、原子炉施設とほぼ同じレベ

ルであった。第14表、第15表に原子炉施設周辺監 視区域内および周辺監視区域外における空気中放射 性物質濃度(全β放射能濃度)を示した。吸引中飽和 放射性物質濃度の年平均値は周辺監視区域内、外で それぞれ 1.2×10^{-6} Bq/cm³、 4.9×10^{-7} Bq/cm³ であっ た。これは自然放射性核種であるラドンおよびトロ ンの崩壊生成核種を含むもので、地上1mおよび 屋上での測定と若干差があるが、第16表に示した 原子炉の運転実績により計算で求めた排気口の ⁴¹Ar 濃度とほぼ同じレベルである。

 $(\mu Sv/h)$

1) 排気口における平均放射性物質濃度

原子炉施設における平成12年度放射性気体廃棄 物の放出量を原子炉の運転実績により計算で求め、 第17表に示した。ガスモニタによる実測値(平均値) はいずれの3ヵ月間においても検出限界以下であっ たため、排気口における平均放射性物質濃度を1 ワッ ト原子炉運転実績により計算で求めた。UTR-

-20 -

測定項目	平成12年 4~6月	7~9月	10~12月	平成13年 1~3月	B.G. * 4	
排気ロダストβγ *1 平均	值 0 ± 3.7 ^{*5}	0 ± 4.0	0 ± 4.3	0.0 ± 4.0	42.9 ± 1.4	
(10 ⁻ ³Bq/cm³) 最高	値 13.0 ± 4.0	19.0 ± 4.4	8.3 ± 4.5	4.0 ± 4.1		
排気ロダストα *1 平均	値 0 ± 6.0	0 ± 6.0	0 ± 5.6	0 ± 3.4	11.8 ± 1.9	
(10 ⁻ ⁰Bq/cm³) 最高	值 9.5 ± 6.9	9.9 ± 6.9	10.8 ± 6.9	7.3 ± 4.7		
排気ガスβγ *1 平均	値 0.10 ± 1.1	0.1 ± 1.0	0.1 ± 1.0	0 ± 1.0	19.0 ± 3.7	
(10 ⁻ ³Bq/cm³) 最高	值 1.3 ± 1.1	1.2 ± 1.1	1.5 ± 1.1	1.1 ± 1.1		
βγ *2 平 [±]	値 0 ± 1.8	0.2 ± 1.7	0 ± 1.8	0.2 ± 1.8	25.7 ± 6.2	
排 (10 ⁻² Bq/cm ³) 最高	值 1.2 ± 1.8	1.4 ± 1.7	1.6 ± 1.8	5.2 ± 1.9		
水 βγ *3 平均	値 9.4 ± 0.56	3.4 ± 0.41	9.0 ± 0.48	13.0 ± 0.58		
(10 ^{-₅} Bq/cm³) 最高	値 10.3 土 1.0	3.6 ± 0.71	11.7 ± 1.1	16.3 ± 1.4		

第10表 総合モニタによる原子炉施設放射能管理記録

*1 天然ラドンおよびトロン系の崩壊生成核種濃度を差し引いたもの
*2 排水処理槽A-2槽より総合モニタによる測定
*3 排水処理槽A-4槽より採水法による測定
*4 原子炉運転休止時のバックグラウンドレベル
*5 計数誤差

第11表 トレーサー・加速器棟の排気口における空気中放射性物質濃度

1			`
	^	nc	1
۰.	U	US.	
•	-	_	

	空気中放射性物	物質濃度:βγ	空気中放射性物質濃度: a	
则定平月日	吸引中飽和値	吸引停止17時間後	吸引中飽和値	吸引停止17時間後
 平成 12 年 4月	1.3 ~ 4.9 (3.1)	0.30 ~ 0.41 (0.36)	0.13 ~ 0.25 (0.18)	<0.10 (<0.10)
5月	2.0 ~ 5.1 (3.7)	0.30 ~ 0.40 (0.34)	0.15 ~ 0.25 (0.20)	<0.10 (<0.10)
6月	2.3 ~ 5.8 (3.7)	0.30 ~ 0.40 (0.36)	<0.10 ~ 0.25 (0.18)	<0.10 (<0.10)
7月	2.3 ~ 5.0 (3.5)	0.30 ~ 0.41 (0.36)	0.11 ~ 0.23 (0.15)	<0.10 (<0.10)
8月	0.70 ~ 3.0 (1.8)	0.30 ~ 0.50 (0.35)	0.16 ~ 0.61 (0.33)	<0.10 (<0.10)
9月	0.71 ~ 4.3 (2.1)	0.30 ~ 0.36 (0.32)	0.18 ~ 0.51 (0.31)	<0.10 (<0.10)
10月	0.80 ~ 2.5 (1.6)	0.30 ~ 0.40 (0.31)	0.14 ~ 0.50 (0.24)	<0.10 (<0.10)
11月	0.80 ~ 2.2 (1.6)	0.25 ~ 0.36 (0.31)	0.14 ~ 0.36 (0.23)	<0.10 (<0.10)
12月	0.90 ~ 4.5 (2.0)	0.28 ~ 0.36 (0.32)	0.12 ~ 0.40 (0.23)	<0.10 (<0.10)
平成 13 年 1月	0.88 ~ 5.8 (2.9)	0.29 ~ 0.37 (0.33)	<0.10 ~ 0.46 (0.25)	<0.10 (<0.10)
2月	0.36 ~ 3.1 (0.78)	0.27 ~ 0.40 (0.31)	<0.10 ~ 1.0 (0.16)	<0.10 (<0.10)
3月	0.40 ~ 0.70 (0.58)	0.30 ~ 0.42 (0.31)	<0.10 (<0.10)	<0.10 (<0.10)
年 平 均 (cps)	2.04 ± 1.38*	0.32 ± 0.04	0.17 ± 0.10	<0.10
年平均 (Bq/cm³)	6.8 × 10 ⁻⁷	1.1 × 10 ⁻⁷	5.6 × 10⁻ [®]	<3.3 × 10 ⁻⁸

() 平均値

* 標準偏差

-21 -

	ダスト吸引中飽和値 (10 ⁻⁶ Bq/cm ³)		吸引停止10時間後		吸引停止	17時間後
年月			(10 ⁻⁷ E	lq/cm ³)	(10 ⁻⁷ Bq/cm ³)	
	原子炉運転中	休止時	原子炉運転中	休止時	原子炉運転中	休止時
平成12年4月	3.1	3.2	1.3	1.5	0.83	0.87
5 月	4.0	4.2	1.9	1.7	1.1	1.1
6.月	4.5	5.4	2.0	2.2	1.2	1.3
7月	3.8	4.0	2.0	2.0	1.2	1.3
8月	3.2	4.1	1.7	1.8	1.1	1.1
9月	3.7	2.6	1.8	1.7	1.2	1.1
10月	4.0	4.1	1.7	1.6	1.1	1.1
11月	4.5	—	2.0	<u> </u>	1.2	_
12月	3.7	3.5	1.5	1.5	1.1	0.96
平成13年1月	3.0	2.8	1.0	1.0	0.71	0.72
2月	2.7	3.2	3.0	1.4	0.58	0.89
3月	2.5	1.8	1.1	1.3	0.64	0.84
年 平 均	3.9 ± 0.53 *	3.1 ± 0.92	1.8 ± 0.33	1.5 ± 0.31	1.1 ± 0.16	0.93 ± 0.19

第12表 管理区域(原子炉室)における全β空気中放射性物質濃度

* 標準偏差

第13表 トレーサー・加速器棟・管理区域における全β空気中放射性物質濃度

(IO Bd/cm ²)	(10-7	⁷ Bq/cm ³)
--------------------------	-------	-----------------------------------

·	ダスト吸る	引中飽和値	吸引停止	10時間後	吸引停止	17時間後
年月	範囲	平均值	範囲	平均值	範囲	平均値
平成12年4月	6.9 ~ 32	15 ± 7.0*	0.48 ~ 12	3.2 ± 3.4	0.21 ~ 6.9	2.1 ± 2.0
5月	8.7 ~ 36	16 ± 7.7	0.87 ~ 12	3.3 ± 3.2	0.60 ~ 8.6	2.3 ± 2.3
6月	9.5 ~ 45	17 ± 10	0.87 ~ 7.9	2.2 ± 2.1	0.44 ~ 4.4	1.3 ± 1.2
7月	5.5 ~ 51	14 ± 13	0.67 ~ 9.0	2.1 ± 2.5	0.33 ~ 5.1	1.3 ± 1.4
8月	3.7 ~ 25	9.2 ± 6.4	0.73 ~ 4.4	1.6 ± 1.1	0.48 ~ 2.5	1.1 ± 0.55
9月	5.1 ~ 26	13 ± 5.4	0.71 ~ 4.3	1.7 ± 1.0	0.58 ~ 2.6	1.1 ± 0.62
10月	5.3 ~ 34	14 ± 8.0	0.19 ~ 5.8	1.8 ± 1.6	0.00 ~ 3.4	1.1 ± 0.97
11月	11~ 24	16 ± 4.2	0.70 ~ 3.2	1.9 ± 0.96	0.31 ~ 2.5	1.3 ± 0.72
12月	7.8 ~ 44	16 ± 12	0.87 ~ 7.4	2.3 ± 2.1	0.41 ~ 2.6	1.2 ± 0.84
平成13年1月	7.5 ~ 35	15 ± 8.0	0.68 ~ 6.3	2.0 ± 1.8	0.39 ~ 4.3	1.4 ± 1.2
2月	9.3 ~ 51	19 ± 14	0.72 ~ 11	3.2 ± 3.3	0.29 ~ 8.2	2.2 ± 2.5
3月	7.4 ~ 38	16 ± 9.3	0.35 ~ 9.5	2.6 ± 2.7	0.39 ~ 6.6	1.8 ± 1.9
年平均	15.1	± 9.1 *	2.3 :	± 2.3	1.5 ±	= 1.5

* 標準偏差

- 22 -

笠1/主	国辺院担区内におけての会市毎時時齢の運産
AD 144X	向空血化区内における主义中放射性物質展及

 March M. C. March M. Barra, and S. March M. S. March		and the second	(10 ⁻ ′Bq/cm³)
年月	吸引中飽和値	吸引停止 10 時間後	吸引停止 17 時間後
平成 12 年 4月 19 日	10	0.87	0.58
5月24日	13	0.78	0.41
6月26日	7.0	1.1	0.56
7月25日	7.5	1.3	1.1
8月30日	3.6	0.63	0.19
9月27日	8.5	0.42	0.19
10月25日	13	1.0	0.85
11月30日	17	0.84	0.74
12月19日	19	0.89	0.50
平成13年 2月 5日	14	0.43	0.27
3月1日	13	0.23	0.20
3月27日	13	0.88	0.71
平 均	11.6 ± 4.3 *	0.78 ± 0.31	0.52 ± 0.28

(10-70

* 標準偏差

第15表 周辺監視区域外における空気中放射性物質濃度

(10⁻⁷Bg/cm³)

	· .		
年月	吸引中飽和値	吸引停止 10 時間後	吸引停止 17 時間後
平成 12 年 4 月 20 日	1.1	0.13	0.09
5月11日	1.5	0.27	0.18
6月16日	2.9	0.42	0.18
7月 8日	2.6	0.11	0.15
8月 8日	2.7	0.22	0.16
9月25日	8.2	0.33	0.13
10月26日	1.6	0.30	0.22
11月16日	8.3	0.19	0.19
12月11日	3.7	0.24	0.20
平成 13 年 1月 11 日	6.5	0.46	0.27
2月15日	5.6	0.27	0.20
3月21日	14	2.0	1.0
平 均	4.9 ± 3.9 *	0.41 ± 0.51	$0.25~\pm~0.25$

* 標準偏差

-23 -

1 - A - A - A - A - A - A - A - A - A -							(原于炉施設)	ヹ1 谷)
· .	3	実 測 値			計算に	:よる(41	Ar)	
期間	全希ガス	¹³¹ 1	その他	運転実績 (W・h)	放出実績 (Bq)	放出率 (Bq/h)	排気口の平均温度 (Bq/cm³)	備考
平成 12 年 4 月 ~ 6 月	*	·		120.61	1.79 × 10'	8.17 × 10³	3.05 × 10 ⁻⁶	÷
7月~9月	*	_		119.33	1.77 × 10 ⁷	8.00 × 10 ³	2.99 × 10 ⁻⁶	
10月~12月	*			187.20	2.77 × 10 ⁷	1.25 × 10⁴	4.67 × 10 ⁻⁶	
平成 13 年 1 月 ~ 3 月	*			36.60	2.51 × 10°	2.51 × 10 ³	9.38 × 10⁻ ⁷	
平成 12 年度	*			463.74	6.86 × 10 ⁷	7.83 × 10 ³	2.93 × 10⁻⁵	

第16表 放射性気体廃棄物の放出量

(原子炉施設全体)

※:検出限界(1.0×10³Bq/sec)以下

—:未測定

放出管理目標値:1.8 × 10[°] Bq/年間以下

「放射線管理マニュアル」に定める値(1.48 × 10⁵ Bq/h)に、当施設年間の 最大運転実績を 1200 時間とすると放出管理目標値は年間 1.8 × 10° Bq以下である。

第17表 原子炉施設の周辺監視区域境界付近における気体廃棄物による実効線量当量

期間	平成 12 年 4 月 ~	平成 13 年 3 月
運転実績	463.74	W•h
放出実績	6.86 × 10 ⁷	Bq
放出率	7.83 × 10³	Bq/h
排気口の平均放射性物質濃度	2.93 × 10⁻⁵	Bq/cm³
周辺監視区域境界付近の放射性物質濃度	3.46 × 10⁻⁴	Bq/cm³
γ線外部被ばくによる年間実効線量当量 	2.66 × 10⁻⁴	μ Sv/y

-24-

Vol. 38 (2001)

KINKI、1 ワットで運転した場合の⁴¹Ar 生成率を 「放射線管理マニュアル」²⁾より 1.48×10⁵Bq/h とし て

⁴¹Ar放出率(Bq/h)

 $= \frac{{}^{41}Ar \pm k \bar{x} \infty (Bq/h) \times \bar{x} \mp fill o$ 運転実績(h) 当該期間の時間(365×24h)

排気口の平均放射性物質濃度(Bq/cm³)

 $=\frac{{}^{41}Ar 放 出率(Bq/h)}{換気率(cm³/h)}$

ここで施設の換気率は 44.6 m³/min である。近 畿大学原子炉施設における放射性気体廃棄物の放出 管理目標値は ⁴¹Ar 生成率に、当該施設の年間最大 運転実績(1 ワット時) 1,200 時間を乗じた年間 1.8 ×10⁸Bq であるが、今年度の放出量は管理目標値を 充分下回っている。さらに、これらの放出実績をも とに周辺監視区域境界付近における気体廃棄物のみ による被ばく評価を以下 2)、3)により計算して**第** 17 表に示した。これによると、総合モニタによる 気体廃棄物に由来すると思われる放射性物質濃度は 検出限界以下であるため、原子炉の1年間の運転実 績をもとに計算した γ 線外部被ばくによる線量当量 は、年間 2.7×10⁻⁴ μ Sv と非常に低い。

2) 周辺監視区域境界付近の平均放射性物質濃度

気象条件として、大気安定度F、最多風向を北東 として原子炉から南西方向へ70mの周辺監視区域 境界付近での最大地表放射能濃度を次式により計算 する。 風速2.6m/sとして角田、飯島の「英国法 による濃度分布計算図」(JAERI-1101)によると、 高さ16mの排気筒からの放出率1Bq/h、風速1 m/s、大気安定度Fの場合の最大地表放射能濃度は 約1.15×10⁻⁷Bq/m³で、その出現地点は風下約700 mである。

最大地表放射能濃度(Bq/m³)

 $=\frac{1.15\times10^{-7}(Bq/m^3)×排気口での放出率(Bq/h)}{2.6(m/s)}$

γ線外部被ばくによる全身被ばく線量当量評価
 大気安定度Fの場合、放出率1Bq/h、γ線エネル

ギー1 MeV、その時の風速1 m/sec、排気筒の高さ 16 m に対して放出点から最も近い人家のある地点 で予想される被ばくは $8.1 \times 10^{-12} \mu$ Sv/hと計算さ れる。 線量当量評価のうち α 線の被ばくは含まず、 スカイシャインについては問題とならない。

被ばく評価値(μSv/y)

 $=\frac{8.1\times10^{-12}(\mu \text{Sv/h})\times \overline{\mp 10^{41}\text{Ar}}\underline{\pi 10^{-12}(\mu \text{Sv/h})\times C\times t(h)}{2.6(m/s)}$

C:エネルギー補正係数 1.242

(⁴¹Arのγ線エネルギーに対する)

t:当該期間の時間(365×24h)

2.6:調和平均速度(m/s)

3.2.2 排水中放射能濃度の測定

排水中の放射能濃度は放射線総合モニタにより原 子炉施設、トレーサー・加速器棟ともに排水槽 A-2 槽について連続測定し、排水溝へ放出する前には A-4 槽において採水法により測定を行った。原子炉 施設およびトレーサー・加速器棟における排水中の 全 β 放射能濃度を第18表に示した。これによると 原子炉施設排水の全

β放射能濃度は採水法による測 定で最高1.5×10⁻⁴Bg/mℓで当所の排水中の調査レ ベル以下であり、年間の放出量(第19表)は3.0 ×10³Bq であった。原子炉施設における放射性液体 廃棄物の放出管理目標値は⁴⁰K換算で年間 3.7×10⁷ Bq であり、平成 12 年度においては充分下回って いる。トレーサー・加速器棟の排水については最高 8.8×10⁻⁴Bq/ml、年間の放出量(第19表)は2.0 ×10⁴Bq であった。排水試料のγ線核種分析結果を 第20表に示したが、これによるとトレーサー・加速 器棟でのみ¹³⁷Cs が検出され、その他は自然放射性 核種である⁴⁰Kのみが検出された。γ線核種分析は 環境試料水については約20ℓ、植物試料は新鮮物 約1kg、土壌については 200gを採取し、それぞ れ蒸発乾固物、灰分および乾土をプラスチック容器 (φ50 mm)に入れ、真性 Ge 半導体検出器(有効体 積80ml、プリンストンガンマテック社製の同軸型)、 測定系として NAIG 社製多重波高分析器、データ の収集および解析には NEC 社製 PC-9801RX パー

-25-

第18表 排気中の全β放射能濃度

(10⁻⁵Bq/mℓ)

40 88	原子炊	戸施設	トレーサー・加速器棟		
朔 间	変動範囲	平 均 値	変動範囲	平均值	
平成12年 4月~ 6月	8.1 ~ 10.3	9.4 ± 0.6*	67.3 ~ 87.6	77 ± 1.4*	
7月~ 9月	3.1 ~ 3.6	3.4 ± 0.4	54.9 ~ 73.6	61 ± 1.3	
10月~12月	4.1 ~ 11.7	9.0 ± 0.5	43.1 ~ 55.2	50 ± 1.1	
平成13年 1月~ 3月	7.3 ~ 15.4	13 ± 0.6	41.9 ~ 50.6	46 ± 1.1	
平成 12 年 4 月 ~ 平成 13 年 3 月	9.0 =	± 0.3	58.6	± 0.6	

* 計数誤差

第19表 排水中放出放射能総量

(10°Bq)

· · · · · · · · · · · · · · · · · · ·	原子炉施設	トレーサー・加速器棟
平成 12 年 4 月	0	0
5月	3.9	0
6月	3.3	0
7月	1.2	0
8月	1.4	0
9月	1.4	0
10 月	10	0
11 月	0	0
12 月	0	0
平成 13 年 1 月	6.5	20.2
2 月	0	0
3 月	2.9	0
年間総量	30.1	20.2

- 26 --

第20表 排水中の γ 放射性核種濃度

 $(10^{-5} Bq/m l)$

*** 88	原子炉施設		トレーサー・加速器棟			
别间	Cs-137	K-40	Cs-137	K-40	Na-22	
平成12年 4月~ 6月	N D	7.8 ± 1.9 *	1.0 ± 0.1 *	17 ± 2.3 *	ND	
7月~ 9月	ND	ND	1.5 ± 0.1	22 ± 2.2	ND	
10月~12月	N D	7.6 ± 1.9	1.4 ± 0.1	16 ± 2.1	N D	
平成13年 1月~ 3月	N D	12 ± 2.2	1.3 ± 0.1	24 ± 2.2	ND	

* 計数誤差

第21表 減速水中の全β放射能濃度

(10^{-₅}Bq/mℓ)

	北側3	マンク	南側タンク		
A) [B]	変動範囲	平均值	変動範囲	平均值	
平成12年 4月~ 6月	3.68 ~ 7.36	5.30 ± 1.88 *	0.63 ~ 4.31	2.83 ± 19.4 *	
7月~ 9月	3.68 ~ 4.10	3.89 ± 0.21	2.71 ~ 4.79	3.50 ± 1.13	
10月~12月	2.15 ~ 20.8	8.52 ± 10.7	2.01 ~ 12.4	5.53 ± 5.98	
平成13年 1月~ 3月	1.88 ~ 21.8	9.38 ± 10.8	1.32 ~ 13.8	5.53 ± 7.18	

* 標準偏差

ソナルコンピュータを用いて、測定および γ 線スペ クトル分析により核種分析を行った。検出器は、 ⁶⁰Co1332keVの γ 線に対する相対検出効率は 20%、 半値幅は 2keV の特性をもつもので、密着状態で測 定を行った。原子炉燃料タンク2槽(60ℓ容)中の減 速水の全 β 放射能濃度を 2π ガスフロー・ローバッ クグラウンド計数装置(Aloka 製 LBC-471P)で測定 し、その結果を**第21表**に示した。これによると減 速水は両タンクとも年1回交換を行ったが、最高値 は 2.2×10^{-4} Bq/mℓで、原子炉運転の稼働時間によっ て減速水の全 β 放射能濃度は (0.06~2.2) ×10⁻⁴ Bq/mℓに変動している。平成 12 年度北側および南 側燃料タンク内の減速水(交換は年1回)中の3カ月 毎の核種分析結果を**第22表**に示したが、いずれの 核種も検出されなかった。

3.3 表面密度の測定

原子炉施設およびトレーサー・加速器棟の管理区 域内(第5、6図)における床、ドラフト、流しおよ び実験台の表面密度の測定は、スミア法によって定 期的に1カ月に1回、原子炉施設23定点、トレー サー・加速器棟 48 定点、また1週間に1回、月1 回の測定点より数カ所選出し、原子炉施設12定点、 トレーサー・加速器棟 10 定点について、今年度 12 月より各施設とも排気、排水設備関係の測定点を増 やし、現在の測定数になっている。表面密度の測定 は、全β放射能濃度をアロカ製2πガスフロー・ロー バックグラウンド計数装置(LBC-471P)により、³H による表面密度については、パッカード社製液体シ ンチレーション計数装置(Tri-carb 2250)により行っ た。月1回行った表面密度の測定結果を第23~26 表に示した。原子炉施設における全β表面密度の最 高値は 1.3×10^{-4} Bg/cm² と調査レベルの 1/20000

-27-

第5図 原子炉施設における表面密度測定点

第6図 トレーサー・加速器棟内における表面密度測定点

-28-

近畿大学原子力研究所年報

Vol. 38 (2001)

第22表 減速水中のγ放射性核種濃度

(Bq/	l l)

期間	核種	北側燃料タンク	南側燃料タンク
平成12年 4月	⁵⁴Mn , ⁶⁵ Zn	N D	N D
7 月	⁵⁴Mn , ⁶⁵ Zn	N D	N D
10 月	⁵⁴Mn , ⁵⁵Zn	N D	N D
平成13年1月	^{5₄} Mn , ⁶⁵ Zn	N D	N D

ND:検出限界以下

第23表 全β放射性表面密度の月別変動

(Bq/cm²)

——————————————————————————————————————	原子炉施設(×10⁻⁵)	トレーサー・加速器棟(× 10⁻⁵)
平成 12 年 4月	< 9.11	< 1.18 (H-1 室・流し)
5 月	< 9.11	< 1.14 (H-2 室・ドラフト)
. 6月	< 8.35	< 2.70 (H-2 室・ドラフト)
7月	< 8.35	< 8.84 (H-2 室・ドラフト)
8月	< 6.07	< 6.56 (H-2 室・ドラフト)
9月	< 9.11	< 2.42 (H-2 室・ドラフト)
10 月	< 7.59	< 5.67 (Hー2室・ドラフト)
11 月	< 7.59	< 9.34 (H-2 室・ドラフト)
12 月	< 5.31	< 2.00 (H-2 室・ドラフト)
平成 13 年 1月	< 6.07	< 0.60 (H-2 室・ドラフト)
2 月	< 6.83	< 0.64 (H-2 室・ドラフト)
3 月	< 12.9	< 1.16 (H-2 室・ドラフト)

ND 検出限界以下

No.	測定	位置	全β表面密度 (10 ⁻⁵ Bq/cm²)
1	工 - 力 安	洗面台付近・床	< 12.9
2		管理区域境界付近・床	< 6.07
3		床	< 9.11
4		サイドテーブル	< 5.31
5	测 中 中 ())	床	< 3.79
6	<i>澳 正 至 (2)</i>	入口側壁	< 5.31
7	準 備 室	床	< 7.59
8	実験室	床	< 6.83
9	廊下	床	< 6.07
10	库子 标 荧	遮蔽タンク上	< 6.83
11	原于邓至	床	< 7.59
12	核燃料物質	入口付近・床	< 3.79
13	保管場所	床	< 9.11
14	コントロール室	床	< 6.07
15	排 気 機 械 室	ダクト側壁	< 7.59
16	排 水 ポ ン プ 室	ポンプ上部	< 3.04
17	核燃料物質	入口付近・床	< 6.07
18	取扱場所	床	< 8.35
19	核燃料物質使用場所	床	< 7.59
20	排水机理糖	上蓋	< 6.07
21	1/1 小 之 垤 慆	入 口 扉	< 3.79
22	应 	ド ラ ム 缶 下 部	< 7.59
23	一 洗 未 10 休 官 /早	棚	< 15.9

第24表 スミア法による原子炉施設における全β表面密度

以下で、顕著な表面汚染の事例は無かった。トレー サー・加速器棟における全 β 表面密度および³H表 面密度の最高値は、高レベル実験室(H - 2)ドラフ トで 9.3×10^{-3} Bq/cm² および加速器室ターゲット 付近で 7.1×10^{-2} Bq/cm² を示したが、調査レベル 以下であった。汚染した箇所については除染後再度 測定の結果、全くバックグラウンドレベルにまで低 下し、加速器室外への汚染の拡大はなかった。平成 12 年度における放射性汚染の異常例はなかった。

4. 野外管理

野外管理は原子炉施設保安規定に定めるサンプリ

ング地点(第7図)において、環境γ線線量当量率は TLD1カ月間の積算線量をもとに計算により、陸 水、植物および排水溝沈泥土などの環境試料中の全 β放射能濃度は、3カ月間に1回定期的に測定を行っ た。

4.1 環境γ線線量当量率

環境 γ 線線量当量率の測定は T L D (CaSO₄ (Tm), UD-200S)を用い、原子炉施設を中心に 1.5 km の範囲内 11 サンプリング地点に 1 カ月間設置 して測定した積算線量当量より月平均 γ 線線量当量 率を計算し、第 27 表、第 8 図に年間の変動を示し た。これによると原子炉施設周辺監視区域内(測定 点 ① ~ ④、①)の月平均 γ 線線量当量率は 0.066 ~ 0.091 μ Sv/h、原子炉施設敷地外のモニタリング地

-30-

No.	測定位置	全β表面密度 (10 ⁻⁵ Bq/cm²)	No.	測定位置	全β表面密度 (10 ⁻⁵ Bq/cm²)
1	R 1 実 験 室 流 し	< 19.0	25	暗 室 床 (2)	< 6.83
2	R 1 実 験 室 床 (1)	< 15.2	26	測定室床(1)	< 5.31
3	R 1 実 験 室 床 (2)	< 120	27	測定室測定台 (北)	< 10.6
4	R 1 貯蔵室 (1) 床	< 44.0	28	測定室測定台 (南)	< 9.87
5	廊下(用室前) 床	< 9.11	29	測定室床(2)	< 9.11
6	高レベル実験室(H-2) ド ラ フ ト	< 934	30	廊下(測定室前) 床	< 17.5
7	高レベル実験室(H-2) 流し	< 115	31	汚染検査室 床⑴	< 13.7
8	高レベル実験室(H-2) 床 (1)	< 19.0	32	汚染検査室 床(2)	< 12.1
9	高レベル実験室(H-2) 床 (2)	< 19.0	33	汚染検査室 床(3)	< 5.31
10	高レベル実験室(H-1) ド ラ フ ト	< 49.3	34	汚染検査室 床(4)	< 11.4
11	高レベル実験室(H-1) 流 し	< 477	35	汚染検査室 測定台	< 9.11
12	高レベル実験室(H-1) 床 (1)	< 162	36	加速器測定室 床	< 8.35
13	高レベル実験室(H-1) 床 (2)	< 15.9	37	加速器室入口 床	< 21.3
14	廊下(L室前) 床	< 10.6	. 38	加 速 器 室 ターゲット付近	< 11.4
15	低レベル実験室(L-2) 流 し	< 7.59	39	加 速 器 室 ターゲット下台	< 10.6
16	低レベル実験室(L-2) 床 (1)	< 19.7	40	加速器室流し下床	< 15.2
17	低レベル実験室(L-2) ド ラ フ ト	< 9.11	41	加速器 室 ターゲット付近・床	< 27.3
18	低レベル実験室(L-2) 床 (2)	< 6.83	42	排気機械室(2F) ダ ク ト 付 近	< 7.59
19	低レベル実験室(L-1) ド ラ フ ト	< 8.35	43	排水ポンプ室 ポンプ付 近	< 3.04
20	低レベル実験室(L-1) 流し	< 12.1	44	トレーサー棟入口 床	< 9.11
21	低レベル実験室(L-1) 床 (1)	< 15.2	45	排水処理槽	< 8.35
22	低レベル実験室(L-1) 床 (2)	< 35.7	46	廃棄物保管庫 入口扉	< 3.04
23	暗 室 流し	< 8.35	47	廃棄物保管庫 中央床	< 5.31
24	暗 室 床 (1)	< 9.11	48	廃棄物保管庫 棚	< 3.04

第25表 スミア法によるトレーサー・加速器棟における全β表面密度

第26表 スミア法によるトレーサー・加速器棟における³H表面密度

No.	測定位置	³H 表面密度 (10 ^{−4} Bq/cm²)	No.	測 定 位 置	³ H 表面密度 (10 ^{-₄} Bq/cm²)
1	R 1 実 験 室 流 し	< 9.09	25	暗 室 床 (2)	< 6.38
2	R 1 実験室床(1)	< 10.1	26	測 定 室 床 (1)	< 5.54
3	R 1 実 験 室 床 (2)	< 5.85	27	測定室測定台 (北)	< 2.32
4	R 1 貯 蔵 室 (1) 床	< 2.71	28	測定室測定台 (南)	< 9.43
5	廊下(H室前) 床	< 9.25	29	測定室床(2)	< 3.21
6	高レベル実験室(H-2) ド ラ フ ト	< 7.60	30	廊下(測定室前) 床	< 4.85
7	高レベル実験室(H-2) 流 し	< 7.18	31	汚染検査室 床(1)	< 7.47
8	高レベル実験室(H-2) 床 (1)	< 10.5	32	汚染検査室 床 (2)	< 7.98
9	高レベル実験室(H-2) 床(2)	< 8.67	33	汚染検査室 床(3)	< 4.88
10	高レベル実験室(H-1) ド ラ フ ト	< 13,3	34	汚染検査室 床(4)	< 2.38
11	高レベル実験室(H-1) 流し	< 4.85	35	汚染検査室 測定台	< 4.85
12	高レベル実験室(H-1) 床 (1)	< 4.78	36	加速器測定室 床	< 1.22
13	高レベル実験室(H-1) 床 (2)	< 5.84	37	加速器室入口 床	< 229
14	廊下(L室前) 床	< 11.3	38	加 速 器 室 ターゲット付近	< 705
15	低レベル実験室(L-2) 流 し	< 4.13	39	加 速 器 室 ターゲット下台	< 93.1
16	○低レベル実験室(L-2) 床(1)	< 6.10	40	加速器室流し下床	< 5.45
17	低レベル実験室(L-2) ド ラ フ ト	< 11.4	41	加 速 器 室 ターゲット付近・床	< 158
18	低レベル実験室(L-2) 床 (2)	< 0.83	42	排気機械室(2F) ダ ク ト 付 近	< 6.74
19	低レベル実験室(L-1) ド ラ フ ト	< 9.02	43	排水ポンプ室 ポンプ付 近	< 10.8
20	低レベル実験室(L-1) 流し	< 6.93	44	トレーサー棟入口 床	< 21.8
21	低レベル実験室(L-1) 床 (1)	< 7.19	45	排水処理 槽	< 8.75
22	低レベル実験室(L-1) 床 (2)	< 6.73	46	廃棄物保管庫 入口扉	< 9.90
23	暗 室 流し	< 9.41	47	廃棄物保管庫 中央床	< 11.5
24	暗 室 床 (1)	< 11.7	48	廃 棄 物 保 管 庫 棚	< 7.67

-31-

点では $0.052 \sim 0.100 \,\mu \, \text{Sv/h} と バックグラウンド$ レベルの範囲の変動で、顕著に高いレベルの場所は なかった。環境 γ 線線量としては、普通一般には吸 収線量率 $\mu \, \text{Gy/h}$ として表示するのが適していると 思われるが、測定結果そのものを校正係数により補 正を行い、そのままの値で表した。

4.2 環境試料中の全β放射能濃度

原子炉施設およびトレーサー・加速器棟よりの排 水経路に沿ったサンプリング地点、原研前上流、原 研前および原子炉より 1.5 km にある小阪ポンプ場 において採取した陸水、植物および排水溝沈泥土の 全 β 放射能濃度を第28~30表に示した。陸水(第 28表)の全 β 放射能濃度は(1.6~3.5)×10⁻⁴Bq/m ℓ であった。植物試料(第29表)は、イネ科などの下 草(カモジグサ)およびサンゴジュ科、ツバキ科の植 物について調査し、これら植物の葉茎部の全 β 放射 能濃度は、2.0~9.1 Bq/g 灰分であった。採取場所、 採取時期によって同一種を試料とすることが難しく、 全 β 放射能濃度の変動が大きい。そこで、一年を通 じて採取が可能なものとして"ツバキ"、"サンゴジュ" を選んだが、ツバキの全 β 放射能濃度は下草類の全 β 放射能濃度の1/2 以下となっている。このことは 全β放射能濃度がカリウム含有量などに大きく左右 されていることに起因していると思われる。排水溝 などの沈泥土(第 30 表)については 0.59 ~ 0.82 Bq/g 乾土と採取地による差はあまりなかった。

第7図 原子炉施設周辺における測定点

第27表 環境γ線線量当量率の変動

(10^{-2})	μ Sv/h)
-------------	------------	---

				· · · ·
No.	測定位置		変 動 範 囲	年平均值
1	原子炉より北西	40 m	6.93 ~ 8.88	7.80 ± 0.55 *
2	原子炉より北東	50 m	7.45 ~ 9.07	8.34 ± 0.49
3	原子炉より南西	50 m	7.05 ~ 8.96	7.67 ± 0.46
4	原子炉より南東	50 m	6.88 ~ 8.94	7.62 ± 0.66
5	原子炉より南	200 m	5.19 ~ 7.22	6.03 ± 0.58
6	原子炉より北東	300 m	8.04 ~ 10.00	8.85 ± 0.50
Ø	原子炉より北東	1500 m	6.93 ~ 8.50	7.58 ± 0.55
8	原子炉より北西	500 m	6.15 ~ 8.71	7.33 ± 0.72
9	原子炉より北東	700 m	6.91 ~ 8.77	7.77 ± 0.46
10	原子炉より北西	900 m	7.33 ~ 8.85	7.88 ± 0.51
1	原子炉より北西(6F)	50 m	6.57 ~ 8.46	7.43 ± 0.54

▹ 標準偏差

第8-2図 野外環境における月間平均γ線線量当量率の変動

-33-

第28表 図	を水の全角	8放射能濃度
--------	-------	--------

	蒸発	曵渣 量	カリウム	ム含有量	全β放	討能濃度
採水場所	(mg	/0)	(mg	J/Q)	(10 ⁻⁵ E	Bq/mℓ)
	変動範囲	平均值	変動範囲	平均值	変動範囲	平均值
小 阪 ポ ン プ 場	238 ~ 312	274 ± 30 *	10.9 ~ 12.9	11.7 ± 0.93*	23.4 ~ 29.9	27.0 ± 3.4 *
原子力研究所前	156 ~ 233	194 ± 33	6.90 ~ 7.60	7.28 ± 0.30	16.4 ~ 18.4	17.4 ± 0.81
原子力研究所上流	221 ~ 290	257 ± 29	8.03 ~ 11.8	10.0 ± 2.00	23.2 ~ 34.5	28.2 ± 4.8

* 標準偏差

-34-

Vol. 38 (2001)

1. 1.					
	種類	生体水分	植物当灰分	灰分当カリウム	全β放射能濃度
採取场所	(科)	(%)	(%)	(%)	(Bq/g 灰分)
	サンゴジュ	40.2 ~ 71.0	8.0 ~ 13.0	5.3 ~ 15.1	2.03 ~ 3.49
小阪ホンノ場		(57.7 ± 13.0 *)	(10.2 ± 2.1)	(9.9 ± 4.0)	(2.9 ± 0.6)
		73.4 ~ 84.1	9.5 ~ 23.7	21.7 ~ 33.3	6.23 ~ 9.10
医了古顶内正共	1 *	(77.8±5.1)	(16.4 ± 6.8)	(27.3 ± 5.5)	(7.6 ± 1.4)
原于刀研充所削		54.6 ~ 69.7	7.1 ~ 10.8	7.4 ~ 12.6	2.68 ~ 3.09
		(60.0 ± 6.9)	(8.6 ± 1.7)	(9.2 ± 2.4)	(2.8 ± 0.2)

第29表 植物の全β放射能濃度

() 平均值

* 標準偏差

第30表 排水経路における沈泥土の全β放射能濃度

(Bq/g乾土)

採取地		平均值
小 阪 ポ ン プ 場	0.61 ~ 0.73	0.66 ± 0.05 *
原子力研究所前	0.60 ~ 0.82	0.68 ± 0.10
原子力研究所上流	0.59 ~ 0.75	0.66 ± 0.07

* 標準偏差

第31表 陸水中のγ放射性核種濃度

(10^{-₄}Bq/mℓ)

		· · · · · · · · · · · · · · · · · · ·		(10 24/
採取場所	採取年月日	K-40	Bi-214	Cs-137
	平成 12 年 4月	2.9 ± 0.3	ND	ND
広マムかわざ 5 5 5	7月	2.1 ± 0.2	ND	ND
原于刀研究所工流	10 月	2.4 ± 0.2	ND	ND
	平成 13 年 1月	2.3 ± 0.2	ND	ND
	平成 12 年 4月	1.8 ± 0.2	ND	ND
医了力研究系统	7月	2.1 ± 0.2	ND	ND
原于刀研充所削	10 月	1.7 ± 0.2	ND	ND
	平成 13 年 1月	2.0 ± 0.3	N D	ND
	平成 12 年 4月	3.0 ± 0.3	ND	N D
·) //도°	7月	3.0 ± 0.3	ND	ND
小阪ホンノ場	10 月	3.2 ± 0.3	ND	ND
	平成 13 年 1月	2.6 ± 0.2	ND	ND

ND:検出限界以下

-35-

											(Bq/kg)
採取場所	採取年月	試 料	K-40	Be-7	Cs-137	Ac-228 (Th	Pb-212 (Th)	TI-208 (Th)	Ra-226(U)	Pb-214 (U)	Bi214 (U)
	平成12年 4月	サンゴジュ	78.0 ± 1.2	6.26 ± 0.32	N D	1.33 ± 0.12	0.29 ± 0.02	0.13 ± 0.02	0.73 ± 0.2	0.46 ± 0.03	ND
	7月	サンゴジュ	122 ± 1.9	3.31 ± 0.51	N D	0.70 ± 0.19	0.10 ± 0.03	N D	ND	0.30 ± 0.05	N D
原	10月	サンゴジュ	150 ± 2.3	6.53 ± 0.60	N D	1.53 ± 0.19	0.38 ± 0.04	0.15 ± 0.03	ND	0.52 ± 0.07	0.66 ± 0.08
子	平成13年1月	サンゴジュ	115 ± 2.2	10.8 ± 0.87	ND	ND	0.22 ± 0.04	N D	ND	0.39 ± 0.06	ND
カ	平成12年 4月	ツバキ	71.9 ± 2.3	4.52 ± 0.63	N D	4.14 ± 0.31	2.56 ± 0.08	0.91 ± 0.06	2.07 ± 0.46	1.82 ± 0.10	2.30 ± 0.14
研	7月	ツバキ	71.1 ± 1.7	3.55 ± 0.90	N D	3.13 ± 0.22	1.28 ± 0.04	0.42 ± 0.04	1.42 ± 0.32	0.92 ± 0.06	1.02 ± 0.08
究	10月	ツバキ	83.7 ± 2.2	4.57 ± 0.72	N D	5.96 ± 0.31	3.87 ± 0.07	1.35 ± 0.06	3.42 ± 0.43	3.09 ± 0.10	3.12 ± 0.13
所	平成13年1月	ツバキ	73.8 ± 2.5	13.2 ± 0.99	N D	4.42 ± 0.31	3.74 ± 0.08	1.35 ± 0.07	2.59 ± 0.50	1.39 ± 0.11	1.96 ± 0.13
構	平成12年 4月	カモジグサ	180 ± 4.0	6.48 ± 0.88	N D	N D	N D	ND	N D	ND	N D
内	7月	カモジグサ	171 ± 4.6	ND	N D	N D	ND	ND	ND	ND	N D
	10月	カモジグサ	85.3 ± 2.6	2.62 ± 0.71	N D	ND	ND	ND	N D	ND	N D
	平成13年1月	カモジグサ	192 ± 4.3	13.7 ± 1.39	N D	N D	ND	ND	N D	N D	ND
小ポ	平成12年 4月	サンゴジュ	39.9 ± 1.0	3.47 ± 0.32	N D	1.17 ± 0.12	0.38 ± 0.03	0.14 ± 0.02	0.69 ± 0.22	0.31 ± 0.04	0.45 ± 0.05
~	7月	サンゴジュ	80.0 ± 2.6	11.9 ± 1.14	N D	4.47 ± 0.33	1.43 ± 0.07	0.47 ± 0.05	ND	1.30 ± 0.10	1.53 ± 0.13
フ	10月	サンゴジュ	99.0 ± 3.1	5.82 ± 1.16	N D	3.48 ± 0.44	1.25 ± 0.08	0.32 ± 0.07	ND	1.22 ± 0.11	1.35 ± 0.14
阪場	平成13年1月	サンゴジュ	108 ± 2.7	10.5 ± 0.93	N D	2.13 ± 0.28	0.60 ± 0.06	0.18 ± 0.05	ND	0.73 ± 0.08	0.72 ± 0.14

第32表	植物試料の	γ 放射性核種濃度

ND:検出限界以下

										(Bq/kg 乾土)
採取場所	採取年月	K – 40	Be-7	Cs-137	Ac-228 (Th)	Pb-212 (Th)	TI-208 (Th)	Ra–226 (U)	Pb-214 (U)	Bi-214 (U)
原 子 上 力 研 究 流	平成12年 4月 7月 10月 平成13年 1月	661 ± 15.8 592 ± 14.3 597 ± 14.1 626 ± 14.9	15.1 ± 3.39 25.7 ± 4.61 N D N D	N D N D N D N D	14.7 ± 1.68 17.3 ± 1.62 16.5 ± 1.58 19.6 ± 1.66	11.6 ± 0.42 11.0 ± 0.37 10.8 ± 0.37 11.9 ± 0.40	$4.41 \pm 0.34 4.12 \pm 0.32 4.76 \pm 0.33 4.77 \pm 0.33$	13.3 ± 2.94 11.0 ± 2.87 11.3 ± 2.63 16.4 ± 2.81	7.35 \pm 0.56 6.99 \pm 0.47 8.57 \pm 0.54 8.73 \pm 0.61	N D 9.46 ± 0.78 N D 9.96 ± 0.72
Рл 										
原 子	平成12年 4月	608 ± 15.6	13.2 ± 4.37	ND	19.3 ± 1.80	10.0 ± 0.42	4.25 ± 0.33	9.09 ± 3.00	8.46 ± 0.54	7.70 ± 0.85
力前	7月	635 ± 14.1	20.4 ± 4.02	N D	19.5 ± 1.54	10.4 ± 0.38	4.11 ± 0.43	11.2 ± 2.81	7.88 ± 0.48	ND
研	10月	639 ± 14.7	ND	ND	18.8 ± 1.66	11.1 ± 0.38	4.16 ± 0.31	17.8 ± 2.87	7.99 ± 0.52	9.15 ± 0.67
究 所	平成13年1月	590 ± 14.4	15.9 ± 3.91	1.19 ± 0.24	16.0 ± 1.63	10.7 ± 0.38	4.07 ± 0.37	9.81 ± 2.67	7.62 ± 0.49	ND
小阪ボ	平成12年 4月 7月	660 ± 16.6 632 ± 15.7	N D 24.1 ± 5.94	N D N D	16.1 ± 1.91 14.0 ± 1.72	10.0 ± 0.41 10.2 ± 0.39	3.79 ± 0.33 3.37 ± 0.32	11.6 ± 2.91 9.53 ± 2.72	7.02 ± 0.56 6.42 ± 0.55	8.13 ± 0.79 7.35 ± 0.69
>	10月	601 ± 15.5	ND	ND	12.7 ± 2.05	9.02 ± 0.38	3.61 ± 0.37	11.0 ± 2.76	7.35 ± 0.49	7.65 ± 0.70
プ 場	平成13年1月	615 ± 15.6	ND	N D	13.5 ± 1.66	9.55 ± 0.40	3.71 ± 0.34	ND	5.04 ± 0.49	7.57 ± 0.73

第33表 河川沈泥土試料のγ放射性核種濃度

N D:検出限界以下

-36-

Vol. 38 (2001)

4.3 環境試料のγ線核種分析³⁾

陸水、植物および沈泥土のγ線核種分析結果を第 31~33 表に示した。陸水試料について、検出され た核種は⁴⁰Kのみで、¹³⁷Cs、²³⁸U および²³²Thのい ずれの崩壊生成核種も検出されなかった。植物試料 のγ線核種分析結果においても、検出された核種は ⁴⁰K、⁷Be などの自然放射性核種のみで、チェルノ ブイリ原発事故の影響^{1,3)}もなくなったものと思わ れる。"カモジグサ"など下草類と"ツバキ"につ いての核種分析結果の相違は、採取時期によって多 少異なる⁴¹が、全β放射能濃度についても見られる ように、ツバキの⁴⁰K 濃度が下草である"カモジグ サ"の濃度の約1/2の値を示し、ツバキなど樹木類 と下草類の間に特異性が見られるように思われる。

5.まとめ

平成12年度の原子炉施設およびトレーサー・加 速器棟における放射線管理に関する結果の概要を報 告した。原子炉施設周辺の定期の環境放射能調査に おいて、自然放射性核種以外の長半減期放射性核種 による影響はなくなったものと思われる。

環境γ線線量の測定は、フイルムバッジ、TLD およびエリアモニタなどを用いて実施している。

参考文献

- 1)森嶋彌重,古賀妙子,久永小枝美,丹羽健夫, 河合廣,他5名;近畿大学原子力研究所年報, 23,7~19(1986)
- 2) 放射線管理マニュアル(1995)

-37-

- 3)森嶋彌重,古賀妙子,久永小枝美,三木良太, 河合廣,他3名;近畿大学原子力研究所年報, 24,65~83(1987)
- 4)森嶋彌重,古賀妙子,久永小枝美,三木良太, 河合廣,他3名;近畿大学原子力研究所年報, 27,27~46(1990)