科学研究費助成事業

今和 2 年 6月 5 日現在

研究成果報告書

機関番号: 34419 研究種目: 基盤研究(C)(一般) 研究期間: 2017~2019 課題番号: 17K05473 研究課題名(和文)絶縁体にセラミックを用いたGEMの実用化への挑戦 研究課題名(英文)Challenge to practical use of GEM using the ceramic as an insulator 研究代表者 加藤 幸弘(Kato, Yukihiro) 近畿大学・理工学部・教授

研究者番号:60278744

交付決定額(研究期間全体):(直接経費) 3,400,000円

研究成果の概要(和文):ガスを用いた粒子検出器の電子増幅機構に用いるGEM(Gas Electron Multiplier)の 絶縁体に低温焼結セラミックス(LTCC)を用いることで、従来のGEMの弱点である耐放電特性や剛性の向上が期 待できる。本研究でLTCC-GEMを製作して増幅率や位置依存性等の基本的特性を測定した結果、従来のGEMと同程 度の性能を有していることがわかり、長所を勘案すればLTCC-GEMを用いることで従来のGEMの問題点を解決でき る検出器を開発出来ることがわかった。

研究成果の学術的意義や社会的意義 粒子検出器には高精度の位置分解能のみならず長期安定性が強く求められている。従来のGEMの弱点である放電 による損傷問題は、検出器を長期にわたって運転するためには克服しなければならない問題であり、LTCCという 耐放電特性に優れた素材を用いた検出器の実現可能性の是非はガス検出器の可能性を広げるために重要な鍵とな が放電特性に優切に実物を用いた検出部の実現す能性の定律にの大検出部の予能性を広けるために重要な鍵とで りうる。本研究によって耐放電特性に優れたGEMを組み込んだガス検出器の実現が確実となり、素粒子実験だけ でなく様々な分野で用いられる期待を得ることが出来た。

研究成果の概要(英文):LTCC (Low Temperature Co-fired Ceramics) has the advantages of good electrical discharge resistance and high rigidity, and is expected to be a good insulator material of GEM (Gas Electron Multiplier) used for the electron amplification mechanism of the particle detector. In this study, we made the LTCC-GEM and measured the detector's basic performances (the amplification factor and the position dependence and so on). The results showed the same performance as the conventional GEM. Considering the advantage of LTCC, it was found that a particle detector capable of solving the problems of the conventional GEM can be developed.

研究分野:素粒子実験

キーワード: セラミックGEM ガス検出器 増幅率 エネルギー分解能

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属されます。

2版

様 式 C-19、F-19-1、Z-19(共通)

1.研究開始当初の背景

ガス検出器の電子増幅機構に新たに2次元微細パターン構造を採用することで、高精度な2次 元位置分解能の達成が可能になった。新たな電子増幅機構の一つとして GEM (Gas Electron Multiplier)(F.Sauli, NIMA386, 1997)が開発され、様々な実験への使用が始まった。しかし、 GEM に使用される絶縁体はポリイミド等の樹脂であり耐放電特性が低いので、放電によって GEM 両面の導体が短絡して GEM が動作不能に陥ることが多い、また、必要な増幅率を得るためには GEM を多層化する必要があるが、多層化によって検出器構造が複雑になり、特に多数の検出器モ ジュールが必要である大型実験では解決することが困難な問題となりうる。これらの問題を解 決するために、高い耐放電特性を有して高い増幅率を達成できる絶縁体素材の選択とそれを用 いた GEM の性能を確認することが求められてきた。

このような状況の中で、絶縁体に低温焼結セラミックス(LTCC)を用いた GEM が提案された (小宮一毅他、精密工学会誌 84 巻、2018)。LTCC は電子部品等に使用される絶縁体で、耐アー ク放電特性に優れているために放電による GEM の損傷を防ぐことが可能となりうる。また、LTCC を用いた GEM(LTCC-GEM)の増幅率は 20000 倍を超えることも同時に報告された。これによって、 LTCC-GEM は従来の GEM が抱える問題を解決できうることが期待されている。

2.研究の目的

LTCC-GEM は従来の GEM が抱える問題を解決できる最有力候補であるので、最終的な目標とし ては次世代電子陽電子衝突型加速器(ILC)の中央飛跡検出器(ILC-TPC)の電子増幅機構への採用 の可否を見極めることである。しかし、これまでに製作されたLTCC-GEM は 3cm 角の大きさであ り ILC-TPC の GEM モジュールは 17cm × 22cm の扇型なので、ILC-TPC に適合するLTCC-GEM の製作 可能性を検討する前に、LTCC-GEM 自体の実用性も検証しなければならない。この二つの問題を 切り分けて検討することが実現に向けて効率的であると考えられるので、まずは一般的なサイ ズである有感領域の大きさが 10cm 角の LTCC-GEM を製作して増幅率、エネルギー分解能や放電 頻度等の基本的特性を測定して従来の GEM と比較することで実用性の検討を行い、次に有感領 域の大きさが 20cm 角程度の大型 GEM の製作に挑戦し、大型 GEM の基本的特性の評価と大型化に よって生じる問題の発掘とその解決策の検討を行う。以上のように、本研究の目的は、LTCC-GEM が ILC のような実際の実験で用いるために解決しなければならない問題を明らかにして解決策 を検討することである。

3.研究の方法

(1) LTCC-GEM の基本的特性の測定

これまで GEM を用いたガス検出器の研究を行ってきたので、本研究も現有する GEM チェンバーを用いて行った。その GEM チェンバーに適合する GEM の大きさは 12.7cm 角であるので、この 大きさで有感領域(穴が開けられた領域)が 6cm 角と 10cm 角である LTCC-GEM を製作した。6cm 角の LTCC-GEM を製作したのは、それまでに製作した LTCC-GEM の有感領域は 3cm 角であるので 10cm 角の製作に対しての試作の意味合いがあった。また、これまで製作された LTCC-GEM の厚さ は 100 µm であったが、GEM を大きくすると剛性に問題があることが予想されたので、今回の測 定に用いるために 200 µm の厚さの LTCC-GEM を製作した。

製作したLTCC-GEM を現有する GEM チェンバーに組み込んで、 増幅率とエネルギー分解能、 長期運転による放電率と増幅率安定性、 増幅率の位置依存性を測定した。使用した混合ガス は、ArCO₂(Ar:70%, CO₂:30%)、T2K(Ar:95%, CF₄:3%, iC₄H₁₀:2%)と P10(Ar:90%, CH₄:10%)の3 種類 を用いた。このうち、T2K ガスは ILC-TPC での使用が計画されているガスで、他のガスはガス検 出器に一般的に用いられている。X 線源として Fe55 の密封線源を測定に用い、抵抗チェーンで カソードと GEM に電圧を供給する。Fe55 の X 線によって生成された電離電子を GEM で増幅し、 電荷をアノード(10cm 角の銅箔が貼られた基板)に集めてプリアンプに導く。アノードの電荷 信号は、プリアンプ(ORTEC 1421H)と波形整形アンプ(ORTEC 672)によって増幅されたのち、電 荷信号の大きさを MCA(AMPTEK MCA800A)で測定した。また、GEM が放電したかどうかの判定は、 GEM に電圧を供給する電源(CAEN N1470)の電流計(精度 5nA)を用いて基準電流以上に電流が流れ た(抵抗チェーンのどこかが短絡した)ときに放電が起きたと判定した。以上の測定はこれまで に測定した従来の GEM とまったく同じ方法であるので、本研究で得られた結果は従来の GEM で 得られた結果と直接比較することができた。

(2) 大型 LTCC-GEM の製作と増幅率の測定

全体の大きさが 30cm 角で有感領域の大きさが 25cm 角の大型 LTCC-GEM を初めて製作し、増幅 率の測定を行った。厚さは剛性を保つために 200 µm とした。なお、製作工程上の理由で穴径と ピッチの変更が要求されたので、穴径を 200 µm、ピッチを 300 µm として製作した。穴径とピッ チの変更に伴う特性の変化を確認するために、大型 LTCC-GEM の製作に先立って 10cm 角の有感 領域で穴径とピッチが大型 LTCC-GEM と同じ LTCC-GEM を製作して、増幅率を測定して(1)で得ら れた結果と比較した。 4.研究成果

(1) LTCC-GEM の基本特性の測定

増幅率とエネルギー分解能

有感領域が 6cm 角と 10cm 角で 200 µ m 厚の LTCC-GEM に対して、3 種類のガスを用いて測定を 行った。増幅率は MCA で得られた電荷分布において Fe55 が放出する 5.9keV の X 線に相当する 電荷量を分布から求め、エネルギー分解能は 5.9keV に相当する電荷量の分布をガウス関数で近 似したときの分布の半値幅のピーク値に対する割合として求めた。測定は LTCC-GEM 両面に印加 する電位差(VGEM)を変えながら測定し、放電によって測定不能になった電位差で測定を終了した。 図 1 は、VGEM に対する増幅率の変化を表している。

増幅率は、全てのガスと有感領域の組み合わせで 1000 倍を超えることがわかった。また、V_{GEM}に 対する増幅率の変化の割合は、3 種類のガスで大きく異なることはないこともわかった。ただし、 今回得られた結果は先行研究(小宮一毅他、精密工学会誌 84 巻、2018)で得られた結果よりも 約 1/10 も小さくなったが、1 層の GEM で到達できる増幅率は従来の GEM に比べて非常に高いこ とがわかり、増幅率の要求がさほど高くない実験では 1 層の LTCC-GEM の使用で十分であること がわかった、次に V_{GEM}に対するエネルギー分解能を図 2 に示す。全てのガスで増幅率が 100 から 800 倍の範囲でのエネルギー分解能は、約 22%であることがわかった。増幅率が低い範囲でエネ ルギー分解能が 40%程度と悪いのは、Fe55 の電荷信号の大きさがノイズの信号の大きさに近い ためにノイズの影響を大きく受けていると考えられる。また、増幅率が高い範囲でエネルギー分 解能も 40%程度と悪いのは、増幅率(V_{GEM})が高くなるにしたがって放電頻度が増加するので、放 電によるノイズの影響を受けていると考えられる。この結果から、測定した LTCC-GEM を安定的 に動作できる増幅率は 100 から 800 倍まであるとみなすことが出来る。

増幅率の長期安定性と放電頻度

LTCC-GEM の動作に対する長期安定性は、T2K ガスを用いて 105 時間の連続運転をすることで 測定した。VGEM を 540V に設定し、運転中は Fe55 の X 線源を検出器上に置いたままにして、発生 した X 線の電荷信号を 30 分間隔で取得した。ただし、測定開始直後の短時間の変化を測定する ために、測定開始から 1 時間が経過するまでは 10 分間隔で測定した。測定中は T2K ガスの圧力 (ほとんど大気圧と同じ)と温度(アルミ製チェンバーなので、チェンバー外側の温度とガス温 度は同じであるとみなした)も同時に測定し、それらの値を用いて増幅率とエネルギー分解能の 測定値を 25 、760Torr での値となるように補正した。また、放電が発生したかの判定は、抵抗 チェーンを構成するための基準電流(20 µ A)よりも 15nA を超えたときに放電が発生したとみな した。図 3 に測定結果を示す。

図 3 LTCC-GEM の長期安定性の測定

増幅率は測定開始直後に一番高い値であ ったが、徐々に低下していって 10 時間経 過後には 730 倍となり、それ以降は安定 していると考えられる。反対にエネルギ ー分解能は開始直後に一番低い値(22%) であったが、徐々に悪くなって 10 時間経 過すると 28%となり、その後は安定した。 増幅率とエネルギー分解能が対照的な時 間変動をする理由は明確ではないが、安 定した測定を行うためには少なくとも 10 時間程度の事前運転が必要であることが わかった。また、図3に示した放電率は1 時間毎の放電率であり、全期間にわたる 平均の放電率は(3.201 ± 0.092) × 10⁻³Hz であった。1 時間当たり約 10 回放電する 計算であるが、実際の実験に用いるには 放電頻度は高いと言わざるを得ない。しかし、今回の研究では1枚のLTCC-GEMを用いて全ての 測定を行い、測定中はかなりの頻度で放電が発生したにもかかわらず損傷することなく測定を すべて遂行できたことを考えると、LTCC-GEM は高い耐放電特性を有しているとみなせるだろう。 増幅率とエネルギー分解能の位置依存性

大型 GEM の運用にあたっては、増幅率などが GEM 平面上のどの位置でも同じこと(位置依存性 が少ないこと)が要求されるので、有感領域を小区画に区切って区画毎の増幅率とエネルギー分 解能を評価することで位置依存性を確認した。測定においては、10cm 角の LTCC-GEM の有感領域 を 1cm×1cm の小区画に分け、X 線源を小区画の中心において区画毎の増幅率とエネルギー分解 能を測定した。なお、Fe55 による X 線の GEM 上面での拡がりが約 1.4cm になるようにコリメー タを用いた。測定は 節の測定と同様に T2K ガスを用いて VGM を 540V として行い、圧力と温度 の補正を施した。

図4に増幅率の位置依存性を、図5にエネルギー分解能の位置依存性を示した。図4に示し たように、測定した 100 区画での増幅率は 449.7 ± 51.6 (FWHM) で、位置による増幅率の変動 は11%であって実際の実験では無視できない大きさであることがわかった。そして、増幅率が高 い区画と低い区画が局在していることがわかる。導体に挟まれた絶縁体の厚さのばらつきによ って GEM 両面の電位差が変動することと増幅率は電位差に大きく依存していことを考えると、 製造上の理由で絶縁体が山と谷を形成してしまったのが原因であると考えられる。また、電位差 に対する増幅率の増減の割合が急であるために、絶縁体の厚さの少しの変動が増幅率を大きく 変動させているとも考えられる。なお、得られた増幅率の平均値が 449.7 と 節と 節で得られ た増幅率と大きく異なった理由は定かではないが、抵抗チェーンで用いた抵抗がもつ抵抗値の 誤差(1本の抵抗の誤差は5%である)が影響している可能性がある。

エネルギー分解能の位置依存性を図5で示したが、100区画でのエネルギー分解能は0.246± 0.051(FWHM)で、位置による変動は20%と増幅率の変動よりも大きくなった。しかし、分解能が 高い箇所と低い箇所は点在しており、増幅率の位置依存性と異なった特徴を示している。このよ うな特徴をしめす理由は不明であり、位置によるばらつきも非常に大きいので、現状の LTCC-GEM は荷電粒子のエネルギー測定には不適であると言わざるを得ない。しかし、LTCC-GEM のサイズ が小さい場合や位置毎に分解能補正が可能である場合には、エネルギー測定に適応できると期 待できる。

(2) 大型 LTCC-GEM の製作と増幅率の測定

図 6 大型 LTCC-GEM (右は 10cm 角 GEM)

今回製作した大型 LTCC-GEM を図 6 に示す。全体の大きさは 30cm × 30cm で、有感領域は 25cm ×25cm である。図6の右側は従来の10cm角の GEM である。厚さは 200 µm であるが、大きさ を考えると剛性がまだ不足しているように感 じられるので、フレームの取付けが必須であ る。穴径は 200 µm、ピッチは 300 µm であり、 よく見れば穴が大きいことがわかる。大型 LTCC-GEM の増幅率測定であるが専用のチェン バーを製作して測定するので、従来の GEM と 比較するために大型 LTCC-GEM と同じ穴構造で 10cm 角の GEM を製作して増幅率を測定した。

図7は、VGEM に対する増幅率を示している。 今回用いたガスは T2K ガスのみであるが、 ArCO₂と P10 ガスで測定を試みたところ、今回 新たに製作した LTCC-GEM(大型 GEM と同じ穴 構造で 10cm 角の GEM)は、2 つのガスで十分

図7 大型 LTCC-GEM の増幅率

な増幅率を得ることのできない低い VGEM か ら放電が始まったために測定不能であった。 測定不能となった理由は不明であるが、製 造過程において何らかの問題が発生したの ではないかと考えられる。この問題につい てはすでに製造企業と協議しており、問題 解決に向けて進んでいる。図7 が示してい るように、大型 LTCC-GEM であっても 1000 倍を超える増幅率を達成することができた。 大型 LTCC-GEM の VGEM に対する増幅率の変化 の割合はこれまでに使用した 10cm 角の LTCC-GEM よりもなだらかであるが、同じ穴 構造の 10cm 角 LTCC-GEM と同じであるので、 傾きの違いは穴構造の違いが原因である といえる。今回の結果を増幅率の安定性の 観点から考えると、大型 LTCC-GEM の穴構

造のほうが電位差のばらつきによる増幅率のばらつきを抑えられるので実際の実験に適合しや すいとみなせるが、大きな穴径とピッチでは飛跡の位置測定性能が悪化する恐れがある。なお、 VGEM が低い領域で大型 LTCC-GEM のデータがないのは、検出器由来のノイズが非常に大きいため に Fe55 からの電荷信号がノイズにうずもれてしまったためである。

今回の研究によって、大型 LTCC-GEM は 10cm 角の GEM と同様の性能を有し、実際の実験に使用できる可能性が十分あることがわかった。

5.主な発表論文等

〔雑誌論文〕 計0件

〔学会発表〕 計5件(うち招待講演 0件/うち国際学会 1件)

1.発表者名

加藤幸弘

2.発表標題

Study of LTCC-GEM gain properties

3 . 学会等名

6th International Conference on Micro Pattern Gaseous Detectors, MPGD19(国際学会)

4.発表年 2019年

1.発表者名 加藤幸弘

2.発表標題

セラミックGEMの基本特性について - ゲインの位置依存性と大型化ー

3 . 学会等名

日本物理学会 2019年秋季大会

4.発表年 2019年

1.発表者名 加藤幸弘

2.発表標題

セラミックGEMの基本特性について - ゲインの位置依存性と大型化ー

3 . 学会等名 第15回MPGD研究会

4.発表年

2018年

1.発表者名 加藤幸弘

加膝干五

2 . 発表標題

セラミックGEMの基本特性について

3 . 学会等名 第14回MPGD研究会

4 . 発表年

2017年

1.発表者名

加藤幸弘

2.発表標題 絶縁体にセラミックスを用いたGEMの基本的特性の研究

3 . 学会等名

日本物理学会 第73回年次大会

4 . 発表年 2018年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

6 . 研究組織

-

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
--	---------------------------	-----------------------	----