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Abstract 

There have been two major mixture models used for image thresholding, the Gaussian mixture (G-G 
model) and the Poisson mixture (P-P model). In this report, we quantitatively compare the performance 
of three mixtures, the G-G model, the P-P model, and a new additional Poisson and Gaussian mixture 
(P-G model) proposed here. The minimum description length (MDL) is used to assess the performance 
of the models. The images used here are 76 infrared images from National Oceanic and Atmospheric 
Administration (NOAA) satellites and 62 images from a visible channel of the Japanese Geostationary 
Meteorological Satellite (GMS, Himawari). It was found that the G-G model is generally the most excellent 
and the P-G model is the next, whereas the P-P model may not be applicable to the 256-grey level images. 
However, the G-G model is not always so good when the EM algorithm is used to estimate the mixtures. 
It is because the algorithm is very sensitive to the choice of the initial parameters values. 

1. Introduction 

Thresholding is an important approach to segment gray level images(l, 2, 3, 4, 5) . In the global thresholding 
methods based on the gray level histogram, it is usually assumed that the histogram is obtained from a 
mixture population(6) . These methods typically use a Gaussian mixture (G-G model) (7, 8, 9, 10) . 

On the other hand, criticizing the G-G model for not having any justification, Pal et al. modeled the 
image histogram as a mixture of two Poisson distributions (P-P model) based on the image formation 
theory and developed several thresholding methods(ll, 12, 6) . They compared the performance of their P-P 
model-based methods with G-G model-based methods and judged that their methods are better than the 
others(ll, 12) . Their judgment, however, was given by inspecting with their eyes whether the images were 
suitably segmented or not, and by using several real 32-grey levels images. 

It is necessary to evaluate histogram models more quantitatively and by using much more real images 
with more gray levels, e.g. 256 levels images which we come across much more often than 32-gray-levels 
images. To our knowledge, however, there have not been such studies. One of the main reasons may be 
that the true threshold of the histogram of an actual image is unknown in most cases. 

Is there any quantitative way to evaluate the performance of the mixture model without precise knowl­
edge of the true threshold? It must be reasonable to think that we will get better segmentation when we find 
a better estimation of the population mixture. If so, we can assess the performance of mixture models for 
image segmentation quantitatively by measuring how closely the histogram fits the estimated distribution 
of the model. 

In this report, we quantitatively compare the performance of the three models, that is, the G-G model, 
the P-P model and a new additional Poisson-Gaussian mixture (P-G model) proposed here, using the MDL 
as a -measure how well mixture models fit the histogram. The images used here are 76 NOAA infrared 
images and 62 images from a GMS visible channel of which the number of gray levels is 256. 

A problem of the P-G model is that it is a mixture of a discrete distribution and a continuous one. 
However, the problem is not so crucial, because the Gaussian distribution is always discretized in the 
process of finding the best mixture the histogram fits and we don't have to restore it to the continuous 
one. Further, the mixture model is not for explaining image formation mechanism but just for representing 
histograms. 
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We note t hat there are reports in which other mixtures, the gamma mixture(1 3) and the binomial 
mixture(14) , are used for thresholding. However , they are omitted from our consideration because it is 
difficult to decide one of the two paramet ers of the gamma distributions coherently(13) and a binomial 
distribution is virtually the same as a Poisson distribution when the number of the pixels of an image is 
large. 

2. Population mixture models 

As shown in Figure 1, not a few NOAA or GMS image histograms are positively skewed in the lower part 
of gray levels, and symmetrical in the upper part . The lower part does not always approximat e a Gaussian 
distribution and the upper part is not so simple as a one-parameter Poisson distribution. Therefore, we 
may need a heterogeneous mixture model which consist s of different kinds of components for expressing 
t he histograms. However , any het erogeneous mixture model has not been proposed . Therefore, we add t he 
heterogeneous P -G model to the existing G-G and P-P models and compare their performance. 
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Figure 1: A OAA infrared image and its gray level histogram . 
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Letting the components of a mixture be Pi(xI Oi) (i = 1, 2) where ~x Pi(x IOi ) = 1, the mixture is written 
as 

(1) 

where C1, C2 2 0, C1 + C2 = 1 and Oi denotes the parameter vector of Pi . The components of the G-G model 
are given by 

where Oi = (P,i , O'i)t (i = 1, 2) , those of the P-G model are 

PI (xl tld = V
X exp[ - v]lx !, 

P2(x I02) = exp[-(x - p, )2/(20'2)l/ (VhO') , 

where til = v, O2 = (p" O')t , and those of the P-P model are 

where tli = Vi , (i = 1, 2). 

3. Methods 

(2) 

(3) 

(4) 

(5) 

We use two methods, i. e. the round robin method (RB) and the E11 algorithm (EM) , to obtain the optimum 
estimation of a mixture. T hen we use the MDL to assess the performance of the models . 
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3.1 Round robin method 

We call the next method the RB method. First, we define a divergence D(hllp) between a histogram h(x) 
and the mixture distribution p(x) of a model by 

D(hllp) = L hex) log ;i:l 
x 

(6) 

and assume that the approximation below holds 

~ h(x) 
Da(hllp) ~ ~ h(x) log (18 ) 

x-::;'T CIPI X 1 

~ h(x) 
+ ~ h(x) log (18 )' 

x>T C2P2 X 2 
(7) 

where 0 ~ T ~ 255 is a threshold. N ext, we get the optimum parameters Ci and 8i by solving the 
simultaneous equations 8Da/8ci = 0,8Da/88i = 0 so that the resultant p(x) gives the minimum Da. 
Calculating D(hllp) by substituting the p(x) into Eq. (6), we rewrite the D(hllp) as D(T). We repeat the 
procedures for all the possible values of T(= 0,1,··· ,255), and find T = argminT D(T). The resultant p(x) 
is the optimum estimation of the mixture. We denote it as p( x). 

In the RB method, the overlap between the components is ignored by assuming that the truncation 
errors are neglected. In other words, it is assumed that all the pixels in one cluster divided by a threshold 
T are produced by one component distribution and those in the other cluster are produced by the other 
component. Therefore, the estimation error gets larger as the overlap increases. 

3.2 EM algorithm 

The EM algorithm used for estimating the components associated with a mixture(15, 16) is useful for image 
segmentation(17, 18, 19) . Although the EM method is powerful even when the components of a mixture 
overlap each other, it is very sensitive to the choice of the initial values of parameters and tends to fall into 
a local minimum. Therefore, the estimation error can be fairly large when it falls into a local solution. 

3.3 MDL for assessing the performance of the models 

The maximum likelihood principle used in the EM algorithm is equivalent to the minimum divergence 
principle used in the RB method. Therefore, it is appropriate to use the divergence D(hllp) between the 
histogram h( x) and the estimated mixture p( x) of a model to assess the performance of the model. At the 
same time, we should consider the number, k, of parameters to assess the performance because, in general, 
the more parameters the model has, the better performance it will have. Hence, we assess the performance 
of the models with Rissanen's MDL(20, 21) which consists of the divergence and the terms including k: 

MDL~D(hIIA) klogN ~ 
P + 2N + 2N' 

where N is the number of data, i.e. the number of the pixels. 

4. Experiments 

(8) 

We here compare the performance of the three models using 76 NOAA images and 62 GMS images. Con­
sidering its sensitivity to the initial parameter values, when we use the EM methods, we repeat the EM 
procedure 10 times per image changing the initial values at random. 

4.1 With or without O-cutting operation 

Like as an example shown in Figure 1, there are fairly many histograms of NOAA and GMS images whose 
values below a certain gray level vanish. The performance of the models might be affected by cutting the 
region of O's (O-cutting operation). Therefore, we assess the performance of the models both for the original 
histogram and for the histogram after the O-cutting operation (referred to as the O-cut histogram). 

Figure 2 shows, as an example, the optimum mixture obtained by RB method by using the original 
histogram (in column (a)) and by using the O-cut histogram (in column (b)) of the image used in Figure 1. 
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In both columns, from the top, the results of the G-G model, of the P-G model, and of the P-P model are 
shown. The solid lines show the optimum mixture and the dotted lines the histograms. The MDL value is 
shown in each graph. 

In this figure, the performance of the G-G model is the best, that of the P-G model is the next and that 
of the P-P model is the last for the original histogram, whereas the G-G model gives the place to the P-G 
model for the O'-cut histogram. 
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Figure 2: The estimated mixture from the image histogram in Figure 1 

Hereafter, we add a suffix '1' to RB and EM as RBI and EMI when the methods are used without 
O-cutting operation and '2' as RB2 and EM2 when they are used with O-cutting operation. 

4.2 Comparison of the models 

We measured the goodness of fit between the histogram and the optimum mixture of a model using the 
MDL. In each figure, the model having the minimum MDL value was graded A. The number of times that 
each model got the grade A are shown in Table 1 (when the RB methods were used) and in Table 2 (when 
the EM methods were used). 

In the significance tests conducted in this report, the hypotheses are rejected when the statistic is 
significant at a level less than .05. 

First, we set up the null hypothesis that PGG = PPG = Ppp, where PGG, PPG, or PPP is the population 
proportion that the G-G model, the P-G model, or the P-P model gets the grade A, respectively. In every 
method of RBI, RB2, EMI and EM2 in both Table 1 and Table 2, the X2 statistic was clearly significant at 
a significance level less than .001. This means that the performance of the G-G model and the P-G model 
are, in general, better than that of the P-P model in every method. 

Next, we consider the null hypothesis that PGG = PPG. In Table 1 and Table 2, the hypothesis was 
rejected at a level less than .001 in every· RB method and EM method. Therefore, we find that the 
performance of the G-G model is the best in all of the cases except in the EM methods for GMS images, 
where the P-G model is the best. 
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Table 1: The performance of the models for the RB methods. 

Frequency (%) 
Model NOAA images GMS images 

RBI RB2 RBI RB2 
G-G 58 (76 %) 48 (63 %) 62 (100 %) 57 (92 %) 
P-G 16 (21 %) 28 (37 %) o (0 %) 5 (8 %) 
P-P 2 (3 %) o (0 %) o (0 %) o (0 %) 

Table 2: The performance of the models when the EM procedure was repeated 10 times. 

Frequency (%) 
Model NOAA images GMS images 

EMI EM2 EMI EM2 
G-G 412 (54 %) 436 (57 %) 228 (37 %) 248 (40 %) 
P-G 245 (32 %) 317 (42 %) 392 (63 %) 372 (60 %) 
P-P 103 (14 %) 7 (1 %) o (0 %) o (0 %) 

Furthermore, we examined the effects of the O-cutting operation on the performance of the models. The 
null hypotheses of homogeneity that HRB : PGG(RB I) = PGG(RB2), PPG(RB I) = PPG(RB2), ppp(RBI) = 
ppp(RB2), and HEM: PGG(EMI) = PGG(EM2), PPG(EMI) = PPG(EM2), ppp(EMI) = ppp(EM2) were set 
up, where P**( •• ) is the population proportion that the model ** gets the grade A when the method •• 
was used. By X2 testing, the hypothesis HRB was rejected at a level less than .02 for the NOAA images and 
was rejected at a level less than .05 for the GMS images. The hypothesis HEM was rejected at a level less 
than .001 for the NOAA images but was not rejected for the GMS images. 

Therefore, we can say that the O-cutting operation is effective in the RB methods in such a way that 
the operation relatively lowers the performance of the G-G model and relatively raises the performance of 
the P-G model when the RB method was used. In the EM methods, on the other hand, the operation is 
effective for the NOAA images, and raises the performance of both the G-G model and the P-G model, but 
is not effective for the GMS images. 

The inconsistency between the RB methods and the EM methods or within the EM methods may be 
because the EM algorithm reaches fairly often local solutions. We consider this problem in the next section. 

4.3 Reduction of the effects of the local solutions 

Here, in order to reduce the effect of the local solutions of the EM algorithm, we repeated the EM procedure 
changing the initial values of the parameters until the EM algorithm was judged to have reached the global 
solution. The results are shown in Table 3. 

Table 3: The performance of the models when the EM algorithm was judged to have reached the global 
solution. 

Frequency (%) 
Model NOAA images GMS images 

EMI EM2 EMI EM2 

G-G 60 (79 %) 53 (70 %) 49 (79 %) 48 (77 %) 
P-G 16 (21 %) 23 (30 %) 13 (21 %) 14 (23 %) 
P-P o (0 %) o (0 %) o (0 %) o (0 %) 

The same tests in Section 4.2 were conducted. The results here are more clear-cut than those in Table 
2. The hypothesis Pcc = Ppc was rejected at a level less than 0.001 in every EM methods and the effects 
of the O-cutting operation was not significant for both NOAA images and GMS images. 
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5. Summation and Conclusion 

In Table 4, we showed the best model for each method and in Table 5, we showed the effects of the O-cutting 
operation. In both the tables, EMB and EMc mean the EM method used in Section 4.2 and Section 4.3, 
respectively. In Table- 5, signs + and - denote an increase and a decrease in performance of the model, 
respectively and ** denotes no significant effects of the operation on the model. 

Table 4: The best performance models. t denotes ex < .001. 

Image 

Table 5: The effects of the O-cutting operation. t, tt and t t t denote ex < .001, ex < .02, and ex < .05, 
respectively. 

Image NOAA images GMS images 
Method RB EMB EMc RB EMB EMc 

G-G _TT +f ** _ fTT ** ** 
P-G +TT +t ** + fTT ** ** 
P-P ** _ t ** ** ** ** 

The conclusive remarks are then as follows. 

1. Generally speaking, the G-G model has the best performance, the P-G model is the next, and the P-P 
model is the last for the total 138 meteorological images with 256-grey levels. 

2. However, the G-G model gave the place to the P-G model when the EM algorithm was used for the 
GMS images. It,'illust be due to local solutions. 

3. The O-cutting operation lowers the performance of the G-G model and raises that of the P-G model 
when theRB method was used. On the other hand, when the EM method was used, the results 
were complicated. It suggests that there is still a possibility that the EM algorithm falls into a local 
solution even when we judged the EM algorithm to have reached the global solution. Therefore we 
need further experiments to say some conclusive remarks about the effect of the operation when the 
EM method is used. 
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