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Results of clustering are qualitatively evaluated by quantities called clustering indices. While
many clustering indices are proposed, in Ref. 2, Desgraupes reviewed 27 indices, most of which
are applicable only to crisp clustering and only one of which is applicable to fuzzy clustering. In
the previous article Ref. 1, the authors gazed on analytic 3 indices among them and modified
them to fit fuzzy clustering by regarding the membership degrees as distribution functions of
objects over clusters. In this article, this method called a fuzzification, is applied to all the indices
of Desgraupes. This investigation also includes optimization of indices. A significant benefit of
fuzzy clustering is that the membership degrees allow the optimization problems to be treated
as continuous, whereas the ones in the crisp case are discrete, making it generally easier to solve.
After giving a precise description of fuzzification which is briefly given in Ref. 1, the authors
fuzzify all of 27 indices of Desgraupes and then solve the fuzzy clustering problems having 13
analytic indices among them as the objective functions by the gradient method.

Keywords: Clustering indices, fuzzy c means, fuzzification, optimization.

1. Introduction

Clustering is an unsupervised learning method that
groups data into clusters based on their character-
istics and similarities. The most widely used types
of clustering are crisp clustering and fuzzy cluster-
ing. K-Means is one of the most popular crisp clus-
tering methods which attempt to minimize an ob-
jective function and as a result, each data belongs
exclusively to one cluster.19 On the other hand, in
fuzzy clusterings, Fuzzy C-Means (FCM) is known
as one of the most popular methods, where each
data is allowed to belong to one or more clusters
determined by a quantity µ called the membership
degree.3 FCM algorithm is processed by optimiz-
ing an objective function containing the member-
ship degree with an exponent m > 1. The exponent
m is called the fuzziness.5 The behaviors of optimal

clustering in the limit transitions of m, not only
for m → 1 but also for m → ∞, are mentioned in
Ref. 4. The observation there tells that crisp cluster-
ings are achieved as special cases of fuzzy clusterings
through the membership degree µ and the fuzziness
m. In Ref. 1, we proposed a method to enable crisp
indices to be applicable to fuzzy clustering. We call
the method a fuzzification.

In general, fuzzification is a process of trans-
forming a crisp set to a fuzzy set or a process of con-
verting a crisp quantity into a fuzzy quantity. Some
authors mentioned about the fuzzification in a pro-
cedural sense. Namely, in Ref. 9, Nolan researched
on a prototype application of fuzzy logic and ex-
pert systems in education assessment. In his article,
a fuzzification done, rather than fuzzifying the ex-
pression of the indicator, by giving a method in the
fuzzy expert system to convert the crisp input into
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linguistic value such as high (insightful, thoughtful),
medium (basic, nofrills) or low (confused, missing
pieces). And he also used the trapezoidal fuzzifier
to generate the membership degree. On the other
hand, in Ref. 12, Parkhira et al., researched a va-
lidity index (PBM Index) and its fuzzification and
compare it with the other indices for crisp such as
Davies Bouldin Index and Dunn’s Index and one
validiy index for fuzzy clustering namely Xie Beni
Index. They proposed the fuzzification by using the
fuzziness m = 1.5. However the fuzzification done
only for 1 index namely PBM Index. In our ar-
ticle, we expand the research to fuzzify 27 crisp
clustering indices which are consist of 13 analytic
indices and 14 non-analytic indices. The 13 ana-
lytic indices are Ball-Hall Index, Banfeld-Raftery
Index, Calinski-Harabasz Index, Det Ratio Index,
Ksq DetW Index, Log Det Ratio Index, Log SS
Ratio Index, McClain-Rao Index, Point-Biserial In-
dex, Ratkowsky-Lance Index, Scott-Symons Index,
Trace W Index, Trace WiB Index. And the 14 non-
analytic indices are C Index, Davies-Bouldin Index,
Dunn Index, Baker-Hubert Gamma Index, GDI In-
dex, G plus Index, PBM Index, Ray-Turi Index, SD
Index, S Dbw Index, Silhouette index, Tau index,
Wemmert-Gançarsky Index, Xie-Beni Index.

Clustering indices evaluate the quality of clus-
tering results by measuring their compactness and
separateness. The compactness is measured by the
extent of objects within a cluster and, on the other
hand, the separateness is measured by the distance
between different clusters. The smaller the com-
pactness and the greater the separateness, the bet-
ter the clustering. In Ref. 2, Bernard Desgroupes
has reviewed 27 clustering indices. These indices are
originally designed for crisp clustering and only one
(Xie Beni Index) is used in fuzzy clustering. In this
article, we convert them applicable to fuzzy clus-
tering by using the method of fuzzification which
we have proposed in the previous work Ref. 1. And
we restrict our attention to the analytic ones among
them to be optimized as the new objective functions
in fuzzy clustering. We approach this problem using
the traditional method of conditional optimization
problem by applying the gradient method to the
objective function.

2. Clustering and Clustering Indices

2.1. Clusterings

We consider the clustering problem of given n data
oi(1 ≤ i ≤ n) in Rd. Although treated as row

vectors in Desgraupes’ article, we denote data vec-
tors in Rn as column vectors for convenience. In K-
Means, the data are classified into c clusters, where
each data belongs to exclusively to exactly one clus-
ter Ck(1 ≤ k ≤ c). On the other hand, FCM per-
mits each data belongs to one or more clusters. This
situation is represented by the quantity µik called
the membership degree which measures the assign-
ment ratio of the i-th data to the k-th cluster. The
membership degrees µik’s satisfy the following con-
ditions:

0 ≤ µik ≤ 1 (1 ≤ i ≤ n, 1 ≤ k ≤ c), (1)
c∑

k=1

µik = 1 (1 ≤ i ≤ n), (2)

0 <
n∑
i=1

µik < n (1 ≤ k ≤ c). (3)

The condition (1) comes from that µik gives the as-
signment ratio. The condition (2) means that for
each fixed i, the i-th data is distributed to clusters
and summing up the µik over k is equal to 1. The
condition (3) says that for each fixed k, the cluster-
ing is not trivial i.e., each cluster is neither empty
nor whole. To handle the membership degree sys-
tematically, we introduce the fuzzy matrix:

(
µik
)

=

µ11 . . . µ1c
...

. . .
...

µn1 . . . µnc

 . (4)

This framework includes crisp clustering. In fact,
for crisp cases, the constraint (1) is reduced to

µik ∈ {0, 1} (1 ≤ i ≤ n, 1 ≤ k ≤ c). (5)

The membership degree µik takes the value 1 if and
only if the data oi belongs to the cluster Ck oth-
erwise it takes the value 0. This condition can be
written as:

µik =

{
0 oi /∈ Ck
1 oi ∈ Ck

. (6)

For crisp case we put

Ik = {i|oi ∈ Ck}. (7)

Then we have

n∑
i=1

µik = nk, (8)
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where nk is the cardinality of the set Ik. Further-
more, by using Ik, the condition (3) can be rewritten
as:

0 <
∑
i∈Ik

µik < n (1 ≤ k ≤ c). (9)

In both of FCM and K-Means, the objective
function

J =
c∑

k=1

n∑
i=1

µmik d(oi, z
{k})2 (10)

is minimized. Here, d(oi, z
{k})2 is the square dis-

tance between the i-th data oi and the center z{k}

of the k-th cluster. The objective function employs
the membership degrees µik not as it is but with
an exponent m > 1. This exponent m is called the
fuzziness which affects on the result of clustering.
As m tends to infinity, µmik for each data tends to
0 unless µik = 1.4 In Ref. 5, Pall and Bezdek sug-
gested taking m ∈ [1.5, 2.5] is suitable for FCM.
Similar recommendations found in Refs. 6, 7, 8, 10.
Moreover, by taking the limit m→ 1 the FCM will
reduce to crisp clustering.4

2.2. Clustering Indices

Clustering algorithms produce optimal clusterings
through clustering indices. A clustering index works
by evaluating the qualities of clustering such as
the compactness and the separateness of clusters.
In this subsection, we will give a brief description
about 27 crisp clustering indices which is mentioned
as Internal Indices in Ref. 2. These indices consist of
analytic indices and non-analytic indices. An ana-
lytic index means an index expressed by an analytic
function, and in particular, all clustering indices of
Desgraupes that do not include any statistical func-
tions such as minimum or maximum function. On
the other hand, a non-analytic index is one that
includes at least one statistical function.

Before describing indices, we introduce key
quantities commonly used in those clustering in-
dices. These quantities, with the exception of slight
changes in notation and symbols, all were brought
from Desgraupes’ article.

(a) The Scatter Matrix T is defined as the disper-
sion of data oi with respect to the total center
z:

T =
n∑
i=1

(oi − z) t(oi − z). (11)

Note that this quantity coincides with the
variance-covariance matrix multiplied by the
number of data n.

(b) The Total Scattering TSS is the trace of
the matrix T which is equal to the sum of
the squared distances (scattering) of the data
around the total center:

TSS = Tr(T ) =

n∑
i=1

∥∥(oi − z)
∥∥2
. (12)

(c) The Within Group Scatter Matrix WG{k} is
the clusterwize dispersions of data in Ck with
respect to the cluster center z{k}:

WG{k} =
∑
i∈Ik

(oi − z{k}) t(oi − z{k}). (13)

Similarly to (11), this matrix is the variance-
covariance matrix of data in Ck multiplied by
the number nk of data in it. And their sum for
all the clusters is denoted by WG:

WG =
c∑

k=1

WG{k}. (14)

(d) The Within Group Scatter Dispersion
WGSS{k} is the trace of matrix WG{k} and
is equal to the sum of the scattering of the data
in the cluster Ck around its center:

WGSS{k} = Tr(WG{k})

=
∑
i∈Ik

∥∥(oi − z{k})
∥∥2
. (15)

Also the sum of the within group scatter dis-
persions WGSS is given as:

WGSS =

c∑
k=1

WGSS{k}. (16)

(e) The Between Group Scatter Matrix BG is the
dispersion of the cluster centers z{k} with re-
spect to the total center z, with the weight nk:

BG =

c∑
k=1

nk(z
{k} − z) t(z{k} − z). (17)

(f) The Between Group Scatter Dispersion BGSS
is the trace of matrix BG which is equal to the
weighted sum of the scattering of the cluster
centers around the total center:

BGSS = Tr(BG) =
c∑

k=1

nk
∥∥z{k} − z∥∥2

. (18)
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(g) The total number of pairs of distinct data in
the same clusters is defined by:

NW =
c∑

k=1

nk(nk − 1)

2
. (19)

Here we note that the k-th term
nk(nk − 1)

2
counts the number of pairs of distinct points in
the cluster Ck. On the other hand, the number
of pairs of data those do not belong to a same
cluster is defined by:

NB =
∑
k<`

nkn`. (20)

Then the total number of pairs of distinct data
is:

NT =
n(n− 1)

2
= NW +NB. (21)

Moreover, the sum of the within cluster dis-
tances is defined by:

SW =

c∑
k=1

∑
i,j∈Ik,i<j

‖oi − oj‖

=
1

2

c∑
k=1

∑
i,j∈Ik,i 6=j

‖oi − oj‖.
(22)

Similarly, the sum of the between cluster dis-
tances is defined by:

SB =
c∑
k<`

∑
i∈Ik,j∈I`

‖oi − oj‖

=
1

2

c∑
k 6=`

∑
i∈Ik,j∈I`

‖oi − oj‖.
(23)

Hence, the total sum of the distances is defined
by:

ST =
∑
i<j

‖oi − oj‖ = SW + SB. (24)

In what follows, we recall the 27 crisp clustering
indices mentioned in Ref. 2.

2.2.1. Ball-Hall Index BHI

The Ball-Hall index is the mean of clusterwize mean
dispersions through all the clusters, given by

BHI =
1

c

c∑
k=1

1

nk

∑
i∈Ik

∣∣∣∣∣∣oi − z{k}∣∣∣∣∣∣2 . (25)

2.2.2. Banfeld-Raftery Index BRI

This index is the weighted sum of the logarithms of
the within group scatter dispersion WGSS{k} di-
vided by nk:

BRI =
c∑

k=1

nk log
WGSS{k}

nk
. (26)

2.2.3. C Index CI

The C Index is defined as:

CI =
SW − Smin
Smax − Smin

. (27)

where Smin is the sum of the NW smallest distances
of all pairs of distinct data and Smax is the sum
of the NW largest distances of all pairs of distinct
data.13

2.2.4. Calinski-Harabasz Index CHI

The Calinski-Harabasz index is defined by the ratio
of the unbiased between group scatter dispersion
BGSS/(c − 1) to the unbiased sum of the within
group scatter dispersions WGSS/(n− c):

CHI =
n− c
c− 1

BGSS

WGSS
. (28)

2.2.5. Davies-Bouldin Index DBI

The Davies Bouldin Index is the mean value, among
all the clusters Ck, of the maximum Mk of the quo-

tient
δk + δ`

∆k`
for all ` 6= k. Namely, DBI is defined

by:

DBI =
1

c

c∑
k=1

max
` 6=k

(
δk + δ`

∆k`

)
, (29)

where

δk =
1

nk

∑
i∈Ik

‖o{k}i − z{k}‖ (30)

and

∆k` = d(z{k}, z{`}) = ‖z{`} − z{k}‖. (31)

2.2.6. Det Ratio Index DRI

The Det Ratio Index is defined as the quotient of
the determinant of the scatter matrix T by the de-
terminant of the sum of the within group scatter
matrices WG :

DRI =
det(T )

det(WG)
. (32)
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2.2.7. Dunn Index DI

The Dunn Index is the ratio of the smallest distance
between distinct clusters to the largest diameter of
cluster, given as

DI =
dmin
dmax

, (33)

where

dmin = min
k 6=`

(
min
i∈Ik
j∈I`

‖o{k}i − o{`}j ‖
)
, (34)

dmax = max
1≤k≤c

(
max
i,j∈Ik
i 6=j

‖o{k}i − o{k}j ‖
)
. (35)

2.2.8. Baker-Hubert Gamma Index BHGI

The Baker-Hubert Gamma Index is an adaptation
of the Γ-index11 of correlation between two vectors
of the same size.

Suppose we have two vectors A =
{a1, a2, . . . , an}, B = {b1, b2, . . . , bn}. Then, for two
given distinct indices i, j, the two vectors are said to
be concordant at the pair of indices {i, j} if when-
ever ai < aj and bi < bj or ai > aj and bi > bj .
Otherwise, the two vectors are said to be discor-
dant. When we denoted the number of concordant
pairs by s+, and the number of discordant pairs by
s−, the Γ-index is defined by

Γ =
s+ − s−

s+ + s−
. (36)

In the context of clustering, we define the first vec-
tor to be the set of distances between two distinct
points in the data (regardless of whether they are
in the same cluster or not). The corresponding el-
ement of the second vector is binary. It is 0 if the
two points are in the same cluster, and 1 otherwise.
Then the Baker Hubert Gamma Index is defined
exactly like Eq. (36):

BHGI =
s+ − s−

s+ + s−
. (37)

In this case, s+ is the number of times that a dis-
tance between two points in the same cluster is less
than a distance between two points in different clus-
ters. For a concordant pair, in this case, bi < bj
means that the i-th pair in the vector A is in the
same cluster (i.e., bi = 0) and the j-th pair in the
vector A had two points in different clusters (i.e.,
bj = 1 and thus bi = 0 < 1 = bj). The number s− is
the number of times the opposite situation occurs.

2.2.9. The GD Index GDI

The GD Index is the abbreviation of Generalized
Dunn’s Index. This index is used for evaluating the
between clusters and the within clusters distances.
The GDI Index is defined like this:

GDI =
mink 6=` δ(Ck, C`)

maxk ∆(Ck)
, (38)

where δ measures the between-cluster distance and
∆ measures the within-cluster distance with 1 ≤
k ≤ c and 1 ≤ ` ≤ c.

There are three different definitions of ∆ and
six definitions of δ. The definitions of the within
cluster distances ∆ are

∆1(Ck) = max
i,j∈Ik
i 6=j

d(oi, oj) (39)

∆2(Ck) =
1

nk(nk − 1)

∑
i,j∈Ik
i 6=j

d(oi, oj) (40)

∆3(Ck) =
2

nk

∑
i∈Ik

d(oi, z
{k}), (41)

where, d is the Euclidean distance. And the defini-
tions of the between cluster distances δ are:

δ1(Ck, C`) = min
i∈Ik
j∈I`

d(oi, oj) (42)

δ2(Ck, C`) = max
i∈Ik
j∈I`

d(oi, oj) (43)

δ3(Ck, C`) =
1

nkn`

∑
i∈Ik
j∈I`

d(oi, oj) (44)

δ4(Ck, C`) = d(z{k}, z{`}) (45)

δ5(Ck, C`) =
1

nk + n`(∑
i∈Ik

d(oi, z
{`}) +

∑
j∈I`

d(oj , z
{`})

) (46)

δ6(Ck, C`) =

max
{

sup
i∈Ik

inf
j∈I`

d(oi, oj), sup
j∈I`

inf
i∈Ik

d(oi, oj)
}
. (47)

The distances δ1 to δ4 are called single linkage clus-
tering, complete linkage clustering, average linkage
clustering, centroid linkage clustering respectively.
The distance δ5 is the weighted mean of the mean
distances between the points in clusters Ck and C`
with respect to their cluster center. The distance δ6

is the Hausdorff distance.
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2.2.10. G Plus Index GPI

By using the same notations in Baker Hubert
Gamma Index BHGI in subsection 2.2.8, the G+
index is given as

GPI =
s−

NT (NT − 1)/2
=

2s−

NT (NT − 1)
. (48)

2.2.11. Ksq DetW Index KDWI

The Ksq DetW Index is defined as the square of the
number of clusters c times the determinant of the
sum of the within group scatter matrices WG:

KDWI = c2 det(WG). (49)

2.2.12. Log Det Ratio Index LDRI

The Log Det Ratio Index is the number of data n
times the logarithm of the Det Ratio Index DRI
(32):

LDRI = n logDRI = n log
det(T )

det(WG)
. (50)

2.2.13. Log SS Ratio Index LSSRI

The Log SS Ratio Index is given by the logarithm
of the ratio of the between group scatter dispersion
BGSS to the sum of the within group scatter dis-
persions WGSS:

LSSRI = log
BGSS

WGSS
. (51)

2.2.14. The McClain-Rao Index McRI

The McClaino-Rao Index is defined as the ratio of
the mean within cluster distances SW /NW to the
mean between cluster distances SB/NB:

McRI =
SW /NW

SB/NB
=
NB

NW

SW
SB

. (52)

2.2.15. PBM Index PBMI

The PBM Index uses the distances between the data
and their cluster centers and also uses the distances
between the cluster centers themselves. The PBMI
is defined by

PBMI =

(
1

c
× ET
EW
×DB

)2

, (53)

where DB is the maximum distance between two
cluster centers, EW is the sum of the distances of
the data in each cluster to the center and ET is the

sum of the distances of all the data to the center in
the whole data set, respectively given as follows:

DB = max
k<`

(
z{k}, z{`}

)
, (54)

EW =
c∑

k=1

∑
i∈Ik

d(oi, z
{k}), (55)

ET =

n∑
i=1

d(oi, z). (56)

2.2.16. Point-Biserial Index PBI

The Point-Biserial Index is essentially defined as the
point-biserial coefficient of the distances of pairs of
points and the homogeneity of pairs. For precise
meaning of “homogeneity”, see Ref. 2. PBI is de-
fined by

PBI =
( SW
NW

− SB
NB

)√NWNB

NT
. (57)

2.2.17. Ratkowsky-Lance Index RLI

The Ratkowsky-Lance Index is defined as the
square root of the mean R of attribute-wize ratios,
say the p-th attribute (1 ≤ p ≤ d), of the between
group scatter dispersion BGSSp to the total scat-
tering TSSp divided by the cluster number. Namely
RLI is given by

RLI =

√
R

c
=

√√√√ 1

cd

d∑
p=1

BGSSp
TSSp

, (58)

where

R =
1

d

d∑
p=1

BGSSp
TSSp

. (59)

TSSp and BGSSp are obtained by replacing the
norms of vectors by the absolute value of difference
of p attributes in TSS (12) and BGSS (18), respec-
tively.

2.2.18. Ray-Turi Index RTI

The Ray-Turi Index is given like this

RTI =
1

N

WGSS
min
k<`∆

2
k`

, (60)

where ∆k` is the minimum of the square distances
between all cluster centers min

k<`∆
2
k` = min

k<`‖z{k} −
z{`}‖2.

article id-6



On a fuzzification and optimization problems of clustering indices

2.2.19. Scott-Symons Index SSI

The Scott-Symons Index is the weighted sum of
the logarithms of the determinants of the variance-
covariance matrix of each cluster:

SSI =
c∑

k=1

nk log det
(WG{k}

nk

)
. (61)

2.2.20. SD Index SDI

The SD Index consists of S and D. S is the average
scattering for clusters and D is the total separation
between clusters. The quantity S is given by

S =
1
c

∑c
k=1 ‖V {k}‖
‖V ‖

, (62)

where V = t(Var(V1), . . . ,Var(Vd)) is the vari-
ance vector with size d. Likewise V {k} =
t

(
Var
(
V
{k}

1

)
, . . . ,Var

(
V
{k}
d

))
is the variance vec-

tor with size d for each cluster Ck. The variance
(Var) in this index refers to the usual statistical
measurement. Moreover, the quantity D is given by

D =
max
k<`‖z{k} − z{`}‖
min
k<`‖z{k} − z{`}‖

c∑
k=1

1∑c
`=1
6̀=k
‖z{k} − z{`}‖

.

(63)
Hence, the SDI is defined like this

SDI = αS +D, (64)

where α is the weight assigned to the clustering that
has the greatest number of clusters based on D.

2.2.21. S Dbw Index SDbwI

The S Dbw Index consists of two items, within clus-
ter variance S and between cluster density G, given
as

SDbwI = S + G, (65)

where S is found in Eq. (62) and G is given as

G =
2

c(c− 1)

∑
k<`

Rk`, (66)

where Rk` is the quotient between the density at the
midpoint and the largest density at the two centers:

Rk` =
γk`(Hk`)

max
(
γk`(z{k}), γk`(z{`})

) , (67)

where, γk` is the density for a given data point in
the cluster Ck, C`. It is equal to the number of data

point in these two cluster which the distance to this
data point is less than the limit value σ:

σ =
1

c

√√√√ c∑
k=1

‖V {k}‖. (68)

And Hk` is the midpoint of the centers z{k} and
z{`}.

2.2.22. Silhouette Index SI

The Silhouette Index is calculated using the mean
within cluster distance a and the smallest of the
mean distances of the other clusters from each data
b. The step in calculating the Silhouette Index starts
by finding the mean distance of the i-th data oi in
cluster Ck with all the other data oj in Ck which
denoted by a(i):

a(i) =
1

nk − 1

∑
j∈Ik
j 6=i

d(oi, oj), (69)

and next we calculate the mean distance of oi ∈ Ck
to each data in the different cluster C` (` 6= k):

d(oi, C`) =
1

n`

∑
j∈I`

d(oi, oj). (70)

After we calculate d(oi, C`) for all clusters C` (` 6=
k), next we choose the smallest of the mean dis-
tances denoted by b(i):

b(i) = min
` 6=kd(oi, C`). (71)

Then the Silhouette width is calculated by

s(i) =
b(i)− a(i)

max
(
a(i), b(i)

) . (72)

The value of s(i) is between −1 and 1, with value
near to 1 indicates the data oi is affected to the
appropriate clusters. On the other hand, the value
near −1 indicates the data oi should be affected to
another cluster.

Let us denote sk as the mean of all silhoutte
widths of data in the cluster Ck:

sk =
1

nk

∑
i∈Ik

s(i). (73)

Then we obtain the global Silhoutte Index as the
mean of the mean silhoutte for the clusters:

SI =
1

c

c∑
k=1

sk. (74)
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2.2.23. Tau Index TI

Using the same notations in the section 2.2.8, the
Tau Index is defined like this

TI =
s+ − s−√

NBNW

(
NT (NT − 1)

2

) . (75)

2.2.24. Trace W Index TrWI

The Trace W Index is none other than the sum of
the within group scatter dispersions:

TrWI = WGSS. (76)

2.2.25. Trace WiB Index TrWiBI

The Trace WiB Index is defined by the trace of the
inverse matrix of the sum of the within group scat-
ter matrices WG times the between group scatter
matrix BG:

TrWiBI = Tr(WG−1BG). (77)

2.2.26. Wemmert-Gançarsky Index WGI

The Wemmert-Gançarsky Index is calculated by us-
ing the distances between the data and the centers
of all the clusters.

Let us denote R(o) as the quotient of distance of
the data o to the center of the cluster Ck to which
the data belongs and the smallest distance of the
data to the center of all the other clusters:

R(o) =
‖o− z{k}‖

min
6̀=k‖o− z{`}‖

. (78)

The mean of these quotients is then calculated for
each cluster. If the result is greater than 1, then it
is ignored. Otherwise its complement to 1 is calcu-
lated. It is done by using the quantity below:

Jk = max

{
0, 1− 1

nk

∑
i∈Ik

R(oi)

}
. (79)

Hence, The Wemmert-Gançarsky Index is expressed
as the weighted mean of Jk for all the clusters:

WGI =
1

n

c∑
k=1

nkJk. (80)

This expression can be rewritten as follows

WGI =
1

n

c∑
k=1

max

{
0, nk −

∑
i∈Ik

R(oi)

}
, (81)

2.2.27. Xie-Beni Index XBI

This index is also known as an index for fuzzy clus-
tering. But it can be used for crisp clustering. This
index is given as

XBI =
1

n

WGSS
min
k 6=`δ1(Ck, C`)

, (82)

where δ measures the between cluster distances (cf.
δ1 Eq. (43) in section 2.2.9).

3. Fuzzification

Our fuzzification is essentially done by introducing
membership degrees, but in adapting this to vari-
ous indices, we disaggregate it into its components
and build up the fuzzification. It is done in the fol-
lowing order. First, as a preliminary step, statistics
using powers of membership are introduced (3.1).
This makes it possible to deal with the distribution
of the data in each cluster or in the whole. Apart
from this, we can also deal with the distribution
of each data over clusters. Under these statistical
treatments, the various statistics needed for fuzzify-
ing the index are expressed in terms of membership
degrees (3.2). Finally, under these preparations, the
fuzzification of individual indices is performed (3.3).

3.1. Statistical treatment of µm

Fuzzification is a process of converting the crisp
quantities with values in {0, 1} to fuzzy ones with
values in [0, 1] through the exponentiated member-
ship degree µmik. In our approach, instead of µik it-
self, we consider the exponentiated quantity µmik as
the ratio of occurrence of the data oi in the cluster
Ck. Hence the total probability of the occurrence of
the data oi is given as:1

pi =

∑c
k=1 µ

m
ik∑n

j=1

∑c
`=1 µ

m
j`

. (83)

Likewise in the cluster Ck, the within cluster prob-
ability of the i-th data oi is given as:

p
{k}
i =

µmik∑n
j=1 µ

m
jk

. (84)

On the other hand, the classification probability of
the i-th data oi which occurs into the k-th cluster
Ck, given as:

pik =
µmik∑c
`=1 µ

m
i`

. (85)

The difference between the within cluster distribu-
tion and the classification distribution is illustrated
in Fig.1.
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Let f(o) be a function of data o. Then its ex-
pectations with respect to the total expectation and
the within cluster expectation in the cluster Ck, re-
spectively given as:

E[f(o)] =
n∑
i=1

pif(oi) (86)

and

E{k}[f(o)] =
n∑
i=1

p
{k}
i f(oi). (87)

o1 µ
m
11 · · · µm1k · · · µm1c

...
...

...
...

oi µ
m
i1 · · · µmik · · · µmic

...
...

...
...

on µ
m
n1 · · · µmnk · · · µmnc
C1 · · · Ck · · · Cc

(a) the within cluster probability

o1 µm11 · · · µm1k · · · µm1c
...

...
...

...

oi µmi1 · · · µmik · · · µmic
...

...
...

...
on µmn1 · · · µmnk · · · µmnc

C1 · · · Ck · · · Cc

(b) the classification probability

Fig. 1: Within cluster probability vs. classification
probability

For the sake of convenience, we introduce the
following quantities that are the total weighted sum
of the quantity f of data o, given as:

$[f(o)] =

c∑
k=1

n∑
i=1

µmikf(oi) (88)

and the within cluster weighted sum in cluster Ck
of the quantity f of the data o, given as:

${k}[f(o)] =

n∑
i=1

µmikf(oi). (89)

Hence, we have the total population as:

ν = $[1] (90)

and the within cluster population of the cluster Ck
as:

ν{k} = ${k}[1]. (91)

In the fuzzification proposed in this article, we use
the notions of total/within-cluster populations in-
stead of total/within-cluster numbers. Immediately
from Eq. (1), (2), (3) and the condition m > 1, we
have

0 < ν{k} < ν ≤ n (1 ≤ k ≤ c). (92)

It is easily verified that in (92), the equality ν = n
holds iff the clustering is crisp, i.e., µik ∈ {0, 1}.
Hence, the expectations are rewritten as follows:

E[f(o)] =
$[f(o)]

ν
(93)

and

E{k}[f(o)] =
${k}[f(o)]

ν{k}
. (94)

3.2. Fuzzification of Basic
Quantities

3.2.1. Barycenter and Parametric Center

In Fuzzy C-Means or K-Means where representative
points for data sets are used, formal representative
points or the center of gravity of the data are often
employed. Furthermore, when the center of gravity
is employed, several metrics are used to measure the
distance between clusters. One of them is Euclidean
distance. In this article, the center of gravity of the
cluster is calculated as the barycenter. And apart
from this, we also use the words parametric centers
for representative points of clusters.

The barycenter of all data is denoted by b. And
as the center of gravity of whole data, the barycen-
ter is equal to the expectation of data, namely:1

b = E[o]. (95)

Likewise the barycenter of data within the k-th clus-
ter Ck is denoted by b{k} which is equal to the ex-
pectation of data in the k-th cluster Ck:

b{k} = E{k}[o]. (96)

Furthermore, the total parametric center is denoted
by z which is equal to the barycenter of all data,
namely:

z = b, (97)

as well as the within cluster parametric center in the
k-th cluster Ck is denoted by z{k} which is equal to
the barycenter of the k-th cluster Ck:

z{k} = b{k}. (98)
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3.2.2. Variance-Covariance Matrix

Similarly to the scatter matrix T and the within
group scattering matrix WG{k} in crisp clustering,
in fuzzy clustering, the variance-covariance matrix
measures the dispersion of the membership degree
which involves the expectation of the data to their
centers. Here we use Σ as the covariance matrix of
total data and Σ{k} as the one of data in the k-th
cluster Ck, respectively given as:

Σ = E
[
(o− z) t(o− z)

]
(99)

and

Σ{k} = E{k}
[
(o− z{k}) t(o− z{k})

]
. (100)

Finally, let us introduce a third matrix ∆{k} called
the k-th cluster displacement dyad that has impor-
tant relationships with these two matrices. This ma-
trix measures the displacement of the center z{k} of
the k-th cluster with respect to the total center z
given by:

∆{k} = (z{k} − z) t(z{k} − z) (101)

It can be easily verified that the matrices Σ,Σ{k}

and ∆{k} are related as

E
[
(o− z{k}) t(o− z{k})

]
= Σ + ∆{k},

E{k}
[
(o− z) t(o− z)

]
= Σ{k} + ∆{k}.

(102)

3.3. Fuzzification of Crisp
Clustering Indices

In this subsection, firstly we fuzzify the key quan-
tities given in 2.2 (a) - (g) and secondly we fuzzify
the 27 crisp clustering indices:

(a) The Scatter Matrix T (11) can be fuzzified as:

T = νΣ

= $[(oi − z) t(oi − z)].
(103)

where ν and Σ are found in (90) and (99) re-
spectively.

(b) The Total Scattering TSS (12) can be fuzzified
as:

TSS = νTrΣ

= $[‖o− z‖2].
(104)

(c) The Within Group Scatter WG{k} (13) can be
fuzzified as:

WG{k} = ν{k}Σ{k}

= ${k}[(o− z{k}) t(o− z{k})].
(105)

where ν{k}Σ{k} is found in (91) and (100) re-
spectively.
And the fuzzification of their sum of all the clus-
ters WG (14) is:

WG =

c∑
k=1

ν{k}Σ{k}

=

c∑
k=1

${k}[(o− z{k}) t(o− z{k})].
(106)

(d) The Within Scatter Dispersion WGSS{k} (15),
can be fuzzified as:

WGSS{k} = ν{k}TrΣ{k}

= ${k}[||o− z{k}||2].
(107)

And the fuzzification of the sum of the within
group scatter dispersion WGSS (16) is given
as:

WGSS =
c∑

k=1

ν{k}TrΣ{k}

=
c∑

k=1

${k}[||o− z{k})||2].

(108)

(e) The Between Group Scatter BG (17) is given
in fuzzy form as:

BG =

c∑
k=1

ν{k}4{k}, (109)

where 4{k} is found in (101).
(f) The Between Group Scatter Dispersion BGSS

(18) can be fuzzified as:

BGSS =
c∑

k=1

ν{k}‖z{k} − z‖2. (110)

(g) Pairs of Point. To fuzzify these pairwise quan-
tities, recall that the i-th data oi has the expo-
nentiated membership degree µmik in the clus-
ter Ck. Thus the distribution of µmik over clus-
ters leads to the classification probability (85).
Hence, the probability that the i-th data oi oc-
curs in the k-th cluster Ck and the the j-th data
oj occurs in the t-th cluster Ct at the same time
is as follows:

pikpjt =
µmik∑c
`=1 µ

m
i`

µmjt∑c
s=1 µ

m
js

. (111)

Now define the within cluster means of f(o, o′)
which occurs for data oi and oj :

ω{i,j}
[
f(o, o′)

]
=

c∑
k=1

pikpjkf(oi, oj) (112)
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and the between cluster means of f(o, o′) which
occurs for data oi and oj :

β{i,j}
[
f(o, o′)

]
=
∑
k 6=`

pikpj`f(oi, oj), (113)

then the total population for co-clusterity of
data oi and oj is

ω{i,j}[1] =

c∑
k=1

pikpjk, (114)

and the total population for anti-clusterity of
data oi and oj is

β{i,j}[1] =

c∑
k=1

pikpjk. (115)

In both case, co-clusterity and anty-clusterity
are mutually complementary:

co-clusterity + anti-clusterity = 1.

Finally we define

ω
[
f(o, o′)

]
=

1

2

∑
i 6=j

ω{i,j}f(oi, oj) (116)

and

β
[
f(o, o′)

]
=

1

2

∑
i 6=j

β{i,j}f(oi, oj). (117)

Then the total population of pairs of distinct
points within cluster NW (19) and the popula-
tion of pairs of points which do not belong to
the same cluster NB (20) respectively can be
fuzzified as:

NW = ω[1], (118)

NB = β[1]. (119)

On the other hand, the fuzzification of the sum
of the within cluster distance SW (22)) and the
sum of the between cluster distances SB (23)
respectively given as:

SW = ω[‖o− o′‖]. (120)

SB = β[‖o− o′‖]. (121)

We note that, in fuzzy forms, the dependency of
ω{i,j}

[
f(o, o′)

]
+β{i,j}

[
f(o, o′)

]
and ω

[
f(o, o′)

]
+

β
[
f(o, o′)

]
on µ’s are purely caused by that of

the function f . In fact we have that

This follows from the equality:

ω{i,j}
[
f(o, o′)

]
+ β{i,j}

[
f(o, o′)

]
= f(oi, oj),

(122)

and

ω
[
f(o, o′)

]
+ β

[
f(o, o′)

]
=

1

2

∑
i 6=j

f(oi, oj).
(123)

In particular, NT = NW + NB is equal to the
total population of pairs of distinct data and
ST = SW + SB is equal to the sum of all dis-
tances between pair of distinct data. Note that
both of NT and ST are independent of µ’s.

Now we are in the position to fuzzify the 27
crisp clustering indices.

3.3.1. Ball-Hall Index BHI

The Ball-Hall Index (25) can be fuzzified as:

BHI =
1

c

c∑
k=1

E{k}
[
‖o− z{k}‖2

]
. (124)

3.3.2. Banfeld-Raftery Index BRI

The Banfeld-Raftery Index (26) can be fuzzified as:

BRI =

c∑
k=1

ν{k} log
(
E{k}

[
‖o− z{k}‖2

])
. (125)

This fuzzification is derived from (107).

3.3.3. C Index CI

To fuzzify this index, we introduce the order statis-
tics to find the minimum or maximum value of a
sample in the probability cases. We denote S as a set
of statistic samples and Sa is the a-th smallest value
of order statistic of S (1 ≤ a ≤ |S|); Sa = −((−S)a)
is the a-th largest value of S. Hence, we get

Smin =

NW∑
a=1

Sa, (126)

Smax =

NW∑
a=1

Sa. (127)

Then C Index (27) can be fuzzified as

CI =
ω[‖o− o′‖]− Smin
Smax − Smin

(128)

This fuzzification is derived from (120).
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3.3.4. Calinski-Harabasz Index CHI

The Calinski-Harabasz Index (28) can be fuzzified
as:

CHI =
n− c
c− 1(

$
[
‖o− z‖2

]∑c
k=1$

{k}
[
‖o− z{k}‖2

] − 1

)
.

(129)

This fuzzification is derived from (110) and (108).

3.3.5. Davis-Bouldin Index DBI

The Davis-Bouldin Index (29) can be fuzzified as

DBI =
1

c

c∑
k=1

max
k 6=`(

E{k}[‖o− z{k}‖] + E{`}[‖o− z{`}‖]
‖z{k} − z{`}‖

) (130)

3.3.6. Det Ratio Index DRI

The Det Ratio Index (32) can be fuzzified like this

DRI =

det $
[
(o− z) t(o− z)

]
det

(∑c
k=1$

{k}
[
(o− z{k}) t(o− z{k})

]) . (131)

This fuzzification is derived from (103) and (106).

3.3.7. Dunn Index DI

The Dunn Index (33) can be fuzzified like this

DI =

mink 6=`

(
mini 6=j

(
pikpj`[‖oi − oj‖]

))
maxk

(
maxi 6=j

(
pikpjk[‖oi − oj‖]

)) (132)

3.3.8. Baker-Hubert Gamma Index BHGI

There are two main components in this index such
as the concordant pairs and the discordant pairs.
For any pair of pairs {i, j}(i 6= j) and (i′, j′)(i′ 6=
j′), for a concordant pairs iff

(
(‖oi − oj‖ <

‖oj′ − oi′‖ and (β{i,j}[1] < β{i′,j′}[1])
)

or
(
(‖oi −

oj‖ > ‖oi′ − oj′‖) and (β{i,j}[1] > β{i′,j′}[1])
)
.

For discordant pairs, iff
(
(‖oi − oj‖ < ‖oj′ −

oi′‖ and (β{i,j}[1] > β{i′,j′}[1])
)

or
(
(‖oi − oj‖ >

‖oi′ − oj′‖) and (β{i,j}[1] < β{i′,j′}[1])
)
. Then the

number of concordant pairs are denoted by s+ and

the number of discordant pairs are denoted by s−.
Hence the fuzzification of this index is

BHGI =
s+ − s−

s+ + s−
(133)

where

s+ =#{{{i, j}, {i′, j′}}|{i, j}
and {′i, j′} are concordant}

(134)

and

s− =#{{{i, j}, {i′, j′}}|{i, j}
and {′i, j′} are discordant}

(135)

which # refers to the cardinality of set.

3.3.9. GDI Index

There are 3 definitions of the within cluster dis-
tances ∆ that can be fuzzified as follows

∆1(Ck) = max
i 6=j

pikpjk[‖oi − oj‖] (136)

∆2(Ck) =
1

ν{k}
(
ν{k} − 1

)pikpjk‖oi − oj‖ (137)

∆3(Ck) = 2E{k}[‖o− z{k}‖]. (138)

And there are six definitions of the between cluster
distances δ that can be fuzzified as follows

δ1(Ck, C`) = min
i 6=j

(
pikpj`[‖oi − oj‖]

)
(139)

δ2(Ck, C`) = max
i 6=j

(
pikpj`[‖oi − oj‖]

)
(140)

δ3(Ck, C`) =
∑
i 6=j

pikpj`[‖oi − oj‖] (141)

δ4(Ck, C`) = [‖z{k} − z{`}‖] (142)

δ5(Ck, C`) =
1

ν{k} + ν{`}( c∑
k=1

${k}[‖o− z{k}‖] +

c∑
`=1

${`}[‖o− z{`}‖]
)

(143)

δ6(Ck, C`) = max{sup
i

inf
j
pikpj`||oi − oj‖,

sup
j

inf
i
pikpj`||oi − oj‖}

(144)

article id-12



On a fuzzification and optimization problems of clustering indices

3.3.10. G Plus Index GPI

The G-plus Index (48) can be fuzzified as

GPI =
2s−

n(n− 1)

((
n(n− 1)

)
− 1

) , (145)

where s− is found in (135).

3.3.11. The Ksq DetW Index KDWI

The Ksq DetW Index (49) can be fuzzified as:

KDWI = c2 det( c∑
k=1

${k}
[
(o− z{k}) t(o− z{k})

])
.

(146)

This fuzzification is derived from (106).

3.3.12. Log Det Ratio Index LDRI

The Log Det Ratio Index(50) can be fuzzified as:

LDRI = ν log

det $
[
(o− z) t(o− z)

]
det

(∑c
k=1$

{k}
[
(o− z{k}) t(o− z{k})

]) . (147)

This fuzzification is derived from (103) and (106).

3.3.13. Log SS Ratio Index LSSRI

The Log SS Ratio Index (51) can be fuzzified as:

LSSRI =

log

(
$
[
‖o− z‖2

]∑c
k=1$

{k}
[
‖o− z{k}‖2

] − 1

)
.

(148)

This fuzzification is derived from (108) and (110).

3.3.14. McClain-Rao Index McRI

The McClain-Rao Index (52) can be fuzzified like
this:

McRI =

∑
i<j

∑
k 6=` pikpj`∑

i<j

∑c
k=1 pikpjk∑

i<j

∑c
k=1 pikpjk‖oi − oj‖∑

i<j

∑
k 6=` pikpj`‖oi − oj‖

.

(149)

This form can also be written as:

McRI =
β[1]ω[‖o− o′‖]
ω[1]β[‖o− o′‖]

, (150)

where β and ω are found in (112) and (113), respec-
tively. And this fuzzification is derived from (118),
(119), (120) and (121).

3.3.15. PBM Index PBMI

In this index, there are several components that
must be fuzzified. Firstly, DB (54) can be fuzzified
as

DB = max
k<`
‖z{k} − z{`}‖. (151)

Secondly, EW (55) can be fuzzified as

EW = $[‖o− z{k}‖]. (152)

Thirdly, ET (56) can be fuzzified as

ET = $[‖o− z‖]. (153)

Hence PBMI (53) is defined as

PBMI =

(
1

c
× ET
EW
×DB

)2

(154)

or can be rewritten as

PBMI =

(
1

c
× $[‖o− z‖]
$[‖o− z{k}‖]

×

(
max
k<`
‖z{k} − z{`}‖

))2 (155)

3.3.16. Point-Biserial Index PBI

The Point-Biserial Index (57) can be fuzzified as:

PBI =
2

n(n− 1)(
ω[‖o− o′‖]

√
β[1]

ω[1]
− β[‖o− o′‖]

√
ω[1]

β[1]

)
.

(156)

This fuzzification is derived from (118), (119), (120)
and (121).

3.3.17. Ratkowsky-Lance Index RLI

The Ratkowsky-Lance Index (58) can be fuzzified
as:

RLI2 =
1

cd

d∑
p=1

ν{k}∆
{k}
pp

νΣpp
, (157)

or this index can be written also as:

RLI2 =
1

cd

d∑
p=1

∑c
k=1 ν

{k}(z{k}p − zp)2

νE
[
(op∗ − zp)2

] . (158)

Here op∗ indicates the p-th row (attribute) compo-
nent of data variable o.
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3.3.18. Ray-Turi Index RTI

The Ray-Turi Index RTI (60) can be fuzzified as

RTI =
1

n

${k}[||o− z{k}||2]

mink<` ∆2
k`

(159)

This fuzzification is derived from (107) and
mink<` ∆2

k` = mink<` ‖z{k} − z{`}‖.

3.3.19. Scott-Symons Index SSI

The Scott-Symons Index (61) can be fuzzified as:

SSI =
c∑

k=1

ν

log det
(${k}[(o− z{k}) t(o− z{k})

]
ν{k}

)
.

(160)

This fuzzification is derived from (105).

3.3.20. SD Index SDI

There are two quantities that must be fuzzified in
this index such as S and D. The quantity S in (62)
can be fuzzified as

S =

1
c

∑c
k=1

√∑d
p=1

(
E{k}[(op − z{k}p )2]

)2√∑d
p=1

(
E[(op − zp)2]

)2 , (161)

and the quantity D in (63) can be fuzzified as

D =
max
k 6=`‖z{k} − z{`}‖
min
k 6=`‖z{k} − z{`}‖

c∑
k=1

1∑
6̀=k ‖z{k} − z{`}‖

(162)

which these quantities is derived from (142). Hence
the SD Index (64) can be fuzzified as:

SDI = αS +D (163)

where α is the weight assigned to the clustering that
has the greatest number of clusters based on D.

3.3.21. S Dbw Index SDbwI

To fuzzify this index, first, we fuzzify the limit value
σ (68), given as

σ =
1

c

c∑
k=1

√√√√ d∑
p=1

(
E{k}[(op − z{k}p )2]

)2

, (164)

then the density γk`(o) given as

γk`(o) =( ∑
i with ‖oi−o‖<σ

pik
)

+
( ∑
i with ‖oi−o‖<σ

pi`
)

(165)

and then the quotient Rk` (67) can be fuzzified as

Rk` =

γk`

(
z{k} + z{`}

2

)
max{γk`(z{k}), γk`(z{`})}

. (166)

Finally, the between cluster density G (66) can be
fuzzified as

G =
1

c(c− 1)

∑
k 6=`

Rk`. (167)

By using the Eqs.(161), (167), the S Dbw Index in
fuzzy form given as

SDbwI = S + G. (168)

3.3.22. Silhouette Index SI

In this index, first of all, we fuzzify the within clus-
ter mean distance a(i) (69) as

a(i) = min{E[‖o− oi‖] | 1 ≤ k ≤ c}, (169)

then, the mean distance d(oi, C`) (70), given as

d(oi, C`) = E{`}[‖o− oi‖], (170)

and finally the smallest of the mean distances b(i)
(71) as

b(i) = {E{k}[‖o− oi‖] | 1 ≤ k ≤ c}2, (171)

where the suffix “2” indicates that this quantity is
the second order statistic. Then by using (169) and
(171), the fuzzification of the Silhouette width s(i)
(72) of oi is given by

s(i) =
b(i)− a(i)

max{a(i), b(i)}
. (172)

Hence, the mean of silhouette width sk (73) can be
fuzzified as

sk = E{k}[s(o)], (173)

where s(o) is the function of objects defined s(oi) =
s(i). And finally, by using (173) the global sillhou-
ette index (74) can be fuzzified as

SI =
1

c

c∑
k=1

sk. (174)
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3.3.23. Tau Index TI

The Tau Index TrWI can be fuzzified as

TI = s+ − s−
/

√
β[1]ω[1]

(
n(n− 1)

(
(n(n− 1))− 1

)
2

)
,

(175)

where this fuzzification is derived from (118),
(119), (134) and (135).

3.3.24. Trace W Index TrWI

The Trace W Index (76) can be fuzzified as

TWI =
c∑

k=1

${k}
[∥∥(o− z{k})

∥∥2]
. (176)

This fuzzification is derived from (107).

3.3.25. Trace WiB Index TrWiBI

The Trace WiB Index (77) can be fuzzified as

TrWiBI =

Tr

(( c∑
k=1

ν{k}Σ{k}
)−1( c∑

k=1

ν{k}∆{k}
))
,

(177)

or we can write as:

TrWiBI =
c∑

k=1

ν{k}‖z{k} − z‖2WG−1 , (178)

where ‖ ‖WG−1 is norm on Rd induced from the
symmetric matrix WG−1. The fuzzification is de-
rived from (106) and (109).

3.3.26. Wemmert-Gançarsky Index WGI

In this index, the quotient R(o) (78) can be fuzzified
as

R(o) =
min{‖o− z{k}‖] | 1 ≤ k ≤ c}
{‖o− z{k}‖] | 1 ≤ k ≤ c}2

, (179)

then Jk (79) can be fuzzified as

Jk = max{0, 1− E{k}R(o)}. (180)

Hence by using (180), The Wemmert-Gançarsky In-
dex can be fuzzified as

WGI =
1

n

c∑
k=1

ν{k}Jk. (181)

3.3.27. Xie-Beni Index XBI

The Xie-Beni Index (82) can be fuzzified as

XBI =

∑c
k=1$

{k}[||o− z{k}||2]

min
k<`

(
min
i 6=j
(
pikpj`[‖oi − oj‖]

)) . (182)

The fuzzification is derrived from (108) and (139).

4. Optimization of Clustering
Indices

As mentioned in the previous section that in Ref. 2
there are 13 analytic indices and 14 non-analytic
indices. In this article, we restrict our attention
to the analytic ones to be optimized by using the
gradient method, while this method can not be
used to the non-analytic indices. General optimiza-
tion problems involving non-analytic functions are
widely treated in mathematical programming, and
many methods have been proposed.14,16,17 However
for this problem, we keep it as our next project.
Hence in this section, we only discuss about the op-
timization on 13 analytic indices by using the gra-
dient method.

Gradient ∇ is a differential operator that gives
a vector field with all partial derivatives as compo-
nents to a multivariate function, giving the direc-
tion of maximum increase for that function at each
point. It is used as the search direction at the cur-
rent point of consideration to solve the problem of
maximization or minimization of a function.

In FCM, the objective function J (10) is min-
imized with the search directions for membership
degree µik and for parametric centers z and z{k}.
The steps of FCM algorithm are as follows15 :

(1) Initialize the membership degree randomly
µik(0)

(2) Calculate the centers z{k}

(3) Calculate the membership degree µik(1)
(4) Optimize the Objective Function J under the

constraints:
c∑

k=1

µik = 1. (183)

(5) Repeat the step 2-4 until the stopping condi-
tions are achieved, namely the maximum itera-
tion and the error value.

In FCM, the objective function is limited by
constraint thus we use also the technique of La-
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grange multiplier for solving constrained optimiza-
tion problems. The Lagrange multipliers come from
the gradient vectors of the objective function and
the constrained function at a point is perpendicular
to the graph of the function which passed through
that point.20 The common form of Lagrangian func-
tion is:18

L(x, λr) = f(x)−
∑
r

λrgr(x),

where f(x) is an objective function, x is the origi-
nal multivariables, λr are Lagrange multipliers. And
the Lagrangian function in FCM is given as

L(µ, z{k}, λ) = J −
n∑
i=1

λigi,

for which the optimality conditions are:

∇µL(µ, z{k}, λ) = 0,

∇z{k}L(µ, z{k}, λ) = 0,

∇λiL(µ, z{k}, λ) = gi = 0.

When the objective function includes the total cen-
ters z, the following equation is added to the above.

∇zL(µ, z, λ) = 0.

4.1. Optimization of Ball-Hall
Index (BHI)

4.1.1. Parametric Representative

Regarding the parametric within cluster center
z{k}’s as the representative point of clusters, the
FCM problem is to minimize the objective function
of BHI given as

BHI =
1

c

c∑
k=1

E{k}
[
‖o− z{k}‖2

]
.

By using the Lagrange multiplier, we can write the
Lagrangian function as

L(µ, z{k}, λ) = BHI −
n∑
i=1

λigi, (184)

where gi =
∑c

`=1 µi`−1. Taking the first order par-

tial derivatives with respect to µ, z{k} and λ and
putting them equal to zero, respectively we get

∂

∂µik

(
BHI−

n∑
i=1

λigi

)
= 0

(1 ≤ i ≤ n, 1 ≤ k ≤ c),
(185)

∂

∂z{k}p

(
BHI−

n∑
i=1

λigi

)
= 0

(1 ≤ k ≤ c, 1 ≤ p ≤ d),

(186)

∂

∂λ

(
BHI −

n∑
i=1

λigi

)
= 0 (1 ≤ i ≤ n). (187)

Eqs. (185), (186) and (187) respectively imply that

1

c

mµm−1
ik

ν{k}(
‖z{k} − oi‖2 − E{k}

[
‖z{k} − o‖2

])
= λi,

(188)

2

c
tep
(
z{k} − b{k}

)
= 0, (189)

gi = 0. (190)

Where ep is the p-th member of the standard basis
of Rd:

tep =
p
∨

0, ..., 0, 1, 0, ..., 0.

Eqs. (190) provide the original constraints and Eqs.
(189) are equivalent to

tepz
{k} = tepb

{k}.

Since tep’s span the dual space of the d-dimensional
data space, we have

z{k} = b{k}.

At the extremal point (of variables), the paramet-
ric within cluster center z{k} must be the barycenter
b{k}, thus we have

z{k} = b{k} = E{k}[o]. (191)

And the (188) can be rewritten as

1

c

mµm−1
ik

ν{k}

(
‖b{k} − oi‖2 − V {k}

)
= λi, (192)

where

V {k} = E{k}
[
‖b{k} − o‖2

]
.

Hence we get µik as

µik =(
cλi
m

) 1
m−1

(
‖b{k} − oi‖2 − V {k}

ν{k}

)− 1
m−1

.
(193)
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Then by substituting the (193) into (190), we have

1 =

(
cλi
m

) 1
m−1

c∑
`=1

(
‖b{`} − oi‖2 − V {`}

ν{`}

)− 1
m−1

.

(194)

Hence we get the membership degree as

µik =

(
‖b{k} − oi‖2 − V {k}

ν{k}

)− 1
m−1

∑c
`=1

(
‖b{`} − oi‖2 − V {`}

ν{`}

)− 1
m−1

(195)

The cluster center updating equation is calculated
in (191) and the membership degree updating equa-
tion is calculated in (195).

4.1.2. Barycentric Representatives

By applying z{k}’s as the barycenters of clusters,
BHI can be rewritten as

BHI = BHI(µ) =
1

c

c∑
k=1

E{k}
[
‖o− b{k}‖2

]
.

Then the Lagrange function can be written as

L(µ, λ) = BHI −
n∑
i=1

λigi, (196)

where gi =
∑c

`=1 µi` − 1. Taking the first order
partial derivatives with respect to µ, λ and putting
them equal to zero, respectively we get the similar
results as (185) and (187). Now z{k}’s are omitted
because they are no longer independent variables.
Furthermore, by direct calculation, the equations
(185) and (187) are respectively expressed as

1

c

mµm−1
ik

ν{k}

(
‖b{k} − oi‖2 − V {k}

)
= λi, (197)

gi = 0. (198)

The systems of equations under the conditions (191)
are exactly same as (188) and (190). Hence, our dis-
cussion of these problems are same as the case for
the parametric centers.

4.2. Optimization of
Banfeld-Raftery Index (BRI)

Regarding the parametric within cluster center
z{k}’s as the representative point of clusters, the

FCM problem is to minimize the objective function
of BRI, given as:

BRI =

c∑
k=1

ν{k} log
(
E{k}

[
‖o− z{k}‖2

])
.

By using the Lagrange multiplier, we can write the
Lagrangian function as

L(µ, z{k}, λ) = BRI −
n∑
i=1

λigi, (199)

where gi =
∑c

`=1 µi`−1. Then taking the first order

partial derivatives with respect to µ, z{k} and λ and
putting them equal to zero, respectively we get

∂

∂µik

(
BRI −

n∑
j=1

λjgj

)
= 0

(1 ≤ i ≤ n, 1 ≤ k ≤ c),

(200)

∂

∂z{k}p

(
BRI −

n∑
j=1

λjgj

)
= 0

(1 ≤ k ≤ c, 1 ≤ p ≤ d),

(201)

∂

∂λ

(
BRI −

n∑
j=1

λjgj

)
= 0 (1 ≤ i ≤ n). (202)

Eqs. (200), (201) and (202) respectively imply that

mµm−1
ik

(
log
(
E{k}

[
‖z{k} − o‖2

])
+

‖z{k} − oi‖2

E{k}
[
‖z{k} − o‖2

]) = λi,

(203)

2ν{k}
tep
(
z{k} − b{k}

)
E{k}

[
‖z{k} − o‖2

] = 0, (204)

gi = 0. (205)

Eqs. (205) provide the original constraints and Eqs.
(204) are equivalent to

ν{k}
tepz

{k}

E{k}
[
‖z{k} − o‖2

] =

ν{k}
tepb

{k}

E{k}
[
‖z{k} − o‖2

] . (206)

And hence, these equations cause the parametric
within cluster center must be the barycenter

z{k} = b{k} = E{k}[o]. (207)

And (203) are rewritten as

mµm−1
ik

(
log V {k} +

‖b{k} − oi‖2

V {k}
− 1

)
= λi. (208)
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Eq. (208) can be solved with respect to µ′ as

µik =

(
λi
m

) 1
m−1

(
log V {k} +

‖b{k} − oi‖2

V {k}
− 1

)− 1
m−1

,

(209)

then substituting this into (183), we have:

1 =

(
λi
m

) 1
m−1

c∑
`=1

(
log V {k} +

‖b{k} − oi‖2

V {k}
− 1

)− 1
m−1

.

(210)

Hence, we get the membership degree as follows:

µik =(
log V {k} +

‖b{k} − oi‖2

V {k}
− 1

)− 1
m−1

/
c∑
`=1

(
log V {`} +

‖b{`} − oi‖2

V {`}
− 1

)− 1
m−1

.

(211)

The cluster center updating equation is calculated
in Eq. (207) and the membership degree updating
equations is calculated in Eq. (211) .

The Barycentric representative in this index is
similar discussion to the Ball Hall Index (BHI).

4.3. Optimization of
Calinski-Harabasz Index
(CHI)

Regarding parametric total center z and the para-
metric within cluster centers z{k} as the representa-
tive points of all data and data in clusters, respec-
tively, the FCM problem is to minimize the objec-
tive function of CHI, given by

CHI =
n− c
c− 1

(
$
[
‖o− z‖2

]∑c
k=1$

{k}
[
‖o− z{k}‖2

] − 1

)
.

In what follows we consider the function

$
[
||z − o||2

]∑c
k=1$

{k}
[
||z{k} − o||2

] (212)

as an objective function CHI instead of original CHI
since these optimization problems are equivalent.
By using the Lagrange multiplier, we can write the
Lagrangian function as

L(µ, z, z{k}, λ) = CHI −
n∑
i=1

λigi (213)

where gi =
∑c

`=1 µi`−1. Then taking the first order

partial derivatives with respect to µ, z, z{k} and λ
and putting them equal to zero, respectively we get

∂

∂µik

(
CHI−

n∑
j=1

λjgj

)
= 0

(1 ≤ i ≤ n, 1 ≤ k ≤ c),

(214)

∂

∂zp

(
CHI −

n∑
j=1

λjgj

)
= 0 (1 ≤ p ≤ d), (215)

∂

∂z{k}p

(
CHI−

n∑
j=1

λjgj

)
= 0

(1 ≤ k ≤ c, 1 ≤ p ≤ d),

(216)

∂

∂λ

(
CHI −

n∑
j=1

λjgj

)
= 0 (1 ≤ i ≤ n). (217)

Eqs. (214),(215), (216) and (217), respectively im-
ply that

mµm−1
ik

‖z − oi‖2 − CHI‖z{k} − oi‖2∑c
`=1$

{`}
[
‖z{`} − o‖2

] = λi, (218)

2ν tep(z − b)∑c
`=1$

{`}
[
‖z{`} − o‖2

] = 0, (219)

−CHI 2ν{k} tep(z
{k} − b{k})∑c

`=1$
{`}
[
‖z{`} − o‖2

] = 0, (220)

gi = 0. (221)

Eqs. (221) provide the original constraints and as
usual (219) and (220) cause

z = b = E[o], (222)

z{k} = b{k} = E{k}[o], (223)

provided that CHI 6= 0. Then (218) can be rewrit-
ten as

mµm−1
ik

‖b− oi‖2 − CHI‖b{k} − oi‖2∑c
`=1 ν

{`}V {`}
= λi (224)

and then can be solved with respect to µ’s as

µik =

(
λi
∑c

`=1 ν
{`}V {`}

m‖b− oi‖2

) 1
m−1

(
1− CHI ‖b

{k} − oi‖2

‖b− oi‖2

)− 1
m−1

(225)
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then by substituting (225) into (183), we have

1 =

(
λi
∑c

`=1 ν
{`}V {`}

m‖b− oi‖2

)− 1
m−1

c∑
k=1

(
1− CHI ‖b

{k} − oi‖2

‖b− oi‖2

)− 1
m−1

.

(226)

Hence we get the equations for membership degree
updating rule as

µik =

(
1− CHI ‖b

{k} − oi‖2

‖b− oi‖2

)− 1
m−1

∑c
`=1

(
1− CHI ‖b

{`} − oi‖2

‖b− oi‖2

)
.−

1
m−1

(227)

The total cluster centers updating equations are cal-
culated by (222) and (223), respectively and the
membership degrees updating equations are calcu-
lated by Eq. (227).

The barycentric representative in this index is
similar discussion to the previous index.

4.4. Optimization of Det Ratio
Index (DRI)

Regarding the parametric total center z and the
parametric within cluster centers z{k} as the rep-
resentative points of all data and data in clusters,
respectively, the FCM problem is to minimize the
objective function of DRI, given as

DRI =

det $
[
(o− z) t(o− z)

]
det

(∑c
k=1$

{k}
[
(o− z{k}) t(o− z{k})

]) . (228)

By using the Lagrange multiplier, we can write the
Lagrangian function as

L(µ, z, λ) = DRI −
n∑
i=1

λigi, (229)

where gi =
∑c

`=1 µi`−1. Then taking the first order

partial derivatives with respect to µ, z, z{k} and λ
and putting them equal to zero, respectively we get

∂

∂µik

(
DRI−

n∑
i=1

λigi

)
= 0

(1 ≤ i ≤ n, 1 ≤ k ≤ c),
(230)

∂

∂zp

(
DRI −

n∑
i=1

λigi

)
= 0 (1 ≤ p ≤ d), (231)

∂

z{k}p

(
DRI−

n∑
i=1

λigi

)
= 0

(1 ≤ k ≤ c, 1 ≤ p ≤ d),

(232)

∂

∂λ

(
DRI −

n∑
i=1

λigi

)
= 0 (1 ≤ i ≤ n). (233)

Eqs. (230), (231), (232) and (233), respectively im-
ply that

mµm−1
ik DRI

(
‖oi−z‖2T−1−

‖oi − z{k}‖2WG−1

)
= λi,

(234)

−2νDRI tep T
−1(b− z) = 0, (235)

−2ν{k}DRI tep(WG)−1(b{k} − z{k}) = 0, (236)

gi = 0. (237)

The norm ‖ ‖T−1 in (234) is the norm on Rd in-
duced from the symmetric matrix T−1. Eq. (237)
provide the original constraints, and (235), (236)
cause

z = b = E[o], (238)

z{k} = b{k} = E{k}[o], (239)

provided that DRI 6= 0. Hence similarly as usual,
we have

z = b = E[o], (240)

z{k} = b{k} = E{k}[o], (241)

And the Eq. (234) can be rewritten as

mµm−1
ik DRI(
‖oi − b‖2T−1 − ‖oi − b{k}‖2WG−1

)
= λi

(242)

Eq. (242) are formally solved with respect to µ’s as

µik =

(
cλi

mDRI

) 1
m−1

(
‖oi − b‖2T−1 − ‖oi − b{k}‖2WG−1

)− 1
m−1

.

(243)

Then substitute them into (183), we have

1 =

(
cλi

mDRI

) 1
m−1

c∑
`=1

(
‖oi − b‖2T−1−

‖oi − b{k}‖2WG−1

)− 1
m−1

.

(244)
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Hence, we have the membership degree updating
rule as

µik =(
‖oi − b‖2T−1 − ‖oi − b{k}‖2WG−1

) 1
m−1

/
c∑
`=1

(
‖oi − b‖2T−1 − ‖oi − b{`}‖2WG−1

) 1
m−1

.

(245)

The total and the within cluster centers updating
equations are calculated as (240), (241) and the
membership degrees updating equations are calcu-
lated as (245).

The Barycentric representative in this index is
similar discussion to the previous index.

4.5. Optimization of Ksq DetW
Index (KDWI)

Regarding the parametric within cluster center
z{k}’s as the representative point of cluster, the
FCM problem is to minimize the objective function
of KDWI, given as

KDWI =

c2 det
( c∑
k=1

${k}
[
(o− z{k}) t(o− z{k})

])
.

(246)

By using the Lagrange multiplier, we can write the
Lagrangian function as

L(µ, z) = KDWI −
n∑
i=1

λigi, (247)

where gi =
∑c

`=1 µi` − 1. Then taking the first or-

der partial derivatives with respect to µ, z{k}, λ are
equal to zero, respectively we get:

∂

∂µik

(
KDWI−

n∑
i=1

λigi

)
= 0

(1 ≤ i ≤ n, 1 ≤ k ≤ c),
(248)

∂

∂z{k}p

(
KDWI−

n∑
i=1

λigi

)
= 0

(1 ≤ k ≤ c, 1 ≤ p ≤ d),

(249)

∂

∂λi

(
KDWI −

n∑
i=1

λigi

)
= 0 (1 ≤ i ≤ n).

(250)

Eqs. (248), (249) and (250), respectively imply the
followings:

mµm−1
ik (KDWI)‖oi − z{k}‖2WG−1 = λi, (251)

−2ν{k}(KDWI)tep(WG)−1(b{k} − z{k})
= 0,

(252)

gi = 0. (253)

Eqs. (253) provide the original constraints. And as
usual, Eqs.(252) cause the parametric within cluster
center must be the barycenter

z{k} = b{k} = E{k}[o]. (254)

Hence (251) can be rewritten as:

mµm−1
ik (KDWI)‖oi − b{k}‖2WG−1 = λi (255)

and then µik become

µik =

(
λi

m(KDWI)

) 1
m−1

(
‖oi − b{k}‖2WG−1

)− 1
m−1

.

(256)

And then substituting this into (183), we have

1 =

(
λi

m(KDWI)

) 1
m−1

c∑
`=1

(
‖oi − b{`}‖2WG−1

)− 1
m−1

.

(257)

Hence, we get the membership degree as

µik =

(
‖oi − z{k}‖2WG−1

)− 1
m−1

∑c
`=1

(
‖oi − z{`}‖2WG−1

)− 1
m−1

(258)

The cluster center updating equation is calculated
in (254) and the membership degree updating equa-
tion is calculated in (258).

The Barycentric representative in this index is
similar discussion to the previous index

4.6. Optimization of Log Det Ratio
Index (LDRI)

Since the logarithmic function log is monotonically
increasing, the optimization problem for LDRI is
equivalent to that for DRI, see section 4.4.
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4.7. Optimization of Log SS Ratio
Index (LSSRI)

Since the logarithmic function log is monotonically
increasing, the optimization problem for LDRI is
equivalent to that for CHI, see section 4.3.

4.8. Optimization of McClain-Rao
Index (McRI)

The FCM problem to minimize the objective func-
tion of McRI, given as:

McRI =
β[1]ω[‖o− o′‖]
ω[1]β[‖o− o′‖]

.

By using the Lagrange multiplier, we can write the
Langrangian function as

L(µ, λ) = McRI −
n∑
i=1

λigi, (259)

where gi =
∑c

`=1 µi`−1. Taking the first order par-
tial derivatives with respect to µ and λ and putting
them equal to zero, respectively we have

∂

∂µik

(
McRI −

n∑
j=1

λjgj

)
= 0, (260)

∂

∂λi

(
McRI −

n∑
j=1

λjgj

)
= 0. (261)

Eqs. (260) and (261), respectively imply that

µm−1
ik

νi

∑
1≤j≤n
j 6=i

(
pjk −

c∑
`=1

pi`pj`

)
(

NT

NBNW
− ST
SBSW

‖oi − oj‖
)

= λi,

(262)

gi = 0, (263)

where NW , NB, SW and SB respectively are found
in (118), (119),(120) and (121).

Eq. (263) provide the original constraints and
(262) are formally solved with respect to µ’s as

µik =(
λiνi
m

) 1
m−1

( ∑
1≤j≤n
j 6=i

(
pjk −

c∑
`=1

pi`pj`

)

×
(

NT

NBNW
− ST
SBSW

‖oi − oj‖
))− 1

m−1

.

(264)

Then substituting Eq. (264) into Eq. (183), we have

1 =(
λiνi
m

) 1
m−1

c∑
k=1

( ∑
1≤j≤n
j 6=i

(
pjk −

c∑
`=1

pi`pj`

)

×
(

NT

NBNW
− ST
SBSW

‖oi − oj‖
))− 1

m−1

.

(265)

Hence, we obtain the membership degree µik as

µik =

(( ∑
1≤j≤n
j 6=i

(
pjk −

c∑
`=1

pi`pj`

)

×
(

NT

NBNW

ST
SBSW

‖oi − oj‖
))− 1

m−1
/

(
c∑

k=1

( ∑
1≤j≤n
j 6=i

(
pjk −

c∑
`=1

pi`pj`

)

×
(

NT

NBNW

ST
SBSW

‖oi − oj‖
))− 1

m−1
)

(266)

The membership degree updating rules are given by
(266).

4.9. Optimization of Point-Biserial
Index (PBI)

The FCM problem to minimize the objective func-
tion of PBI, given as

PBI =
2

n(n− 1)

(
ω[‖o− o′‖]

√
β[1]

ω[1]

− β[‖o− o′‖]

√
ω[1]

β[1]

)
.

(267)

By using the Lagrange multiplier, we can write the
Lagrange function as

L(µ, λ) = PBI −
n∑
i=1

n∑
i=1

λigi = 0, (268)

where gi =
∑c

`=1 µi` − 1. Then taking the first or-
der partial derivative with respect to µ and λ and
putting them equal to zero, respectively given as

∂

∂µik

(
PBI −

n∑
j=1

λjgj

)
= 0, (269)

∂

∂λi

(
PBI −

n∑
j=1

λjgj

)
= 0. (270)
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Eqs. (269) and Eq. (270), respectively imply
that

mµm−1
ik

νi

1√
NWNB

×

(
1

2

(
SW
NW

+
SB
NB

) ∑
1≤j≤n
j 6=i

(
pjk −

c∑
`=1

pi`pj`

)

−

( ∑
1≤j≤n
j 6=i

(
pjk −

c∑
`=1

pi`pj`

)
‖oi − oj‖

))
= λi,

(271)

gi = 0, (272)

where NW , NB, SW and SB, respectively are found
in (118), (119), (120) and (121).

Eq. (272) provide the original constraints and
(271) are formally solved with respect to µ’s as

µik =

(
λiνi
√
NWNB

m

) 1
m−1

×
(

1

2

(
SW
NW

+
SB
NB

) ∑
1≤j≤n
j 6=i

(
pjk −

c∑
`=1

pi`pj`

)

−
( ∑

1≤j≤n
j 6=i

(
pjk −

c∑
`=1

pi`pj`

)
‖oi − oj‖

))− 1
m−1

.

(273)

Then substituting them into (183), we have

1 =

c∑
k=1

(
λiνi
√
NWNB

m

) 1
m−1

×
(

1

2

(
SW
NW

+
SB
NB

) ∑
1≤j≤n
j 6=i

(
pjk

c∑
`=1

pi`pj`

)

−
( ∑

1≤j≤n
j 6=i

(
pjk −

c∑
`=1

pi`pj`

)
‖oi − oj‖

))− 1
m−1

.

(274)

Hence we obtain the updating rule for membership

degree µik as

µik =

(
1

2

(
SW
NW

+
SB
NB

) ∑
1≤j≤n
j 6=i

(
pjk −

c∑
`=1

pi`pj`

)

−

( ∑
1≤j≤n
j 6=i

(
pjk −

c∑
`=1

pi`pj`

)
‖oi − oj‖

))− 1
m−1

/

c∑
h=1

(
1

2

(
SW
NW

+
SB
NB

)( ∑
1≤j≤n
j 6=i

(
pjh −

c∑
`=1

pi`pj`

))

−

( ∑
1≤j≤n
j 6=i

(
pjh −

c∑
`=1

pi`pj`

))
‖oi = oj‖

)− 1
m−1

.

(275)

The membership degree updating rules are given
by (275)

4.10. Optimization of
Ratkowsky-Lance Index (RLI)

4.10.1. Parametric Representative

Regarding parametric total center z and the para-
metric within cluster centers z{k} as the represen-
tative points of all data and data in clusters, re-
spectively, the FCM problem is to minimize the ob-
jective function of RLI square instead of RLI itself,
given as

RLI2 =
1

cd

d∑
p=1

∑c
k=1 ν

{k}(z{k}p − zp)2

νE
[
(op∗ − zp)2

] , (276)

or we can write RLI2 as

RLI2 =
1

cd

d∑
q=1

BGSSq
TSSq

. (277)

For a general differentiation ′, we have

(RLI2) =
1

cd

d∑
q=1

(
BGSSq
TSSq

)

=
1

cd

d∑
q=1

(∑c
`=1

(
BG

{`}
qq

)′
TSSq

)

− BGSSq
TSSq

(
TSSq

)′
TSSq

)
.

(278)
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By using the Lagrange multiplier, we can write the
Lagrangian function as

L(µ, z) = RLI2 −
n∑
i=1

λigi. (279)

where gi =
∑c

`=1 µi`−1. Taking the first order par-

tial derivatives with respect to µ, z, z{k} and λ and
putting them equal to zero, given as

∂

∂µik

(
RLI2−

n∑
i=1

λigi

)
= 0

(1 ≤ i ≤ n, 1 ≤ k ≤ c),
(280)

∂

∂zp

(
RLI2 −

n∑
i=1

λigi

)
= 0 (1 ≤ p ≤ d), (281)

∂

∂z{k}p

(
RLI2−

n∑
i=1

λigi

)
= 0

(1 ≤ k ≤ c, 1 ≤ p ≤ d),

(282)

∂

∂λi

(
RLI2 −

n∑
i=1

λigi

)
= 0 (1 ≤ i ≤ n). (283)

Eqs. (280), (281), (282) and (283), respectively im-
ply that

mµm−1
ik

cd

c∑
q=1

1

TSSq(
BG

{k}
qq

ν{k}
− BGSSq

TSSq
(oqi − z

q)

)
= λi,

(284)

−2

cdTSSp

(
c∑
`=1

ν{`}(z{k}p − zp)− BGSSq
TSSq

ν(bp − zp)

)
= 0,

(285)

−2

cd

ν{k}(z{k}p − zp)
TSSp

= 0, (286)

gi = 0. (287)

Eq. (287) provide the original constraints and (286)
imply that

z{k} = z or ν{k} = 0. (288)

This means that for each cluster, the representative
of the cluster coincides with the total representative

or the cluster is null. To make matters worse, this
implies

BG{k}pp = ν{k}(z{k}p − zp)2 = 0,

and hence

BGSSp =
∑
k

BG{k}pp = 0.

As a result, by taking z{k} = z or ν{k} = 0 for
each cluster, RLI for an optimal clustering become
0. In this case µik = 0 (1 ≤ i ≤ n) for cluster with
ν{k} = 0. Consequently, it turn out that parametric
representatives argument does not work at all for
Ratkowsky Lance Index (RLI).

4.10.2. Barycentric Representatives

By applying z and z{k}’s as the total and within
cluster barycenters, respectively, RLI can be rewrit-
ten as

RLI2(µ) =
1

cd

d∑
p=1

∑c
k=1 ν

{k}(b{k}p − bp)2

νE
[
(op∗ − bp)2

] . (289)

By using the Lagrange multiplier, we can write the
Lagrangian function as

L(µ, z) = RLI2 −
n∑
i=1

λigi, (290)

where gi =
∑c

`=1 µi`−1. Taking the first order par-
tial derivative with respect to µ, λ and putting them
equal to zero, respectively we get similar equations
to (280) and (283). Now z and z{k} are omitted
because they are no longer independent variables.
Furthermore, by direct calculation, the equations
(280) and (283) respectively become

mµm−1
ik

cd

d∑
q=1

(
WGSSq
TSSq

(
eq.(oi − b)

)2
TSSq

−

(
eq.(oi − b{k})

)
TSSq

)
= λi,

(291)

gi = 0. (292)
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Then by solving Eq. (291) with respect to µ’s, we
have

µik =

λicd
m

d∑
q=1

WGSSq
TSSq

(
eq.(oi − b)

)2
TSSq

 1
m−1

×

1−

∑d
q=1

(
eq.(oi − b{k})

)2
TSSq∑d

q=1

WGSSq
TSSq

(
eq.(oi − b{k})

)2
TSSq


− 1

m−1

.

(293)

Substituting them into (183), we have

1 =

λicd
m

d∑
q=1

WGSSq
TSSq

(
eq.(oi − b)

)2
TSSq

 1
m−1

×
c∑

k=1

1−

∑d
q=1

(
eq.(oi − b{k})

)2
TSSq∑d

q=1

WGSSq
TSSq

(
eq.(oi − b)

)2
TSSq


− 1

m−1

.

(294)

Hence, we get the membership degree µik as

µik =

1−

∑d
q=1

(
eq.(oi − b{k})

)2
TSSq∑d

q=1

WGSSq
TSSq

(
eq.(oi − b{k})

)2
TSSq


− 1

m−1

∑c
`=1

1−

∑d
q=1

(
eq.(oi − b{`})

)2
TSSq∑d

q=1

WGSSq
TSSq

(
eq.(oi − b{`})

)2
TSSq


− 1

m−1

.

(295)

In this index, the cluster center updating equation is
calculated as the barycenter b and the membership
degree updating equations is calculated as (295) .

4.11. Optimization of Scott-Symons
Index (SSI)

Regarding the parametric within cluster center
z{k}’s as the representative point of cluster, the
FCM problem is to minimize the objective function

of SSI, given as

SSI =
c∑

k=1

ν log det

(${k}[(o− z{k}) t(o− z{k})
]

ν{k}

)
.

By using the Lagrange multiplier, we can write the
Lagrangian function as

L(µ, z, λ) = SSI −
n∑
i=1

λigi, (296)

where gi =
∑c

`=1 µi`−1. Then taking the first order

partial derivatives with respect to µ, z{k} and λ and
putting them equal to zero, respectively we get

∂

∂µik

(
SSI −

n∑
i=1

λigi

)
= 0

(1 ≤ i ≤ n, 1 ≤ k ≤ c),
(297)

∂

∂z{k}p

(
SSI −

n∑
j=1

λjgj

)
= 0

(1 ≤ k ≤ c, 1 ≤ p ≤ d),

(298)

∂

∂λ

(
SSI −

n∑
j=1

λjgj

)
= 0 (1 ≤ i ≤ n). (299)

Eqs. (297), Eq. 298), (299) respectively imply

mµm−1
ik

(
log det

WG{k}

ν{k}
− d+

‖oi − z{k}‖2(WG{k}/ν{k})−1

)
= λi,

(300)

−2ν{k}tep(WG{k}/ν{k})−1

(b{k} − z{k}) = 0.
(301)

gi = 0. (302)

Eq. (302) provide the original constraints and as
usual (301) cause

z{k} = b{k} = E{k}[o]. (303)

And hence the Eq. (300) are rewritten as

mµm−1
ik

(
log det Σ{k} − d+

‖oi − b{k}‖2(Σ{k})−1 = λi.

(304)
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Thus µ′ become like this

µik =

(
λi
m

) 1
m−1

(
log det Σ{k} − d+

‖oi − b{k}‖2(Σ{k})−1

)− 1
m−1

(305)

then substitute them into (183), we get

1 =

(
λi
m

) 1
m−1

c∑
`=1

(
log det Σ{k} − d+

‖oi − b{k}‖2(Σ{k})−1

)− 1
m−1

.

(306)

And we obtain the updating rule for membership
degree µik as

µik =(
log det Σ{k} − d+ ‖oi − b{k}‖2(Σ{k})−1

)− 1
m−1∑c

`=1

(
log det Σ{`} − d+ ‖oi − b{`}‖2(Σ{`})−1

)− 1
m−1

.

(307)

The within cluster center updating equation is in
calculated as (303) and the the membership degree
updating equation is calculated as (307).

The Barycentric representative in this index is
similar discussion to the previous index with the
parametric total center z and the parametric within
cluster center z{k} are equal to the total barycenter
b and the within cluster barycenter b{k} respectively.

4.12. Optimization of Trace W
Index (TrWI)

Regarding the parametric within cluster center
z{k}’s as the representative point of cluster, the
FCM problem is to minimize the objective function
of TWI, given as

TWI =

c∑
k=1

${k}
[∥∥(o− z{k})

∥∥2]
. (308)

By using the Lagrange multiplier, we can write the
Lagrangian function as

L(µ, z, λ) = TWI −
n∑
i=1

λigi, (309)

where gi =
∑c

`=1 µi`−1. Then taking the first order

partial derivatives with respect to µ, z{k} and λ and

putting them equal to zero, respectively we get

∂

∂µik

(
TWI −

n∑
i=1

λigi

)
= 0

(1 ≤ i ≤ n, 1 ≤ k ≤ c),
(310)

∂

∂z{k}p

(
TWI −

n∑
i=1

λigi

)
= 0

(1 ≤ k ≤ c, 1 ≤ p ≤ d),

(311)

∂

∂λ

(
TWI −

n∑
i=1

λigi

)
= 0 (1 ≤ i ≤ n). (312)

Eqs. (310), (311), (312) respectively imply

(∂ikν
{k})‖oi − z{k}||2 = λi, (313)

−2ν{k}teP (b{k} − z{k}) = 0, (314)

gi = 0. (315)

Eq. (315) provide the original constraints and as
usual (314) cause

z{k} = b{k} = E{k}[o]. (316)

And hence (313) are rewritten as

mµm−1
ik ‖oi − b{k}||2 = λi. (317)

Thus µ’s become

µik =

(
λi
m

)− 1
m−1

‖oi − b{k}‖−
2

m−1 . (318)

Then substitute them into (183), we have

1 =

(
λi
m

) 1
m−1

c∑
`=1

‖oi − b{k}‖−
2

m−1 . (319)

Hence we get the membership degree as

µik =
‖b{k} − oi‖−

2
m−1∑c

`=1 ‖b{`} − oi‖
− 2

m−1

. (320)

The within cluster center updating equation is cal-
culated as (316) and the membership degree updat-
ing equation is calculated as (320).

The Barycentric representative in this index is
similar discussion to the previous index.
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4.13. Optimization of Trace WiB
Index (TrWiBI)

Regarding the parametric total center z and the
parametric within cluster centers z{k} as the rep-
resentative points of all data and data in clusters,
respectively, the FCM problem is to minimize the
objective function of TrWiBI, given as

TrWiBI =
c∑
`=1

ν{`}‖z{`} − z‖2WG−1 .

By using the Lagrange multiplier, we can write the
Lagrangian function as

L(µ, z, λ) = TrWiBI −
n∑
i=1

λigi (321)

where gi =
∑c

`=1 µi`−1. Then taking the first order

partial derivatives with respect to µ, z, z{k} and λ
and putting them equal to zero, respectively we get

∂

∂µik

(
TrWiBI−

n∑
i=1

λigi

)
= 0

(1 ≤ i ≤ n, 1 ≤ k ≤ c),
(322)

∂

∂zp

(
TrWiBI−

n∑
i=1

λigi

)
= 0 (1 ≤ p ≤ d), (323)

∂

∂z{k}p

(
TrWiBI−

n∑
i=1

λigi

)
= 0

(1 ≤ k ≤ c, 1 ≤ p ≤ d),

(324)

∂

∂λ

(
TrWiBI −

n∑
i=1

λigi

)
= 0 (1 ≤ i ≤ n).

(325)

Eqs. (322), (323), (324) and (325) respectively im-
ply that

mµm−1
ik

(
‖z{k} − z‖2WG−1 −

c∑
`=1

ν{`}

〈
z{k} − z, oi − z{k}〉2WG−1

)
= λi,

(326)

2

〈
ep, νz −

c∑
`=1

ν{`}z{`}
〉
WG−1

= 0, (327)

2ν{k}
〈
ep, (z

{k} − z)−

BGWG−1(z{k} − b{k})
〉
WG−1

= 0,

(328)

gi = 0. (329)

Eq. (329) provide the original constraints and (327)
and (328) cause

z =
c∑

k=1

ν{k}

ν
z{`} (330)

z{k} − z = BGWG−1(z{k} − b{k}). (331)

Hence, similar as usual, we obtain the center must
be a barycenter, given as

z = b = E[o]. (332)

z{k} = b{k} = E{k}[o]. (333)

Eq. (326) can be rewritten as

mµm−1
ik TrWiBI

(
‖oi − z‖2T−1−
‖oi − z{k}‖2WG−1

)
= λi,

(334)

thus µik become like this

µik =

(
cλi

mTrWiBI

) 1
m−1 (

‖oi − z‖2T−1−

‖oi − z{k}‖2WG−1

) 1
m−1 .

(335)

Then substituting them into Eq. (183), we have

1 =

(
cλi

mTrWiBI

) 1
m−1

c∑
`=1

(
‖oi − z‖2T−1−

‖oi − z{`}‖2WG−1

) 1
m−1 .

(336)

Hence we get the equations for membership degree
updating rule as

µik =(
‖oi − b‖2T−1 − ‖oi − b{k}‖2WG−1

)− 1
m−1∑c

`=1

(
‖oi − b‖2T−1 − ‖oi − b{`}‖2WG−1

)− 1
m−1

(337)

The cluster center updating equation is calculated
as (333) and the membership degree updating equa-
tion is calculated as (337).

The Barycentric representative in this index is
similar discussion to the previous index.
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5. Experiment Analysis

In this section, the proposed methods are em-
ployed for COVID 19 data in Indonesia which con-
sist of 34 provinces and 3 variables such as con-
firmed cases, recovered cases and death cases. This
data is provided by Indonesian Health Ministry as
per March 2nd, 2020 until September 7th, 2021
(https://covid19.go.id/id) that the result of COVID
19 in Indonesia shows in tabel below.

Table 1: Statistic of Covid-19 Case in Indonesia.

Cases Min Mean Max

Confirmed 6.189 84.203 649.309
Recovered 561 54.962 543.801
Death 129 1.932 13.806

Based on the algorithm of FCM described in the
previous section, the first step is to initialize (or) the
initialization of the membership degree µik(0) ran-
domly. In this section, the initialization of µik(0) are
same for the objective function J and all the ana-
lytic indices to know the behaviors of indices in the
same initial value. And then we update the mem-
bership degree based on the updating rule equations
of membership degree depending on the objective
function J and each of the analytic indices. Hence,
we have a set of sequences of membership degrees
such that each of them yields the value of the l ob-
jective function or individual analytic indices. Fig.2
shows our design of experiment.
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𝜇𝑖𝑘 (1)         𝜇𝑖𝑘 (2)       ...        𝜇𝑖𝑘 (f) 
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Optimization for J 
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Optimization for BHI 

𝜇𝑖𝑘 (1)         𝜇𝑖𝑘 (2)       ...        𝜇𝑖𝑘 (f) 
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. 
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I 

Compare 

Compare 

Fig. 2: Design of Experiment

The top blue box indicates a sequence for op-
timizing process for the objective function J . Fig.3
shows the results of applying the values member-
ship degree at each step of this data sequence to the
objective function and other 13 analytic indices. In
this case, we get the result of J and other 13 indices
that can be seen in Fig.3.

 

Fig. 3: Optimization for J

The graphs plotted in Fig.3 show that most of
the indicators do not work well in clustering, as the
optimization process is for the objective function.
Only KDWI and LDRI have good performance.
For the objective function J and TrWI are shown
by the same line (blue dotted line) because the for-
mulas of both are similar, hence the results are also
similar. We can see also that almost all indices have
the fluctuation in each iteration thus they are very
difficult to determine whether the final iteration of
the indices produce an optimal cluster or not. Note
that for all indices (include the objective function),
the values start from 1 because of normalization.

Similarly, in our experiment, we optimize the
13 clustering indices mark out on the Fig.2 (grey
box until green box) with the goal to obtain the
optimal cluster directly. Main quantities that char-
acterize the optimal cluster are the density or the
within-cluster and the separability or the between-
cluster. Some indices are to be maximized and the
others are minimized based on their functions to
obtain the optimal cluster. Fig.4 shows increasing
and decreasing trends for the optimization of the
objective function for each indicator. The plots in
each of the boxes in Fig.4 are the comparison be-
tween the behavior of the index obtained from the
optimization for J (red lines) and obtained from
optimization for the index itself (dotted blue line).

For more details, we show the comparisons in
the Table 2. There are the values for each index in
the final iteration. The indices consist of

(a) Ball-Hall Index (BHI). The minimum value of
this index indicates the optimal clusters.

(b) Banfled-Raftery Index (BRI). The minimum
value of this index indicates the optimal clus-
ters.

(c) Chalinsky-Harabaz Index (CHI). The maxi-
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                                (a)                                                      (b)                                      (c)  

   (d)        (e)                     (f) 

 (g)     (h) (i) 

 (j)    (k) (l) 

 

(m) 

(b) (a) 

Fig. 4: Plots of Optimization for All Indices. (a) Ball-Hall Index (BHI); (b) Banfled-Raftery Index (BRI);
(c) Calinsky-Harabaz Index (CHI); (d) Det Ratio Index (DRI); (e) Ksq DetW Index (KDWI); (f) Log Det
Ratio Index (LDRI); (g) Log SS Ratio Index (LSSRI); (h) McCLain-Rao Index (McRI); (i) Point-Biserial
Index (PBI); (j) Ratkowsky-Lance Index (RLI); (k) Scott-Symons Index (SSI); (l) Trace W Index (TrWI);
(m) Trace WiB Index (TrWiBI).

article id-28



On a fuzzification and optimization problems of clustering indices

Table 2: Result of Comparison of Indices

Indices BHI BRI CHI DRI KDWI LDRI LSSRI McRI PBI RLI SSI TrWI TrWiBI

Optimization
for J 1.06 302.8 83.11 15.85 0.02 0.40 12.41 10.97 38.61 1.61 23.50 2.34 15.85
Optimization
for Indices 0.21 27.27 115.58 16.15 0.002 0.41 17.25 0.699 4.75 0.731 16.15 2.34 16.15

mum value is the better performance.
(d) Det Ratio Index (DRI). The maximum value of

this index is the better performance.
(e) Ksq DetW Index (KDWI). The minimum value

of the index indicates the optimal clusters.
(f) Log Det Ratio Index (LDRI). The maximum

value indicates the optimal clusters.
(g) Log SS Ratio Index (LSSRI) . The maximum

value indicates the optimal clusters..
(h) McCLain-Rao Index (McRI). The minimum

value of this index is the better performance.
(i) Point-Biserial Index (PBI). The minimum value

of this index indicates the optimal clusters.
(j) Ratkowsky-Lance Index (RLI). The minimum

value is the better performance.
(k) Scott-Symons Index (SSI). The minimum value

of this index indicates the optimal clusters.
(l) Trace W Index (TrWI). The minimum value in-

dicates the optimal clusters.
(m) Trace WiB Index (TrWiBI). The maximum

value indicates the optimal clusters.

6. Conclusion

In this article, we propose 2 methods namely fuzzi-
fication of clustering indices and optimization of
clustering indices. Fuzzification can be performed
from the crisp clustering indices, in a way that in-
cludes themselves as special cases. The process is
achieved by converting the crisp quantities {0,1}
to the fuzzy quantities [0,1]. A significant benefit
of fuzzy clustering is that the membership degrees
allow the optimization problems to be treated as
continuous, whereas the ones in the crisp case are
discrete, making it generally easier to solve.

Clustering indices is used to evaluate the qual-
ity of clustering results. By optimizing the fuzzi-
fied clustering indices, various new fuzzy clustering
methods can be proposed. In this article, we only
choose the analytical indices to be optimized by the
gradient method. The results show that by optimiz-
ing the clustering indices, we can reach the optimal
clustering directly.

References

1. D. R. Sope and M. Fujio, On a fuzzification of clus-
tering indices, in Proc. Fuzzy System Symposium of
the Japan Intelligent Information Fuzzy Society 35
(2002) 443–448.

2. B. Desgraupes, Clustering Indices, (2016).
3. J. Bezdek, R. Ehrlich and W. Full, FCM: The fuzzy

c-means clustering algorithm, Computers and Geo-
sciences 10(2) (1984) 191–203.

4. K. L. Wu, Analysis of parameter selections for fuzzy
c-mean, Pattern Recognition 45(1) (2012) 407–415.

5. N. R. Pal and J. C. Bezdek, On cluster validity for
fuzzy c-means model, IEEE Trans. on Fuzzy Syst.
3(3) (1995) 370–379.

6. J. Yu, Q. Cheng and H. Huang, Analysis of the
weighting exponent in the FCM, IEEE Trans. Syst.
Man and Cybernetic Part B (Cybernetic) 34(1)
(2004) 634–639.

7. J. Pei, X. Yang, X. Gao and W. Xie, Weighting ex-
ponent m in fuzzy c-means (FCM) clustering algo-
rithm, Proc. of SPIE - The International Society for
Optical Engineering (2001), doi: 10.1117/12.441637.

8. G. Xin, A study of weighting exponent m in a fuzzy
c means algorithm, (2000).

9. J. R. Nolan, A Prototype application of fuzzy logic
and expert systems in education assessment, IAAI-
98 Proc. (1998) 1134–1139.

10. M. J. Fadili, S. Ruan, D. Bloyet and B. Mazoyer,
On the number of clusters and the fuzziness index
for unsupervised FCA application to BOLD fMRI
time series, Medical Image Analysis 5(1) (2001) 55–
67, doi: 10.1016/s1361-8415(00)00035-9.

11. L. A. Goodman and W. H. Kruskal, Measures of
associations for cross-validations, Journal of the
American Stat. Assoc. 49 (1954) 732–764.

12. M. K. Pakhira, S. Bandyopadhyay and U. Maulik,
Validity index for crisp and fuzzy clusters, Pattern
Recognition 37(3) (2004) 487–501, https://www.

sciencedirect.com/science/article/pii/

S0031320303002838

13. L. Hubert and J. Schultz, Quadratic assignment
as a general data analysis strategy, British Jour-
nal of Mathematical and Statistical Psychology 29(2)
(1976) 190–241.

14. P. S. Bradley, U. M. Fayyad and C. A. Reina, Scaling
EM (Expectation-Maximization) clustering to large

article id-29



Devi Rahmah Sope, Fujio Mitsuhiko

databases, (2000).
15. H. Hruschka, Market definition and segmentation

using fuzzy clustering methods, International Jour-
nal of Research in Marketing 3(2) (1986) 117–
134, https://www.sciencedirect.com/science/

article/pii/0167811686900157.
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