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In the present study, to realize a filter in the optical differentiation with a 
binary configuration, in succession to the previous report, the author determined a 
concrete procedure and dimensions for its fabrication, and showed how to measure 
intraplane distribution of strain gradient of a flat plate that depends only on the 
phase distribution as an experiment in the practical application. It was confirmed 
as the result that the filter fabricated with digital procedure could give a good 
outcome similarly to the analog filter. The author also attempted, on the other hand, 
the optical differentiation of images by changing only amplitude distribution while 
keeping phase distribution unchanged. In this case, too, it was confirmed that the 
digital filter could give correct output images similarly to the analog filter. 

At the present moment, overall processing time is longer than the present digital 
computer aided processing because the recording of output images has relied 
eventually on the analog processing based on the past photographic development. 
If a device fully capable of digital processing is developed soon or later, an optical 
operation system that allows real-time on-line processing seems to become possible. 

Introduction 

When an object is illuminated with a monochromatic light to make its image, 
in general, the imaging optical system is called the double diffraction optical 
system. All theories and experiments in the present study are provided as 
conducted with this double diffraction optical system and with a coherent light 
source such as laser light. 

Well, if the author considers the imaging optical system from the standpoint of 
transmission theory, it gets easier in treatment and often shows effective functions 
for various problems. In a coherently illuminated imaging system, the optical 
system can be regarded as a kind of linear transmission system when we consider 
amplitude distribution of the wave front that passed through the object as the 
input and that at the image plane as the output in comparison of time axis in the 
transmission system with spatial axis of the optical system. Thus, a variety of 
mathematical operations become possible between the amplitude transmittance 
distribution of the object and that of the image when a spatial filter is inserted, 
for actively varying characteristics of this transmission system, on the spectral 
plane of the optical system, namely on Fraunhofer diffraction plane at the back 
focal plane just behind the object. 

In the first report 1), we described, as one of this operation, on the principle of 
optical differentiation, a method of designing the optical differential filter 
necessary for it, .and evaluation of the filter. Then in the present paper, we show 
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a concrete procedure of fabricating the binary filter and an example of more 
practical applications by Ineans of this image differential method. 

1 • Principle 

First of all, we describe here the principle of optical differentiation method to 
help comprehend the application example mentioned later. 

1 . 1 Double Diffraction Optical System 
Fig. 1 shows the imaging system and its coordinate system used in the present 

study. It is assumed that the optical system is entirely free from aberration and 
consideration is restricted to imaging of paraxial rays only. Accordingly, it is 
provided that isoplanatism has always held good. In the figure, (So) represents 
an ideal coherent light source; and (P), (Q) and (S) denote object, spectral 
and image planes, respectively. Collimator, condenser and projection lenses are 
denoted as (L I ), (L 2) and (L3), respectively. It is also provided to employ 
coordinate conversion 2) of Eq. ( 1) to simplify comparison of object with image 
as mentioned later, to ease operation of Fourier conversion and to make 
treatment of equations dilnensionless for generalization. 

u = (k sin 0) U, 

w=W 

u' = (k sin 0') U', 

x = X/A, 

So 

v = (k sin 0) V 

v' = (k sin 0') V' 

y = Y/A . 

Fig. 1 Double diffraction optics and its coordinate system 

( 1 ) 

Here, k = 27r/it is propagation constant and it denotes wavelength of the light 
source. Capital letters represent actual coordinates and give true geometrical 
lengths. A is radius of the projection lens, 0 is aperture angle of the combined 
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system of projection and condenser lenses, and 0' is that of the projection lens 
viewed from image side. The coordinate system of the object plane is denoted as 
(u, v), and that of the conjugate plane of light source with collimator and 
condenser lenses, namely of Fraunhofer diffraction plane, is as (x, y). Further, 
(u', v') shows coordinate system of the image plane and w is the sample 
coordinate along the light axis. 

Well, the imaging magnification of this optical system M is given as 

U' V' -=-=M 
U V 

(2) 

and use of the conversion coordinate of Eq. ( 1) is convenient because the object 
and image correspond to each other at magnification of unity and calculation can 
be advanced in dimensionless as well. 

Now provided that feu, v) is denoted for distribution of complex amplitude 
transmittance possessed by an object structure, complex amplitude distribution 
of its diffraction pattern on Fraunhofer plane (x, y) is given with Fourier 
conversion of feu, v), namely o(x, y) = :F {feu, v)}. Similarly, complex 
amplitude distribution of the wave front on the image plane (u', v') is given by 
Fourier conversion of o(x, y), namely f'(u', v') = :F{o(x, y)}. Accordingly, 
because the condenser lens has such an aperture as to entirely pass all the wave 
front from the object and is free from aberration, amplitude distribution of the 
wave front on the image plane eventually becomes f'(u', v') oc feu, v) from Eqs. 
( 1) and (2). Leaving detailed calculation for these in Section 1. 2, we point 
out here the fact that amplitude distribution * of the object (image of the object) 
same as in geometrical optics does appear on the image plane. When the imaging 
is conducted with two Fourier conversions, namely with two-fold diffraction, this 
imaging system is called the double diffraction system, and employed throughout 
this paper from now on. 

1 .2 Fraunhofer Diffraction Pattern and Fourier Conversion 
In the previous figure, light wave that left the coherent point source (So) 

Passes through the collimator lens (L I ), and then forms a parallel plane wave 
to uniformly illuminate the object (T). It is shown here that amplitude 
distribution of a diffraction pattern on Fraunhofer diffraction plane (spectral plane) 
conjugate with the light source is given with Fourier conversion of amplitude 
transmission distribution of the light wave that passed through the object. 

In Fig. 2 , the object is placed on a plane (U, V) that contains the front focal 
point (F) or" the lens (L 2) and perpendicular to the optical axis (made agree 
with z axis). At this point, we represent complex structure of the object with the 
following equation: * * 

feu, V) = /o(U, V)· exp{jif>(U, V)} . 

* Because coordinates Cu', u') and Cu, u) have been taken in the opposite directions as shown in Fig. 1 . 
image of j'(u', u') has the shape inverted of the object, agreeing with imaging in geometrical optics. 

* * Transmittance of an object generally contains both of amplitude structure that brings decay in amplitude 
of the light wave and phase structure that gives variation in phase of the light wase due to thickness or 
refractive index. What expresses amplitude and phase at the same time as shown in Eq.C 3) is generally 
called as complex structure of the object. 

( 3) 
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Fig. 2 Fraunhofer diffraction pattern and Fourier conversion 

Here, foe u, V) denotes amplitude transmittance distribution. Besides, ,p( U, V) 
is similarly a delay in phase caused by a change in thickness of the object or 
distribution of refractive index. When here is incidence of a parallel plane wave 
Eo . exp {j w r} with angular frequency wand amplitude Eo from the collimator 
lens (L 1), amplitude distribution just after passing through the object becomes 

feu, V, r) = Eofo(U, V)· expj{wr+,p(U, V)} . (4) 

It is provided that the light wave that advances in the direction of unit vector 
-; in those passed through an object is condensed upon the diffraction plane 
(X, Y) through the lens (L 2). It is attempted at this time to calculate how 
amplitude distribution of the diffraction pattern is expressed. 

If denoting direction cosines of the unit vector -; as l, m and n, respectively, 
the plane II perpendicular to -; is expressed as follows: 

lU+mV+nz = 0 . (5) 

Provided that LlS denotes the distance from a point P( U, V) on the object through 
the center of lens (L 2) until crossing the plane (II), it is expressed as follows: 

LlS = lU+mV . (6) 

By the way, the light wave (8) passing through the plane (II) contains the 
back focal point (F'o) of the lens (L 2) and focuses at a point Q(X, Y) on a 
plane (X, Y) perpendicular to the light axis, the phase distribution ,pn of the 
wave (8) on the plane (II) is 

,pn = ,p( u, V) - k(ZU +m V) . ( 7 ) 
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Besides, when denoting focal length of the lens (L 2) as F, and distance from 
the lens center to the point Q as Rz, direction cosines become 

1 = X/Rz, m = Y/Rz, n = F/Rz (8) 

as will be clear from the figure. Thus from Eqs.7 and 8 the phase at the point 
Q becomes 

if>.1 = if> ( U, V) - k ; (UX + VY) - k L1 (i, Y) . (9) 

Here, L1 (X, Y) / F represents the light path length from the origin Fo of the 
plane (U, V) to the point Q(X, Y), and k is propagation constant that 
converts the light path length into the phase, being given with Eq.( 1). 

Now, amplitude distribution of the light wave at a point (X, Y) on the 
diffraction plane (X, Y) becomes 

o(X, Y, r) = Eo' exp{j w r} J i:fo(U, V)· expj{if>(U, V) 

-k ; (UX+VY)-k L1(i Y)}dUdV . (10) 

In the optical system used in the present study, L1 (X, Y) is considered to be 
kept unchanged because the angle between the optical axis and light beam is 
small and we have determined to deal only with the paraxial ray3. 4). Because 
n =. 1 holds good in this case Eq (10) becomes as follows: 

o(X, Y) = Co J i: fo(U, V) 0 exp{j if>(U, V)} 

oexp{-j ; (UX+VY)}dUdV . (11) 

Here, the temporal term is omitted and constant terms not relating to integration 
are assembled into Co. By the way, from Eq.( 1) 

A A 

) 
u=ko-U v=ko-V 

F F 
(12) 

X Y 
x=- y=-

A A 

is given if provided as sin 0 =. tan 0 = A/F. When substituting Eq. (12) into Eq. 
(11) and using Eq. (3) as well, we eventually obtain 

o(x, y) = C'oJ i:f(u, v) 0 exp{ -j(ux+vy)}dudv (13) 
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from which it is found that o(x, y), a function of x and y, IS gIven as Fourier 
conversion of I(u, v), a function of u and v. 

It was proved therefore that amplitude distribution of the light wave on 
Fra.unhofer diffraction plane conjugate with the light source is nothing but Fourier 
conversion of amplitude distribution of the wave front that passed through the 
object. Here, this Fourier conversion may be simply called as spectrum of the 
object and Fraunhofer diffraction plane as the spectral plane. 

Similarly, amplitude distribution of the wave front on the object plane is given 
with Fourier conversion of amplitude distribution of the spectral plane. Accordingly, 
amplitude distribution of the wave front on the image plane is also given with 
Fourier conversion * of alnplitude distribution of the spectral plane, namely 

I'(u', v') = C~.r i: o(x, y)exp{j(xu'+yv')}dxdy 

so from Eqs.(13) and (14), I'(u', v') -- I(u, v) holds good. 
By the way, intensity distribution of the image becomes 

leu', v') = I'(u', v') ·I;*(u', v') 

where, the sign * denotes complex conjugate. 

1 .3 Spatial Filter and Optical Differentiation 

(14) 

(15) 

Provided the light wave shows a change of A (u, v) in amplitude and a 
difference of E,/u, v) when it passes through an object, complex structure of 
the object I(u, v) is given with the following equation: 

I(u, v) = A (u, v) . expj kE,d(u, v) . (16) 

Here, when distribution of refractive index of the object is denoted as 
nc(u, v), distribution of its thickness as g(u, v), and refractive index of air is 1, 
E,d(u, v) becomes as follows: 

(17) 

Now, amplitude distribution of Fraunhofer diffraction pattern of this object IS 
given by 

o(x, y) = J i:/(u, v) . exp{ -j(xu+yv)}dudu . (18) 

from previous Eq. (13). Further, amplitude transmittance distribution I'(u', v') 
of the image plane (namely, object plane) becomes 

I'(u', v') = J i: o(x, y) . exp {j(xu'+yv')} dxdy . (19) 

* However, directions of u' and v' are opposite to those of x and y as shown in Fig. 1 . 
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by Fourier conversion of o(x, y). Thus, partial differentiation of both sides of 
this equation with u', for instance, gives 

a{f'(u' v')} JJoo 
au: = -ooj x . o(x, y) . exp {j(xu'+yv')} dxdy 

(20) 

== fI (u', v') . 

Accordingly, comparison of this Eq. (19) with Eq. (20) allows us to say as follows: 
It shows that amplitude distribution of the image obtained through its Fourier 
conversion becomes partial differentiation of the original amplitude distribution 
using u when we change amplitude distribution (underlined) of the object on 
Fraunhofer diffraction plane by inserting on the plane a spatial filter with 
amplitude transmittance distribution in proportion to x. 

In general, linear graded amplitude filters are shown with 

sex, y) = sex cos () + y sin ()) (21) 

where, s is a constant denoting gradient of the filter, and the direction for the 
maximum gradient is expressed with T] as shown in Fig. 3 . 

y 

x 
o 

Fig. 3 Linear graded amplitude filter 

Trough insertion of this filter in amplitude distribution 0 (x, y) on Fraunhofer 
diffraction plane, its Fourier conversion becomes 

fl'(u', v') = js { of (~~, v') cos () +. of (;;, v') sin ()} . (22) 

Because the quantity enclosed with { } on the right side 'eventually becomes equal 
to af'(u', v') / aT], it is found that partial differentiation of amplitude distribution 
of the object in arbitrary direction can be obtained with direction of the filter. 
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1 .4 Configuration of Dlifferentiation Filter and Optical System 
The filter of Eq. ( 1) is opaque for x = 0, and its amplitude transmittance S 

increases with Ixl. However, S < ° in the range of x < 0, . which means negative 
transmittance being impossible in reality. Thus, it is necessary to separately 
fabricate an amplitude filter ISA I of IS(x) I and a phase filter Sp with which 
the phase delays by 7l for x < ° in comparison with x > 0, and to combine these 
two. Because this "combined filter", so to speak, has already been reported 5), 

we intend here to realize a differential filter by means of binary method. 
When we divide an opaque plate into surface elements with equal area, make 

a rectangular aperture (cell) on each of them, and insert this on the diffraction 
plane, amplitude distribution of the light wave passing through this varies with 
area of the cell, and phase distribution depends on relative position of each cell. 
Eventually, the light wave through this is affected by both amplitude and phase. 
Lohmann et al. 6

-
8

) attem.pted design of Matched filter by making use of this 
principle. Because design of this filter requires complicate numerical calculation 
in general, we need help by a computer-aided automatic drafting machine and an 
X - Y plotter. In the differential filter, however, design is relatively simple. 

First of all, we describe on the control of phase. Variation in the amplitude of 
the light wave immediately after passing S (X) = sX is regarded, from the 
original light wave exp j (JJ T, as sX . exp j(WT+O). Here, 0 denotes phase and 
W shows angular frequency of the light wave. By the way, in the range of 
X < 0, when phase delay cp is given to 0 by 0' = (2N -1) 7l 

cp = sX· expj{un+(2N-1)71+0} 

= -s)[ . expj(wT+O) 
(23) 

holds and the light wave reverses its phase. Thus we describe here a method in 
which diffraction lattices are divided into two groups and phase delay is given 
by shifting pitch of one group from the other. 

[. II 

fA) (B~ (e) (D)! 

~>( : 
I 

Fig. 4 Phase delay with lattice 
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Let us consider diffraction lattice with pitch D as shown in Fig.4. Provided 
the pitch changed at a place by LiD, when the light wave incident at angle ao 
on this diffraction lattice passed through I and II lattice groups, a leap of phase 
difference is produced between each group of the light wave. We calculate such a 
value of LID that this leap of phase difference becomes 7[. 

Provided in the same figure that the light path difference between the light 
(A) and (B) is denoted as L M' and similarly that between (C) and ( D) as 
L'u, the optical plrase difference shall be intended intend to produce the leap of 

(24) 

When denoting the diffraction angle as aM' the difference in the path differences 
between { (A), (B) } and { (C) , ( D) } is 

LiL = I (sin aM - sin ao) . D- (sin aM - sin ao) (D+ LID) I 

= LID . I (sin aM - sin ao) I 
(25) 

from the figure. Provided that the order of diffraction spectrum IS N, Eq. (25) 
becomes 

LlL = N'A • L1D 
D 

so the phase delay q;M is given as 

m = k . LlL = 27[N· LiD 
'YM D 

(26) 

(27) 

When inserting this diffraction lattice into the light wave as a filter, a leap in the 
phase change by q;M appears between iight waves through I and diffraction 
groups. Thus, when the leap in phase change by, 7[ is produced in the + 1 order 
diffracted light with N = 1, 

LlD=R 
2 

is led from Eq. (27). This gives the phase filter Sp in question. 

(28) 

Then the author describes on how to control the amplitude by means of the same 
diffraction lattice. Amplitude distribution of the light wave that passed through 
a cell is restricted with the cell area. Accordingly, a prescribed amplitude 
distribution can be obtained by changing each cell size stepwise. As shown in 
Fig. 5 (a) first, amplitude transmittance sX of the filter is approximated with 
folded line of hatched rectangles. The interval from X = 0 to 1 is equally divided 
with pitch D under S = 1. And the total sum of rectangular areas is made equal 
to integral of S(X) = X from X = 0 to 1. Because the amplitude transmittance 
is regarded fixed in each interval D, aperture with area proportional to this value 
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was realized by changing the breadth in X direction as shown in Fig. 5 (b). In 
the figure, hatched areas are apertures with transmittance of unity, and the thick 
solid line shows distribution of transmittance (T). In this case, we approximately 
materialized amplitude distribution of the light wave that passed through the 
amplitude filter ISA I from 

(29) 

T 

1 
(s = 1) 

(a) 

T 

1 

(b) 

o 

Fig. 5 Approximation of amplitude filter I SA I 

In order to give a change in addition, it is necessary from Eq. (28) to shift the 
pitch of diffraction lattice by D/2 at the origin. In this way, we realized a binary 
filter with which amplitude and phase of the light wave can simultaneously be 
controlled. Fig. 6 shows an example of binary filters using photographic film. For 
its fabrication, we used a microplotter (made by Mutoh Industry) to manually 
draw a pattern 100 times the original size on a white paper. By demagnifying this 
twice by means of photographic camera, we obtained the binary filter with the 
prescribed dimension (accuracy of 0.2 11m). 
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Fig. 6 An example of binary filter 

When this filter is inserted on the diffraction plane of Fig. 1 to observe image 
of the object, only the diffracted light with odd order (N = 1, in the present case) 
gives differential image and that with even order including zero is imaged as noise. 
Because of this, separation of the image is necessary. Thus, denoting size of the 
object as L and focal length of the projection lens as F, the image size L' is 
given with the following formula 9): 

L' ~ INI . F . A. / L . (30) 

As 35 mm photographic film is often used as the object conventionally, we 
conversely consider boundary of the pitch D required to separate this from 
U' = L = 35 mm. Provided that the light source is laser light with wavelength of 
632.8 nm· and focal length of the projection lens in Fig. 1 is 500 mm, 
D = 10,um is obtained to separate zero- and first-order diffraction patterns. 
Therefore, its original drawing can enough be prepared with accuracy around 
1 mm, allowing us to employ a commercial X - Y plotter. 

2. Experimental 

In processing with filtering, photographic film has so far been used often as the 
spatial filter. In general, however, emulsion surface of sensitized material has 
slight ruggedness, causing unnecessary phase error. Thus, in the case of amplitude 
filter ISAI using photographic film mentioned in the previous section, we have to 
devise how to remove this phase error. This can sufficiently be realized by 
sandwiching the film in between two optical parallels and filling the gap with a 
liquid having the same refractive index as the film base. This manner is shown 
in Fig. 7. Provided that nf and n'l' represent refractive indices of the film base 
and the liquid, respectively, X and Y axes are taken on the inside of the front 
optical flat, and g(X, Y) denotes distribution of the film thickness, path length 
of the light that passes through this film, namely phase, is given, by denoting 
separation of two optical flats as A, as follows: 
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Film 

nf 
Immersion layer 

n~ 

y 

A 

Optical parallels 

x 

Fig. 7 Liquid immersion method 

L(X, Y) = n j • g(X, Y) + {A -g(X, Y)} n~ 

= An'[ + (nj-n~)g(X, Y) . 
(31) 

By omitting the fixed term A because it has no relation with phase difference, 
phase error of the film is eventually written as 

(32) 

Accordingly, to ms;tke the phase error due to ruggedness of the film as small as 
possible, it is enough to devise how to bring Inj-n'll as close as possible to zero. 
Refractive index nj of the film is about n = 1.554-1.557 for the film base of 
polyester resin system, though dependent on its emulsion. Besides, liquids in 
Table 1 are effective as the immersion fluid, and we can prepare a liquid with 
n~ equal to nj by mixing these appropriately. Employed in this examination can 
be the procedure in which out-of-focus image of the boundary between the film 
and immersion liquid is observed using a microscope (Beckman method). 
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Table 1 Refractive indices of liquids for immersion 

Liquids Refractive index n'l (20°C, D-line) 

Liquid paraffin 1.441 

Kerosene 1.448 

Petroleum 1.470---1.477 

Clove oil 1.531 

Cinnamon oil 1.585---1.600 

Mono bromona ph thalene 1.658 

As already been evident with Eq. (20), by the way, if inserting a differential filter 
with amplitude transmittance proportional to x into the spatial frequency region, 
namely on Fraunhofer diffraction plane (x- y) amplitude distribution on the 
image plane obtained becomes the partial derivative of complex structure of the 
original object feu, v) in u direction. Similarly, insertion of "the filter proportional 
to y gives partial derivative of f( u, v) in v direction. If distribution of refractive 
index of the object is unchanged, optical path length depends on thickness of the 
object. In this case, intensity distribution of the image obtained with optical 
differentiation is in proportion to variation in the thickness. From this principle, 
we can obtain thickness-wise strain gradient of the object. 

In this chapter, we describe measurement principle for thickness-wise strain 
gradient of the object based on the principle in the previous section, and carry 
measurement of strain gradient distribution applied on a flat plate as an 
application. Also, we conduct experiment to confirm special effect for distribution 
of gradation in the human portrait, when thickness of the object is fixed, as the 
measurement of amplitude distribution. 

2.1 Verification of Optical Differentiation with Standard Sample 
First of all, measurement of phase distribution through optical differentiation 

is carried by means of a standard sample. When the sample is transparent and 
of phase structure: and we denote its distribution of thickness along W axis as 
g( U, V) and that of refractive index as ncC U, V), distribution of path length, 
namely phase, of the light wave that passes through this sample along u axis 
becomes as shown in Fig. 8 

E,d(U, V) = ncCu, v) . g(u, v) +no . {at-g(u, v)} 

= noat+ {ncCu, v) -no} . g(u, v) 
(33) 
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v 

Fig. 8 Phase distribution of samples 

where, no is refractive index of air. In this case, constant term at is independent 
from phase difference of the light wave that passes through the sample. Also, 
no = 1 usually. 

Eventually, when a parallel plane wave passes through this phase object, phase 
of the light wave yields a shift of k{n/u, v)-l} . g(u, v) from Eq.(33)lO). Thus, 
when the sample is a transparent substance with such features as refractive index 
uniformly' distributing and its amplitude transmittance being unity, amplitude 
distribution of the light wave that passed through this sample is given from Eq. 
(15) . with 

feu, v) = exp{jk . g(u, v)} . (34) 

u 

w 
C) 

Fig. 9 Shape of standard lens 
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Table 2 Dimensions of standard lens 

Symbol Dimension (mm) 

F 8734.000 

Rl 141.212 

R2 134.793 

Td 6.373 

Ad 40.0 111 

Now we consider a lens as this sort of standard sample. We adopted a concave 
lens having a small change in its thickness and finished to accuracy of about 1.0 
11m. Its external shape is shown in Fig. 9 and major dimensions in Table 2. There 
are following relations holding true among these: 

U 2+W2 = Ri 
U 2 + ( W - Td)2 = R~ . } (35) 

Accordingly, change along u axis (same as v aXls, too, due to symmetry of 
rotation) becomes 

g(U, V) = LtW 

= ~Ri-u2 - {~R~-U2 +Td } 

(36) 

and differentiation of this Eq. (36) with respect to U glves 

(37) 

by substituting R, and R2 from Table 2, we can calculate out the value of 

{ag(U, V)/aU} with respect to the U value. 
From Eq. (34), on the other hand, amplitude distribution of the image through 

optical differentiation becomes 

a f'( U', V') . a g'( U', V') 
au' =Jk au' exp{jkg'(U', V')}. (38) 

Therefore, its intensity distribution is given from Eq. (14) as follows: . 

(39) 
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Eventually, we can verify the value of thickness gradient of optical differentiation 
for the standard sample from comparison between the value geometrically 
obtained from Eq. (37) and the value of ~ I( U', V') obtained from Eq. (39) through 
optical differentiation. 

We describe the result of verification experiment based on the above consideration. 
Fig.10 shows theoretical values of thickness gradient (namely phase gradient) 
obtained by calculation and values from a measured curve by optical differentiation. 
Abscissa shows distance (Ad) from the lens center 0, while ordinate has taken 
the value of thickness gradient {a g'( U', V')j au'} converted with Eq. (39) from 
intensity distribution of the image measured with a micro photometer. By setting 
a reference point (we took an edge of the lens), we can put the result of 
measured curve upon the curve of thickness gradient obtained through calculation 
so as to agree with each other. With this comparison, we can measure distribution 
of thickness gradient with a precision of about 2.0 x 10- 4 in the optical system 
employed in the experiment. 

Accordingly, phase gradient of an object with different phase structure can be 
obtained in reference to Fig.10 by means of the same optical system and 
development processing under the same condition. 

Fig.10 Differential Image of standard lens and theoretical curve 

2 . 2 Measurement of Thickness-wise Strain Gradient in 
In this section, study is advanced, as an application of thickness gradient 

aforementioned, on quantitative measurement of thickness-wise strain gradient 
distribution of a flat plate. For a phase object with constant refractive index and 
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thickness distribution of g(U, V), we can obtain {og'(U', V')/oU'} with optical 
differentiation. Besides, g'( U', V') is thickness distribution, so its derivative is 
equivalent to thickness-wise strain gradient Ew' Therefore, between thickness-wise 
strain gradient and intensity distribution caused when a load is applied on a flat 
plate sample with uniform thickness, the following relation holds true: 

leu', v') ~ {~:~}2 . (40) 

Then leu', v') is obtained through optical differentiation, and strain gradient can 
be determined from this. As the material employed, we chose polycarbonate 
platell

.
12

) that has a broad range of elasticity, uniform distribution of refraction 
index, and a large transmittance for wavelength of the used light source as well. 

Fabricated from this plate sample was a plate of 3.3 mm thick, 50 mm wide 
and 25 mm high, to which we applied a concentrated load PI at its center as 
shown in Fig.11. When taking U and V axes within the plane of this plate 
sample and W axis perpendicular to it, and provided as conditions of plane 
stress that each of stresses OW' Tuw and Tvw is zero on and within the plate, 
and that each of stresses au, 0v and Tuv takes averaged value of the plate m 
the direction of thickness, we obtain from elasticity theory as follows I3

): 

° = _ 2P1 • cos e . sin2 e 
v J[ r (4]) 

T = - 2P1 • sin e . cos2 e . 
uv J[ r 

o 
v 

u 
Fig.l1 Concentrated load on semi-infinite plate 
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Therefore, if denoting elastic modulus as r:, and Poisson's ratio as J; we obtain 
components of the strain as follows: 

- 2P1 cos 8 ( 2 . 2 ) t u = - v- · -- cos 8-v SIn 8 
Ie r 

2P1 COS 8 ( . 2 2 ) 
E = ---.-- SIn 8-v cos 8 

v r: r 
(42) 

2Pl V cos 8 
E =--.-.--

W n r: r . 

Accordingly, partial differentiation of the above gIVes strain gradients atw/ au 
and aEw/ av as follows: 

aEw = -2vP1 cos 28 
au nr: r2 

aEw = -2vP1 sin 28 
av nr: r2 

u 
Fig.12 Isostrain gradient curve 

in U direction 

P, 

u 

v 

v 

Fig.14 Result of optical differentiation 
in U direction 

) 

u 
Fig.13 Isostrain gradient curve 

in V direction 

u 

(43) 

v 

v 

Fig.15 Result of optical differentiation 
in V direction 
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By substituting elastic modulus Ye, Poisson's ratio v and load PI into Eq. (43) , 
we can obtain the distribution in which thickness-wise isostrain gradient aEw/ au 
and aEw/ av is constant. Figs.12 and 13 show shapes of the isostrain gradient 
curve in the direction of U and V, respectively. 

For the experiment, on the othE3r hand, >we placed the sample on the obje~t plane 
(P) of the optical system in Fig. 1 shown before and inserted the binary filter 
we developed on the diffraction plane (Q). Its differentiated image was first 
recorded on the image plane (S) at the filter direction TJ set at 8 = 0 (refer 
to Fig. 3), and then at ()= ][.The results are shown in Figs.14 and 15, respectively. 
Fig.14 is differential image in the U direction corresponding to Fig.12: and 
similarly, Fig.15 is that in the. V direction corresponding to Fig.13. The stain 
gradient can be quantitatively measured through photometry of the intensity 
distribution for these images. . 

Then we consider on an example that uniform compression load P2 was applied 
to the both sides of a rectangular plate with a circular hole as shown in Fig.16. 

Similarly to the previous example, we employed as the sample a polycarbonate 
resin plate with thickness of 3.3 mm and size of 50 x 25 mm2

, having a circular hole 
with diameter of 3 mm at the center. According to strength of materials, it has 
been known that (a())max max stays within an error of about 6 % in comparison 
with semi-infinite plate if the plate width is larger than 4 times (8R) the diameter 
of the hole (2R ). Accordingly, 25 mm width of the shortest side compared to 
3 mm of the hole diameter has availed analysis with elasticity theory for semi-in 
finite plate. Thus thickness-wise strain component in this case is obtained as 

vP. 2R2 . 
E = _2 ( 1 - -- cos 28) 

w y: r2 
e 

(44) 

so strain gradients in the direotions of U and V axes are gIven by the following 
equations: 

aEw 8R2vP2 cos 38 

) 
au Ye r3 

8R2vP2 

(45) 
aEw = sin 38 
av Ye r3 

Drawing of isostrain gradient curve with constant aEw/aU from this gives Fig.17. 
Symbols E8 and e in the figure ,are the sign of aEw/ au, E8 expresses convex on 
the sample surface while e the convex, and E8 and e appear alternatively. 

By the way, i-t is found from comparison of right sides of aEw/ au and 
aEw/aV that the both eventually draw the identical isostrain gradient curve with 
a phase difference of just ][/2. Therefore, the result for aEw/aV can be obtained 
simply by replacing U and V axes with each other. 

On the other hand, we placed the sample of Fig.16 on the object plane (P) of 
the optical system shown in Fig.1, and performed filtering operation on the 
diffraction plane (Q) by directing the filter to 8 = 0 and 8 = ][/2. Each of the 
differential images was recorded at the image plane (S2). The result is shown in 
Fig.18. This image exhibits the same pattern as isostrain distribution of Fig.17 
obtained from elasticity theory. 
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P, 

2R 
I 

l-+---------1t--,--- v 

u 
Fig.16 Uniform load on rectangular plate with circular hole 

pz 

~r---~--+---~ V v 

u U 
Fig.17 Isostrain gradient curve 

around circular hole 
Fig.18 Result of differentiation 

of rectangular plate with 
circular hole 

Evaluation and Conclusion 

There have been produced errors caused by light scattering in the vIcImty of 
loading point and the hole in these figures, but we observe a good agreement with 
the theoretical value at any portion else. If we take intensity of differential image 
of the standard lens as reference, it is of course possible to measure the value 
of {8c w/ 8V}v with an accuracy within 10- 4 over the entire field of sight I4

.
15

) . In 
this case, however, it is needed, for matching dc levels caused by transmittance 
of sample or others, to take values measured at a point of the standard lens as 
the reference, and determine the value at other points by means of the correction 
curve. 
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Last, the author inserted a sample shown in Fig.19 with a fixed phase distribution, 
namely thickness-wise gradient, yet with some amplitude distribution, namely 
image with gradation, on the object plane in the optical system, and a binary filter 
on its diffraction plane, to obtain the result (output image) shown in Fig.20. It 
was found from this that differentiation in U and V directions are executed and 
that application of edge extraction with respect to all directions was eventually 
possible. 

Fig.19 Example of amplitude 
distribution image 

Fig.20 Experimental result of 
optical differentiation 
(Corresponding to e = 0 , 
e = J[ / 2 and all direction) 

This is called special effect of filtering, so to speak, in the computer graphics, 
in which boundary of the image is subject to differentiation followed by flat 
processing for portions without gradation, resulting in an effect as if image 
sharpening were obtained. 

It was verified from above experiments that the binary filter is as effective as the 
analogue filter so far used, and keeps time for image processing unchanged, too . 
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iii~fg~1g~O)7t:ftJ~iJltlJEj" Gif L ~ 'I7Jm~m~ L t: b O)e' 35 Go i- 0)*5~" Analog filter C: 

ICJ**" Digital tJ:.:f.m~c J:. G filter e' b .5!fftJ:*5~iJ~f~ G tL G L. C: iJ~lit~:g ~ tL t:o 

-1.7" f1Lm ~cMlj" G 7t:ftJ ti-JEe' 35 G iJ~" 1JN~~~c Mlj"·G 7t:ftJ ti~ra'Ef;] ~c~{t L L ~ 'I G iOOf~ 

O)J't~Ef;]~7tm b ICJIr.f~c~~ t:iJ~" L. O)t~~~c b Analog filter O)t~~ C: ICJ**" if L ~ 'I t:tl:t.J 

iOOftiJ~f~ G tL G L. C: iJ~lit~:g ~ tL t:o 

ErfO) C: L.~" t:tl:t.JiOOf~O)~cijdc*5fflJtiVt*d)~~mf~~c J:. G 7 TO -7 Ef;]tJ:~mHcWl"? L 

~ 'I G t: 'd)" r - >' }vEf;] tJ:~IJI!B~ra' timtE O)?' ~ >' }v • ::J /' 1::0 .:L - >' ~c ti@ iJ~ ~c:& t~r tJ: ~ 'I iJ~" 

~'IftL~'d)LrEJ7tM¥ff~~ b--:J CCD tJ j :7 tJ: C'e'~L~?'~ >' }v~IJI!e'~ G ?'/'{ -1 A iJ~~~ 

~ tLtLt~'" I) 7 }v >' -1 1.. e' * /' :7 -1 /' ~IJI!iJ~PJff~tJ:J't~Ef;]il&W Y A T 1.. O)~m b ~PJff~e' ti 

tJ: ~ 'I C: Ji!lb tL G 0 


