原子力施設からの中性子・2次ガンマ線スカイシャインの線量評価

Skyshine Dose Estimation of Neutrons and the Secondary Gamma-Rays from the Nuclear Facility

東海大学工学部応用理学科エネルギー工学専攻	吉田	茂生			
大阪大学大学院工学研究科	田中	良平、村	抽 勲		
近畿大学原子力研究所	伊藤	哲夫、伊	藤眞、	近藤	嘉秀、
	橋本	憲吾、堀	 印 哲	 月	
近畿大学理工学部	小川	喜弘			

1. 研究目的

放射線発生施設内で生じた中性子やガンマ線 は施設建屋上部等の主に遮蔽の希薄な部分を透 過し、直接成分として、または、大気・大地等 の散乱によってスカイシャイン・グラウンドシ ャイン効果の成分として、施設周辺の環境放射 線(バックグラウンド)線量に影響を及ぼすこ とになる。さらに加えて、中性子はその透過・ 伝播過程で高エネルギーの2次ガンマ線をも生 成することとなる。これらの中性子・ガンマ線 の伝播過程の解析と線量の評価は、公衆への被 ばく低減化と施設の合理的かつ適切な遮蔽設計 を検討する上での重要な課題と言える。これま での研究結果では中性子評価に対して2次ガン マ線の発生・伝播過程や線量分布の評価につい ての測定データは稀少で、モンテカルロ計算等 による解析結果に依存することが多い。

本研究の目的は、様々な放射線発生施設の1 つとしての原子炉(熱中性子源)から放出され、 建屋遮蔽壁を透過する放射線や周囲の物質構成 元素原子核との相互作用(主として(n, γ)反応) から派生する高エネルギー2次ガンマ線の公衆 への伝播過程を分析し、それらの線量評価を行 うことである。

2. 実験方法

2-1. 原子炉(線源)条件

熱中性子源としての原子炉は、遮蔽上蓋の 20cm φ 可動プラグを引き抜き、炉心部で発生し た中性子やガンマ線が中央ストリンガー部を貫 通し、炉頂より上方向に放出させた状態で、原 子炉熱出力 1 Wの定常条件にて運転され、その 下で周辺環境中での放射線(中性子線・ガンマ 線)測定を行った。また、炉室内南側壁面(壁 面より数 10cm 内)には原子炉始動用中性子源 として用いられている Pu-Be 中性子源 37GBq (中性子発生量 1.4×10⁶ n/s)が貯蔵箱内に格 納され、始動時以外の原子炉定常運転時及び停 止時には常時この位置に保管された状態にある。 2-2. 中性子線・ガンマ線測定位置

原子炉施設周辺環境における中性子線・ガン マ線の測定位置を図1に示す。図中の白丸5点 が中性子線測定点、黒丸5点がガンマ線測定点 で、それぞれの炉心からの水平距離(m)を同表中 にまとめている。中性子線測定点N4,N5及 びガンマ線測定点G4,G5は原子炉室内(屋 内)にて測定し、また、中性子線測定点N3で は第22号館東側の原子炉建屋を直接見るテラ ス部分を利用し、中性子線量垂直分布も測定し た。他の各3測定点にて屋外での測定を行った。 ここで、炉心より約7.5m 位置に建屋側壁が位 置している。

2-3. 使用検出器及び測定方法

中性子線量測定用には球形 ³He 内蔵レムカウ ンタ(富士電機社製)を、ガンマ線測定用には Hp-Ge 同軸型検出器(PGT 社製)と5"× 5"NaI(TI)検出器(応用光研工業㈱社製)を用い た。各測定点においてそれぞれに MCA を用い た波高分布測定を行った。Hp-Ge 検出器による ガンマ線波高分析の核種弁別結果から、2次ガ ンマ線の発生・伝播経路を推定した。また、 NaI(TI)検出器による波高分布は応答関数による アンフォールディング処理によってエネルギー スペクトルに変換し、線量評価を行うことを目

図1. 原子炉施設周辺環境における中性子線・ ガンマ線測定位置と測定時原子炉状態

標としている。

実験は、原子炉運転時の測定をフォアグラウ ンド(FG)、停止時の測定をバックグラウンド (BG)として行った。そして、これらの両者 の差から原子炉運転による漏洩放射線に伴った 環境放射線レベルへの寄与(線量)を評価した。 また、最終的にはアンフォールディング処理の 後、ガンマ線線量の距離依存性を考慮した、線 量分布を求める必要があるが、その前段階とし て、分布状態を大まかに把握するために、次の 簡易方法にて評価を行った。図2に示す様に、 TI-208 の 2615keV を超えるエネルギーの天然 放射性核種は存在しない。また、高エネルギー の2次ガンマ線はこれ以上、すなわち 3000keV 以上の領域にフォトピークが現れ、その後、コ ンプトン領域が続くこととなる。従って、ガン マ線のエネルギースペクトルに大きな変化が無 いと仮定すると 3000keV 以上の波高分布領域

Gamma-ray energy (keV)

図2. Nal(Tl)検出器波高分布による 線量分布簡易評価方法の説明図-1

図3. Nal(Tl)検出器波高分布による 線量分布簡易評価方法の説明図-2

熱中性子・ガンマ線線量率分布

の総カウント数(率)は線量(率)と相関(比 例関係)を持つものと考えられる。図3にこれ までに行った測定データ(線量評価済み:●) と解析データ(○)並びに測定波高分布の 3000keV以上領域の積分値(×)との関連を示 す。これを見てもほぼ比例関係があるものと仮 定して評価できるものと考えた。

3. 結果·検討

3-1. 炉心上方垂直方向における熱中性子・ ガンマ線空間線量分布

炉心を貫く中央ストリンガー内及び炉頂上方 部における垂直方向の熱中性子・ガンマ線の線 量分布図を図4に示す。熱中性子束は Au 箔の 放射化量から算出され、換算係数を乗ずること で評価した。また、ガンマ線は TLD 素子を用い た測定を行い、読取値から ⁶⁰Co ガンマ線線量換 算値で補正した。

3-2. 中性子空間線量率分布

図5に原子炉1W定常運転時の周辺環境(原 子炉南側)における、原子炉(炉心)中央から の距離(m)に対する中性子線量率(µSv/h)の分 布を示している。ここでNET値は原子炉起動 時のFG値から原子炉停止時のBG値を距離毎

図5. 中性子線量率分布-水平方向

に差し引いたもので、正味原子炉建屋からの漏 洩中性子線量の距離分布を表している。また、 ここでBG値が僅かながら距離に依存した 分布を示しているのは、図1の位置関係からも 明らかな通り、原子炉南側建屋壁面には始動用 中性子源 Pu-Be の格納場所が位置しており、こ の線源影響によるものである。炉室内の1点 (6m)を除いた、屋外4測定点のデータから「ベ き乗関数」によるフィッティングによって中性 子線量率 D(μ Sv/h)分布は距離の関数 D(r)=0.11r^{-0.75}とした近似式として導出できる。 また、図6には第22号館テラス部分を利用し た中性子線量の垂直分布測定の結果についても 示しておく。

3-3. ガンマ線波高分布

図7に NaI(TI)検出器及び Hp-Ge 検出器によって測定された各距離ごとの波高分布を示す。 同図上に表示するため各距離の波高分布縦軸を それぞれ 10 倍ずつかさ上げして表示している。 すなわち、BG(×1), 3m(×10), 17m(×10²), 38m(×10³), 53m(×10⁴)と上下図ともに倍数表 示している。また、実際の測定は 10000keV 程 度まで測定レンジをとって行ったが、8000keV までの比較で、NaI(Tl)(上図)と Hp-Ge(下 図)との横軸エネルギーレンジ(keV)を合わせて 表示している。

NaI(TI)検出器による波高分布において、 3000keV 以上の領域に高エネルギー2次ガンマ 線に起因した、明らかにBG波高分布とは異な った構造を示していることがわかる。特に 6500 ~8000keV の領域に3つのこぶ (フォトピー ク)が見られ、それ以下コンプトン領域が続い ている。これらの3つのこぶの部分は、Hp-Ge 検出器による波高分析から ⁵⁶Fe(n, r)反応から の 7279,7631,7646keV のガンマ線による全エ ネルギーピーク、シングルエスケープピーク、 ダブルエスケープピークであることがわかる。 また、NaI(TI)検出器ではコンプトン構造に埋ま ってしまい検出することができなかったガンマ 線も Hp-Ge 検出器によって ¹⁶O(n,n'r)反応か らの 6129keV、⁵⁶Fe(n, r)反応からの 6018keV、

図7. 原子炉からの距離に対する NaI(TI)検 出器(上)及び Hp-Ge 検出器(下) によるガンマ線波高分布の変化

- 11 -

^{nat}Si(n, r)反応からの 4934,3539keV、¹H(n, r) 反応からの 2223keV のガンマ線の全エネルギ ーピークやそれに付随したシングル・ダブルエ スケープピークとして検出されている。これら 波高分布に見られる構造(コンプトン分布、離 散ピーク)は線源となる原子炉からの距離の増 加に伴い、消失しBG分布に近い構造となるが、 53m 位置においても Hp-Ge 検出器による長時 間測定(=160,000 秒)から ⁵⁶Fe(n, r)反応か らの 7631,7646keV のガンマ線に関連したピー クがわずかに検出されている。そして、これら の検出されたガンマ線による核種分析から標的 (2次ガンマ線発生源)となる核種が、鉄筋コ ンクリート構造材や大地中に多く含まれた元素 Fe,Si,H₂Oの原子核であることが推定できる。

また、NaI(TI)検出器波高分布による 3000keV 以上領域積分値と原子炉からの距離との依存性 を図 8 に示す。屋外での測定値(>7.5m)のみ で簡易評価を行うと、距離(r)の増加に伴いネ ットカウント率は「ベキ乗関数」で減衰してい ることが算出され、線量分布も同様となるであ ることが推定できる。

さらに、Hp-Ge 検出器波高分布から分析され た代表的な離散ピーク(全エネルギーピーク) のピークエリアネットカウント率と距離との依 存性を図9に示す。2つのBG核種ピーク分布 (最上図)は、距離に依存せずほぼ一定である ことは明白なことである。それ以外のFG核種 ピーク分布(中段図、最下図)については距離 の増加に伴い、「ベキ乗関数 (r-n)」で減衰して いる。減衰傾向から推定して2つのピーク群に 分類でき、比較的速い natSi,56Fe による群と比較 的遅い¹H,¹⁶O による群とである。速い群は原子 炉を覆った建屋構造材の鉄筋コンクリート成分 と考え、遅い群は環境全体に広く分布した水 (H₂O)成分と考え、広範囲に豊富に存在する 故に減衰が抑制され遅くなって見えているもの と考える。

今後は線源としての建屋構造材面における線 量分布の測定や炉頂中央ストリンガープラグを 閉孔条件として原子炉自体からの直接線の寄与 を考慮したスカイシャイン効果の測定・分析を 行うとともに、これまで得られたデータを基に モンテカルロ計算(MCNP コード等)による解 析を行い、比較していく予定にある。

図8. 原子炉からの距離に対する NaI(Tl) 検出器ガンマ線波高分布による 3000keV 以上領域積分値との関係

図9. 原子炉からの距離に対する Hp-Ge 検出器ガンマ線波高分布に検出され た代表的離散ピークエリアネットカ ウント率との関係