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ABSTRACT 

BACKGROUND AND AIMS: Contrast-enhanced harmonic endoscopic 

ultrasonography (CH-EUS) is useful for the diagnosis of lesions inside and outside the 

digestive tract. This study evaluated the value of artificial intelligence (AI) in the 

diagnosis of gastric submucosal tumors by CH-EUS. 

METHODS: This retrospective study included 53 patients with gastrointestinal stromal 

tumors (GISTs) and leiomyomas, all of whom underwent CH-EUS between June 2015 

and February 2020. A novel technology, SiamMask, was used to track and trim the lesions 

in CH-EUS videos. CH-EUS was evaluated by AI using deep learning involving a 

residual neural network and leave-one-out cross-validation. The diagnostic accuracy of 

AI in discriminating between GISTs and leiomyomas was assessed and compared with 

that of blind reading by two expert endosonographers.  

RESULTS: Of the 53 patients, 42 had GISTs and 11 had leiomyomas. Mean tumor 

size was 26.4 mm. The consistency rate of the segment range of the tumor image 

extracted by SiamMask and marked by the endosonographer was 96% with a Dice 

coefficient. The sensitivity, specificity, and accuracy of AI in diagnosing GIST were 

90.5%, 90.9%, and 90.6%, respectively, whereas those of blind reading were 90.5%, 
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81.8%, and 88.7%, respectively (P = 0.683). The κ-coefficient between the two reviewers 

was 0.713.  

CONCLUSIONS: The diagnostic ability of CH-EUS results evaluated by AI to 

distinguish between GISTs and leiomyomas was comparable with that of blind 

reading by expert endosonographers.  

 

Key words: artificial intelligences, contrast-enhanced harmonic endoscopic 

ultrasonography, gastrointestinal stromal tumor, endoscopic ultrasonography, submucosal 

tumor, neural network 
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Introduction 

Endoscopic ultrasonography (EUS) is a diagnostic method for the detection and 

discrimination of gastric submucosal tumors (g-SMTs) [1]. Differential diagnosis of these 

tumors is challenging because g-SMTs originating from the muscle layer, such as 

gastrointestinal stromal tumors (GISTs) and leiomyomas, appear similar on EUS [2]. 

Contrast-enhanced harmonic endoscopic ultrasonography (CH-EUS) enables the 

qualitative diagnosis of g-SMT by evaluating blood flow [3, 4]. We previously reported 

the utility of CH-EUS in the differential diagnosis of GISTs and g-SMTs other than GISTs 

and in the estimation of GIST malignancy [3, 4]. Subjective evaluation of the amount of 

blood flow, the homogeneity of contrast enhancement, and the morphology of 

intratumoral blood vessels by more than two experts, however, may lead to diagnostic 

bias [3-7]. Although EUS-guided tissue sampling is also useful for diagnosing g-SMTs 

[8], its accuracy can be greatly affected by tumor location and size [5, 6]. Thus, diagnostic 

imaging still plays a pivotal role in the diagnosis of g-SMTs. Artificial intelligence (AI), 

a mathematical predictive technique that automates learning and the recognition of data 

patterns, has been used in the evaluation of endoscopic images [9-13]. SiamMask is a 

novel tracking and segmentation technology, which enables the position of the tracked 

object in the video to be estimated and outputs a binary mask indicating the area to which 
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the object belongs at the pixel level [14]. In the present study, SiamMask was utilized to 

track and trim lesions in each frame of CH-EUS videos, and the ability of AI using this 

novel technology to differentiate between GISTs and leiomyomas on CH-EUS was 

assessed. 

 

Patients and methods  

Patients and study design 

This was a single-center, retrospective study. The study protocol was approved by the 

Ethics Committee of Kindai University Faculty of Medicine. The leave-one-out cross-

validation method was used for deep learning and diagnosis of AI; therefore, the learning 

and diagnostic cohorts were not separated. Fifty-three consecutive patients diagnosed 

with g-SMT by surgical resection or endoscopic ultrasound-guided fine needle aspiration 

(EUS-FNA) between June 2015 and February 2020 were evaluated. Patients were 

included if they were aged ≥20 years, had undergone CH-EUS, and had a g-SMT 

originating from the muscle layer that was diagnosed as GIST or leiomyoma. GIST was 

defined as a subepithelial tumor composed of spindle cells that stained positive for c-kit 

and CD34. 
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Contrast-enhanced harmonic endoscopic ultrasonography  

CH-EUS was performed by expert endosonographers (i.e., all had experience of more 

than 1000 CH-EUS procedures) using a convex type echoendoscope (GF-UCT260; 

Olympus Medical Systems Co. Ltd., Tokyo, Japan) and imaging equipment (ALOKA 

ProSound SSD α-10 or F75 system; ALOKA Co. Ltd., Tokyo, Japan). The transmitting 

frequency and mechanical index were 4.7MHz and 0.3, respectively. Patients received 

the ultrasound contrast agent Sonazoid (Daiichi-Sankyo, Tokyo, Japan) at a concentration 

of 0.015 mL/kg body weight and underwent CH-EUS examination under conscious 

sedation with propofol. CH-EUS videos were stored in a recording system, with videos 

taken approximately 20 seconds after blood flow was first observed in the tumor 

evaluated by blinded readers and AI. For blind reading, the enhancement patterns of the 

lesions were divided into hyper- and hypo-enhancement, as described [3]. Hyper-

enhanced lesions were considered to be GISTs whereas hypo-enhanced lesions were 

considered to be leiomyomas. The stored data were reviewed by two experienced readers 

(H. Tanaka and K. Kamata), who were blinded to the clinical findings, with any 

differences resolved by consensus re-reading. 

 

SiamMask 
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SiamMask is a metric learning approach, utilized to track objects in each frame image in 

movies. Images in the first and subsequent frames are defined as the target and search 

images, respectively [15-19]. The region of the tracking object in the target image is 

initially set manually, with regions in search images estimated by SiamMask. This 

estimation process is iterative, with the search image in each iteration becoming the target 

image in the next iteration. Thus, manually setting the region of the tracking object is only 

required in the initial iteration [20]. AI trimming of the tumor area in EUS videos has also 

been found useful [21]. 

The process from input to output of the tumor image by SiamMask is illustrated in Figure 

1. The search image and the cropped local image are passed through the same network 

(fθ), with each feature map obtained by the residual neural network (Resnet) (i.e., 

Resnet50). The feature map of the local image is subsequently subjected to 2D 

convolution performed (*d), with each spatial element (response of a candidate window) 

yielding two interrelated feature maps (response maps). Similarity, bounding box 

coordinates and a value mask are generated; the output of the three branches consists of 

two 1x1 convolution layers (ℎ∅, bδ, sφ) generated by the convolutional neural network 

(CNN; convnet) [14]. After applying sigmoid to each pixel, the output of the mask branch 

is digitized with a threshold of 0.5. For frames other than the first frame, the output mask 
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was fit with a min-max box, which was used as a reference for the search area of the next 

frame. An image was created in which only the tumor part was removed from the search 

image and the value mask. Figure 2 shows a representative image, in which both the tumor 

area extracted by SiamMask and manually marked by the endosonographer are shown in 

white and the rest of the background in black. The consistency rate of the segment range 

of the tumor obtained by those two methods was 96% with a Dice coefficient [22]. Thus, 

SiamMask trimmed the tumor area of the first image and automatically tracked the tumor 

in the CH-EUS video (Video 1). 

 

Deep learning and diagnosis by artificial intelligence 

Deep learning and diagnosis by AI included feature extraction, classification, and 

probabilistic distribution processes (Figure 3). A 20-second CH-EUS video from each 

patient was divided into 0.1 second intervals, yielding 200 images. Features were 

extracted from each image using SiamMask as described above. For classification, the 

images extracted by SiamMask were converted to 256 × 256 pixels images and labeled 

as “GIST” or “Leiomyoma”; these images were used for training Resnet. The output of 

Resnet was based on SoftMax, which provides estimates for GIST ranging from 0 to 1.0.  
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After deep learning using data other than those of the target patient, the values of the 200 

images obtained from the target patient were estimated and averaged to obtain the final 

result; this was done using the learn-one-out cross validation method. Thus, data from 52 

enrolled patients, excluding the target patient, were used as training data. This process 

was repeated for all 53 enrolled patients. If AI estimated "GIST" with a probability ≥0.5, 

it was considered to be “GIST”. 

 

Statistical analysis 

The rate of consistency of the segment range of the tumor images extracted by SiamMask 

and marked by the endosonographer was compared by determining Dice coefficients. The 

accuracy of diagnosis of GIST by blind reading and AI was compared using the McNemar 

test. Interobserver agreement in CH-EUS findings was tested by kappa statistics, with κ 

coefficients of > 0.8, > 0.6, and > 0.4 indicating excellent, good, and moderate agreement, 

respectively. All statistical analyses were performed using SAS software version 9.1 (SAS 

Institute, Cary, NC, USA), with P values <0.005 considered statistically significant. 

 

Results 
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Fifty-three patients, 28 men and 25 women (mean age, 64.4 years) were eligible for 

analysis (Table 1). Of these patients, 42 were diagnosed with GIST and 11 with 

leiomyoma. Mean tumor size was 26.4 mm. The consistency rate between the segment 

range of the tumor image extracted by SiamMask and that marked by the 

endosonographer was 96%. The κ-coefficient between the two reviewers was 0.713. 

Overall, sensitivity, specificity, and accuracy of AI for diagnosing GIST were 90.5%, 

90.9%, and 90.6%, respectively, whereas those for blind reading were 90.5%, 81.8%, and 

88.7%, respectively (Table 2). The difference was not significant (P = 0.683). The 

diagnostic performance of AI and blind reading was in perfect agreement for cases with 

a tumor < 20mm (n = 17); and showed a trend similar to that observed for the entire in 

cases with tumors 20 mm ≥ (n = 36). 

There were few tumors with probability values of around 0.5, indicating that AI clearly 

distinguished between GISTs and leiomyomas (Table 3). Video 2 shows the CH-EUS of 

a patient with GIST (patient 2 in Table 3). Blind reading found hypo-enhancement, 

indicating leiomyoma, whereas AI estimated the probability of GIST at 86%. Video 3 

shows the CH-EUS of a patient with a leiomyoma (patient 23 in Table 3). Blind reading 

found hyper-enhancement indicating GIST, whereas AI estimated the probability of GIST 

at 6%. 
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Discussion 

AI is being developed as a new diagnostic tool for endoscopy. In gastrointestinal 

endoscopy, AI has been used in the diagnosis of gastric cancers, colorectal polyps, and 

intraductal papillary mucinous neoplasms [10, 23, 24]. This study examined the 

diagnostic ability of AI with CH-EUS for g-SMTs. AI systems using deep learning 

methods such as convnet have been developed in several fields. CNNs have proven 

effective models for a variety of visual tasks, resulting in several high-performance 

algorithms, such as AlexNet [25], GoogleNet [26], VGG16 [27], YOLO [28], and Resnet 

[10]. Resnet is composed of residual blocks, with shortcut connections between CNN 

layers. The present study used the Resnet algorithm for marking tumors and diagnosing 

gastric SMTs. 

SiamMask is an AI method of tracking tumors on CH-EUS videos in real time and 

trimming tumor images using Resnet. The present study compared tumor images marked 

by SiamMask and by endosonographers, finding a 96% concordance rate in the Dice 

coefficient and indicating that SiamMask is considered useful for marking. Traditionally, 

video images are individualized, with marked tumors or images saved at the time of 

examination. Isolating the tumor area on saved images using SiamMask allowed more 
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images to be obtained over a short time and improved work efficiency. Using saved videos, 

it should be possible to create AI learning data and perform diagnoses in an almost fully 

automatic manner.  

A meta-analysis found that the pooled sensitivity, specificity, and accuracy of CH-EUS 

for discriminating between GIST and benign SMT were 89%, 82%, and 89%, respectively 

[29]. Few studies, however, have evaluated the ability of CH-EUS to diagnose g-SMTs 

[29, 30], and its diagnostic performance has been found to vary [30]. In the present study, 

evaluation of CH-EUS findings by blinded readers had a sensitivity, specificity, and 

accuracy of 90.5%, 81.8%, and 88.7%, respectively. Thus, the diagnostic performance 

was comparable with that of the above meta-analysis. 

A comparison of the diagnostic ability of expert endosonographers and AI to distinguish 

between GISTs and leiomyomas revealed no significant differences (P = 0.683). However, 

AI showed greater specificity than the expert endosonographers. In some cases, it may be 

difficult to differentiate GISTs from leiomyomas based on subjective evaluation of 

contrast patterns alone. In several patients, the AI diagnosis was correct, whereas the 

diagnosis by the endosonographers was incorrect. Correct diagnosis of these patients 

required endosonographers to learn the key findings of AI. Although checking AI heat 

maps is important, it is difficult to determine the criteria used by AI to make a diagnosis 
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due to the wide range of variations in each heat map image. This might be solved in the 

future by accumulating data from a large number of patients. Minoda, et al. reported the 

usefulness of conventional EUS using AI for SMT; however, there are several differences 

between that study and our own (other than not using CH-EUS) [11]. In that study, the 

training and validation were performed using separate data sets. The final diagnosis for 

the training data was based only on EUS-guided sampling. Various types of EUS, 

including convex and radial type EUS and EUS prove, were used. Also, EUS imaging 

equipment from a different company was used. Finally, 15–20 conventional EUS images 

per patient were used for diagnosis [11]. 

The present study had several limitations, including its retrospective design and its 

inclusion of a relatively small number of patients. The EUS videos were collected 

retrospectively, which may have led to selection bias. The gold standard is EUS-FNA and 

surgery, and there were only two cases with resected leiomyoma in our cohort. However, 

differential diagnosis of benign and malignant g-SMT has improved with the 

advancement of diagnostic imaging and EUS-guided sampling methods and the number 

of surgical cases with leiomyoma is not expected to increase. The test data were verified 

using the leave-one-out cross validation method. The use of different processors (ALOKA 

16



ProSound SSD α-10 or F75 system) may have led to a different interpretation by AI, 

although settings such as frequency and mechanical index were consistent. 

In conclusion, automatic segmentation of g-SMT lesions using SiamMask reduces the 

effort associated with traditional manual labor in AI-based diagnostic imaging. 

Moreover, AI with novel tumor tracking technology may be useful for the differential 

diagnosis of GISTs and leiomyomas by CH-EUS.  
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Figure legends 

Figure 1. Illustration of the SiamMask process, from input to output of tumor images. 

 

Figure 2. Results from a representative patient, showing the tumor area (A) extracted by 

SiamMask (B) and marked manually by the endosonographer (C). 

 

Figure 3. Illustration of the extraction, classification, and probabilistic distribution 

processes in deep learning and diagnosis. 
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Video legends 

Video 1. CH-EUS video, showing trimming of the tumor area of the first image and 

automatic tracking of the tumor by SiamMask. 

 

Video 2. CH-EUS video of a GIST correctly diagnosed by AI but incorrectly diagnosed 

by blind reading.  

 

Video 3. CH-EUS video of a leiomyoma correctly diagnosed by AI but incorrectly 

diagnosed by blind reading. 
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Table1. Patient characteristics 

Total n=53 

Mean age, y (range) 64.4 (20–90) 

Male/Female, n 28/25 

GIST/Leiomyoma 42/11 

Mean tumor size, mean ± SD, mm 26.4 ± 12.9  

Tumor location 

(Fundus/ Cardia/Antrum/Body) 

10/7/5/31 

Final diagnosis  

(Surgical resection/ EUS-FNA) 

33/20 

Abbreviations: EUS-FNA, endoscopic ultrasound-guided fine needle aspiration; GIST, 

gastrointestinal stromal tumor; SD, standard deviation.  
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Table 2. Diagnosis ability (blind reading vs. AI) 

Abbreviations: AI, artificial intelligence; CI, confidence interval; NPV, negative 

predictive value; PPV, positive predictive value. 

 

 

Overall  

(n = 53) 

     

 Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 

Accuracy 

(%) 

Blind reading 90.5 81.8 95.0 69.2 88.7 

(95% CI) (84.2–93.7) (57.8–94.2) (88.4–98.4) (48.9–79.7) (78.7–93.8) 

AI 90.5 90.9 97.4 71.4 90.6 

(95% CI) (84.4–92.4) (67.9–98.3) (90.9–99.5) (53.3–77.2) (81.0–93.6) 

Cases < 20mm 

(n = 17) 

     

 Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 

Accuracy 

(%) 

Blind reading 92.9 100 100 75.0 94.1 

(95% CI) (82.5–92.9) (51.7–100) (88.9–100) (38.8–75.0) (77.1–94.1) 

AI 92.9 100 100 75.0 94.1 

(95% CI) (82.5–92.9) (51.7–100) (88.9–100) (38.8–75.0) (77.1–94.1) 

Cases ≥ 20mm 

(n = 36) 

     

 Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 

Accuracy 

(%) 

Blind reading 89.3 75.0 92.6 66.7 86.1 

(95% CI) (81.1–94.0) (46.4–91.4) (84.1–97.5) (41.3–81.3) (73.4–93.4) 

AI 89.3 87.5 96.2 70.0 88.9 

(95% CI) (81.2–92.2) (59.2–97.6) (87.5–99.3) (47.4–78.1) (76.3–93.4) 
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Table 3. Final diagnosis and result of AI for each patient 

Patient 

no. 

Final 

diagnosis 

Estimated probability 

of GIST 

Patient 

no. 

Final 

diagnosis 

Estimated 

probability of GIST 

1 GIST 0.99 28 Leiomyoma 0.38 

2 GIST 0.86 29 GIST 0.97 

3 Leiomyoma 0.87 30 GIST 0.73 

4 GIST 0.99 31 Leiomyoma 0.02 

5 GIST 0.99 32 GIST 0.73 

6 Leiomyoma 0.00 33 GIST 0.31 

7 GIST 0.84 34 GIST 1.00 

8 GIST 1.00 35 GIST 1.00 

9 Leiomyoma 0.00 36 GIST 0.62 

10 GIST 0.46 37 Leiomyoma 0.06 

11 Leiomyoma 0.02 38 GIST 1.00 

12 GIST 0.86 39 GIST 0.67 

13 GIST 0.98 40 GIST 0.99 

14 GIST 0.99 41 GIST 0.98 

15 GIST 0.97 42 GIST 0.95 

16 Leiomyoma 0.02 43 GIST 0.85 

17 GIST 0.98 44 GIST 0.99 

18 GIST 1.00 45 Leiomyoma 0.14 

19 Leiomyoma 0.05 46 GIST 0.93 

20 GIST 0.88 47 GIST 0.94 

21 GIST 0.99 48 GIST 0.97 

22 GIST 0.02 49 GIST 1.00 

23 Leiomyoma 0.06 50 GIST 0.90 

24 GIST 1.00 51 GIST 0.99 

25 GIST 1.00 52 GIST 0.92 

26 GIST 0.32 53 GIST 1.00 

27 GIST 1.00    

Abbreviations: GIST, gastrointestinal stromal tumor. 
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Figure　　  1. Illustration of the SiamMask process, from input to output of tumor images. 
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Figure　　　　　　  2. Results from a representative patient, showing the tumor area (A) extracted by SiamMask (B) and 
manually marked by the endosonographer (C). 
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Figure　　  3. Illustration of the extraction, classification, and probabilistic distribution processes in deep learning 
and diagnosis. 
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