Theoretical Formula of Underwater Visibility

Ryohei Tsuda＊

Introduction

The underwater visibility of object is determined for the synthesic action of the physi－ cal factors and of the visual physiology，but hitherto the study of the underwater visibilty has been only made the experimental formula from the measured values．And there are few researches from the basis of the optical theory and the threshold of human eye．

The author measured the underwater visibility using the diffused flourescent light wh－ ich illuminate to the tank water from the upper position and alterring the physical factors． namely，net construction，diameter，colour，reflectance，transparent，turbidity and illumination of tank water．

In this paper，the theoretical formula of the visibility in meteorology was applied to more expermiental condition and their theoretical analysis was discussed by using the ex－ perimental values．

Discussion

The visibility of the object is dependent on the luminance，Bo of the water space in the solid angle which the object subtend to the eye and on the background luminance，Bh， The contrast，C is defined by the equation，

$$
\begin{equation*}
\mathrm{C}=\frac{\mathrm{Bo}-\mathrm{Bh}}{\mathrm{Bh}} \tag{1}
\end{equation*}
$$

where Bo and Bh can be formulated in accordance with Middleton ${ }^{1)}$ as follow．Cons－ ider an volume element，$d V$

$$
\begin{equation*}
d V=x^{2} \cdot d \omega \cdot d x \tag{2}
\end{equation*}
$$

of the cone of water（Fig．1）the base of which is a portion of object and the apex of which is at the observer＇s eye．

[^0]Fig． 1 Schematic diagram for estimating
the brightness contrast
The volume element， dV is assumed to be illuminated to the same extent and in the same way no matter what the value of x ．The intensity， dI_{1} ，of the volume element in the direction of eye will be

$$
\begin{equation*}
\mathrm{dI}_{1}=\mathrm{dV} \cdot \beta\left(90^{\circ}\right) \cdot \mathrm{E} \tag{3}
\end{equation*}
$$

where E is the horizontal illuminance at the volume element and $\beta\left(90^{\circ}\right)$ is the volume scattering function．As $\beta\left(90^{\circ}\right)=\mathrm{A} \cdot \mathrm{K}$ is assumed，

$$
\begin{equation*}
\mathrm{dI}_{1}=\mathrm{dV} \cdot \mathrm{~A} \cdot \mathrm{~K} \cdot \mathrm{E} \tag{3}
\end{equation*}
$$

where A is a constant proportionality，to be determined from boundary conditions．Here an assumption is also introduced that the volume scattering function，β（ 90° ）is approxi－ mately to the attenuation coefficient，K．

The illuminance，$d E$ at the eye due to this light scattered from $d V$ is

$$
\begin{equation*}
\mathrm{dE}=\mathrm{dI}_{1} \cdot \mathrm{x}^{-2} \cdot \mathrm{e}^{-\mathrm{kx}} \tag{4}
\end{equation*}
$$

The radiant emittance， dB at the eye due to the volume element is

$$
\begin{equation*}
\mathrm{dB}=\mathrm{dE} \cdot \mathrm{~d} \omega^{-1} \tag{5}
\end{equation*}
$$

where $\mathrm{d} \omega$ is a solid angle which dV subtends at the eye．From the equations，（2），（3），（4） and（5），

$$
\begin{equation*}
\mathrm{dB}=\mathrm{A} \cdot \mathrm{~K} \cdot \mathrm{E} \cdot \mathrm{e}^{-\mathrm{Kx}} \mathrm{dx} \tag{6}
\end{equation*}
$$

Now integrating the equation（6）from $x=0$ to $x=r$ ，

$$
\begin{equation*}
\mathrm{Br}=\int_{x=0}^{x=r} A \cdot K \cdot E \cdot e^{-K_{x}} d x=A E\left(1-e^{-K r}\right) \tag{7}
\end{equation*}
$$

where r is a visual range of the object and Br is a total luminance of the water in the cone of a solid angle．Similarly，integrating the equation，（6）from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{L}$ which is the length of water tank，the luminanceoof the background， \bar{B}_{L} is

$$
\begin{equation*}
\mathrm{B}_{\mathrm{L}}=\mathrm{A} \cdot \mathrm{E}\left(1-\mathrm{e}^{-\mathrm{KL}}\right) \tag{8}
\end{equation*}
$$

where B_{L} is a total luminance of background．But，inner side of tank is painted by black enamel，the reflectance from it negligibly reduced．Therefore，the background luminance， $B h$ of the equation，（1）can be substitude for B_{L} ．

All the objects produced the luminance by the scattered light in the water tank and by the straight light from the horizontal water surface．Here the former is B_{t} and the latter is Bd．The luminance， B_{T} produced by the scattered light at the observer＇s eye will be

$$
\begin{equation*}
\mathrm{B}_{\mathrm{T}}=\mathrm{R} \cdot \mathrm{Br} \cdot \mathrm{e}^{-\mathrm{Kr}} \tag{9}
\end{equation*}
$$

where R is the reflectance of objects．
And Bd can be obtained as follows．In Fig．1，the radiant emittance to a part of und－ er water surface， $\mathrm{d} S$ and the radiant intensity， dI_{1} in the direction of the object will be

$$
\begin{equation*}
\mathrm{dI}_{1}=\mathrm{dS} \cdot \cos \theta \cdot \mathrm{dBs} \tag{10}
\end{equation*}
$$

Here，assumed that $\mathrm{d} S$ is the perfect diffuser

$$
\begin{equation*}
\mathrm{dBs}=\frac{\mathrm{H}_{2}}{\pi} \tag{11}
\end{equation*}
$$

where H_{2} is the downward irradiance just below the surface．The illuminance， H_{3} in the point P of the target which is illuminated from the part of $d S$

$$
\begin{equation*}
\mathrm{H}_{3}=\frac{\mathrm{dI} \cdot \cos \left(\frac{\pi}{2}-\theta\right)}{(\mathrm{h} \sec \theta)^{2}} \cdot e^{-\mathrm{K} \sec \theta} \tag{12}
\end{equation*}
$$

If it is assumed that the object is the perfect diffuser and the radiant emittance， $\mathrm{dB} p$ produced by H_{3} in the direction of the observer＇s eye will be

$$
\begin{equation*}
\mathrm{dBp}=\mathrm{R} \cdot \frac{\mathrm{H}_{3}}{\pi} \tag{13}
\end{equation*}
$$

The luminance， dB d at the observer＇s eye due to this radiant emittance is

$$
\begin{equation*}
\mathrm{dBd}=\mathrm{dBp} \cdot \mathrm{e}^{-\mathrm{Kr}}=\frac{\mathrm{R} \cdot \sin \theta \cdot \mathrm{dI}_{1}}{\pi(\mathrm{hsec} \theta)^{2}} \cdot \mathrm{e}^{-\mathrm{K}(\mathrm{hsec} \theta+\mathrm{r})} \tag{14}
\end{equation*}
$$

From the equations（10），（11），（12），（13）and（14），

$$
\begin{equation*}
\mathrm{dBd}=\frac{\mathrm{R} \cdot \mathrm{H}_{2} \cdot \sin \theta \cdot \cos ^{3} \theta}{(\pi \mathrm{r})^{2}} \cdot e^{-\mathrm{K}(\operatorname{sscc} \theta+\mathrm{r})} \mathrm{dS} \tag{15}
\end{equation*}
$$

In Fig．1，if PY is the length，

$$
\sin \theta=\frac{\mathrm{p}}{\sqrt{\mathrm{~h}^{2}+\mathrm{p}^{2}}}, \quad \cos \theta=\frac{\mathrm{h}}{\sqrt{\mathrm{~h}^{2}+\mathrm{p}^{2}}}
$$

Substituting these into the equation（15），

$$
\begin{equation*}
\mathrm{dBd}=\frac{\mathrm{R} \cdot \mathrm{H}_{2} \cdot h}{\pi^{2}} \cdot \frac{\mathrm{p}}{\left(\mathrm{~h}^{2}+\mathrm{p}^{2}\right)^{2}} \mathrm{e}^{-\mathrm{K}\left(\sqrt{\left.\mathbf{h}^{2}+\boldsymbol{F}^{2}+e\right)}\right.} d S \tag{16}
\end{equation*}
$$

We must integrate the eqution（16）in the forward all surface square of the target and as the widths of water tankwas narraw，the author assumed $\mathrm{dS}=\mathrm{dP} \cdot \mathrm{Q}$ not integrating it aproximately．And the equation（16）takes the form

$$
\begin{equation*}
\mathrm{dBd}=\frac{\mathrm{R} \cdot \mathrm{H}_{2} \cdot \mathrm{Q} \cdot \mathrm{~h}}{\pi^{2}} \cdot \frac{\mathrm{p}}{\left(\mathrm{~h}^{2}+\mathrm{p}^{2}\right)^{2}} \cdot e^{-\mathrm{K}\left(\sqrt{h^{2}+\mathrm{p}^{2}}+\mathrm{r}\right.} \mathrm{dp} \tag{17}
\end{equation*}
$$

where Q is the width of water tank．
Now，integrating the equation，（17）from $p=0$ to $p=r$ ，

$$
\begin{equation*}
\mathrm{Bd}=\frac{\mathrm{R} \cdot \mathrm{H}_{2} \cdot \mathrm{Q} \cdot \mathrm{~h}}{\pi^{2}} \cdot \int_{\mathrm{p}=0}^{\mathrm{p}-\mathrm{r}} \frac{\mathrm{p}}{\left(\mathrm{~h}^{2}+\mathrm{p}^{2}\right)^{2}} \cdot e^{-\mathrm{K}\left(\sqrt{\left.h^{2}+p^{2}+z\right)}\right.} \mathrm{dp} \tag{18}
\end{equation*}
$$

The luminance，Bo produced by the point P of the object in the direction of observe－ r＇s eye is

$$
\begin{equation*}
\mathrm{Bo}=\mathrm{Br}+\mathrm{Bt}+\mathrm{Bd} \tag{19}
\end{equation*}
$$

Namely，the contrast，C is

$$
\begin{equation*}
C=\left|\frac{\mathrm{Bo}_{0}-\mathrm{BL}_{\mathrm{L}}}{\mathrm{~B}_{\mathrm{L}}}\right|=\left|\frac{\mathrm{Br}+\mathrm{B}_{\mathrm{T}}+\mathrm{Bd}-\mathrm{B}_{\mathrm{L}}}{\mathrm{~B}_{\mathrm{L}}}\right| \tag{20}
\end{equation*}
$$

From the equations，（7），（9），（18）and（8），the equation，（20）will be

$$
\begin{align*}
\mathcal{E}= & \left\lvert\, \frac{1}{A \cdot E \cdot\left(1-e^{-K L}\right)} \cdot \frac{R \cdot H_{2} \cdot h \cdot Q}{\pi^{2}} \cdot \int_{p=0}^{p=r} e^{-K\left(\sqrt{\sqrt{2}}+p^{2}+r\right)} d p\right. \\
& \left.+\frac{R \cdot e^{-K r}\left(1-e^{-K r}\right)+e^{-K L}-e^{-K r}}{1-e^{-K L}} \right\rvert\, \tag{21}
\end{align*}
$$

2－i）The determination of A

As above mentioned，R is measured by the integrating sphere and Q is the width of water．The illuminance， H_{2} just below the water surface is gained from each measu－ red value in the water and h is the depth．Then，obtaining the value of A ，the apparatus shown in Fig． 2 is used．

Fig． 2 Schematic diagram for estimating the illuminance，H ．

Inspecting the direct light from the water surface，the photocell is set to the place of the observer＇s eye and the illuminance is measured．

Accordingly，the illuminance of the detector in the direction of the observer＇s eye is

$$
\begin{equation*}
\mathrm{H}=\mathrm{E} \cdot \mathrm{~A} \cdot \mathrm{~K} \cdot \omega \quad \int_{\mathrm{x}=0}^{\mathrm{x}=\mathrm{r}} \mathrm{e}^{-\mathrm{Kx}} \mathrm{dx}=\mathrm{E} \cdot \mathrm{~A} \cdot \omega\left(1-\mathrm{e}^{-\mathrm{Kr}}\right) \tag{22}
\end{equation*}
$$

where θ can obtain geometrically，whose is a plain angle．Namely，

$$
\omega=2 \pi(1-\cos \theta)
$$

2－ii）The examination of the equation（21）

Substituting the measured values，R, Q, H_{2}, h and r in the equation，（21），the threshold of brightness contrast can be computed．The relation between the threshold of brightness contrast and the visual angle will be linear as Blackwell＇s ${ }^{2}$ ）result．

Referrence

1）Middleton，W．E．K．Univ．Toront Press，Toront，Ont．，250pp．
2）Blackwell，H．R．J．Opt．Soc．Amer．，36，624－643（1946）

水中視程の理論式について

津田良平

一般に，水中での物体の視程は物理的要因と視覚生理との総合作用の結果とこて決まるものである が，従来の水中視程の研究は主とこて人間の日による測定値から実験式を出す程度にとどまって，光学理論及び入間の目の識閾の法則を基とこた解折的研究は少なかった。

著者は前報でのべた様にKoschmieder，Middletonの大気中の視程に関する理論式をさらに実験条件に合方様に書きかえた。

今回の論文は実験よりも，理論式の立てかたに重点を置いた為，実験はおこなっていないが，この理論式を使って出した識閥の値と視角との関係は前報の結果とほぼ一致するものと思われる。

[^0]: ＊Fishing Gear Laboratory，Fisheries Department（水産学科漁具研究室）

