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Abstract 25 

Objective: The epithelial to mesenchymal transition (EMT) is associated with acquired 26 

resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) 27 

in certain non-small cell lung cancers that harbor EGFR mutations. Because no 28 

currently available drugs specifically kill cancer cells via EMT, novel treatment 29 

strategies that overcome or prevent EMT are needed. A recent report suggested that 30 

dasatinib (an ABL/Src kinase inhibitor) inhibits EMT induced by transforming growth 31 

factor (TGF)-beta in lung cancer cells (Wilson et al., 2014). In this study, we analyzed 32 

effects of dasatinib on the resistance mechanism in HCC4006 cells, which tend to 33 

acquire resistance to EGFR-TKIs via EMT. 34 

Materials and methods: Sensitivity to dasatinib in HCC4006 and HCC4006 erlotinib-35 

resistant (ER) cells with an EMT phenotype was analyzed. HCC4006 cells acquired 36 

resistance against the combination of erlotinib and dasatinib (HCC4006EDR) following 37 

chronic treatment with these drugs. The expression of EMT markers and the resistance 38 

mechanism were analyzed. 39 

Results: Short-term or long-term treatment with dasatinib did not reverse EMT in 40 

HCC4006ER. In contrast, HCC4006EDR cells maintained an epithelial phenotype, and 41 

the mechanism underlying resistance to erlotinib plus dasatinib combination therapy 42 

was attributable to a T790M secondary mutation. HCC4006EDR cells, but not 43 

HCC4006ER cells, were highly sensitive to a third-generation EGFR-TKI, osimertinib.  44 

Conclusions: Although dasatinib monotherapy did not reverse EMT in HCC4006ER 45 

cells, preemptive combination treatment with erlotinib and dasatinib prevented the 46 

emergence of acquired resistance via EMT, and led to the emergence of T790M. Our 47 

results indicate that preemptive combination therapy may be a promising strategy to 48 
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prevent the emergence of EMT-mediated resistance. 49 

 50 
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Introduction 73 

Somatic activating mutations of the epidermal growth factor receptor (EGFR) 74 

gene are present in approximately 40% and 15% of non-small cell lung cancers 75 

(NSCLCs) in East Asians and Caucasians, respectively [1-3]. For patients with 76 

NSCLCs harboring an EGFR mutation, EGFR-tyrosine kinase inhibitors (TKIs), which 77 

are used as a first-line therapy, have demonstrated significantly longer progression-78 

free survival than cytotoxic chemotherapy in randomized phase III studies [4–7]. 79 

However, the emergence of acquired resistance is virtually inevitable, even in 80 

patients with initially dramatic responses, after a median of approximately one year 81 

[8].  82 

Several resistance mechanisms to EGFR-TKIs have been reported, including a 83 

secondary point mutation in codon 790 of exon 20 (T790M) of the EGFR gene [9], 84 

MET gene amplification [10,11], HER2 gene amplification [12,13], transformation to 85 

small cell lung cancer [14–17], and epithelial to mesenchymal transition (EMT) [18–86 

21].  87 

Among these resistance mechanisms, T790M is a treatable mutation with the 88 

use of the T790M-specific irreversible EGFR-TKIs (third-generation EGFR-TKIs) 89 

[22,23]. In contrast, certain resistance mechanisms, particularly EMT, are difficult to 90 

treat with currently available agents. 91 

Based on experimental observations, individual lung cancers appear to be 92 

“destined” to develop a specific resistance mechanism(s) to EGFR-TKIs [24]. For 93 

example, PC9 cells often develop resistance through T790M [25–27], while HCC827 94 

cells acquire MET gene amplification to become resistant to the first-generation 95 

EGFR-TKIs [10,28–30]. In HCC4006 cells, we and others have identified an EMT 96 
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phenotype as the mechanism of acquired resistance to the first-generation EGFR-97 

TKIs [21,31,32]. However, we have previously suggested that this “destiny” can be 98 

modified if inhibitors targeted to the “destined” resistance mechanism are given in 99 

combination with EGFR-TKIs. For example, HCC827 cells instead acquired 100 

resistance through T790M when a MET-TKI was given together with erlotinib [30]. 101 

Recently, Wilson et al. reported that dasatinib (an ABL/Src kinase inhibitor) was 102 

more effective against lung cancer cells that underwent TGF-beta induced EMT 103 

compared to their parent cells [33]. Inspired by this study, we analyzed the effects of 104 

dasatinib on HCC4006 erlotinib-resistant (ER) cells as well as HCC4006 cells to 105 

determine if dasatinib can prevent EMT as a resistance mechanism. 106 

 107 

 108 

2. Material and Methods 109 

2.1. Cell lines and reagents 110 

The human lung adenocarcinoma cell line HCC4006 was a kind gift from Dr. A. F. 111 

Gazdar (Hamon Center for Therapeutic Oncology Research, University of Texas 112 

Southwestern Medical Center at Dallas, Dallas, TX). HCC4006 erlotinib resistant 113 

cells (HCC4006ER) were established in our previous study [21]. HCC4006ER cells 114 

were chronically treated with dasatinib for 1 month, with medium replacement in 115 

every 3 - 4 days. HCC4006 erlotinib and dasatinib resistant cells (HCC4006EDR) 116 

were established via chronic exposure to increasing concentrations of erlotinib (20 117 

nM to 2 µM) in the presence of dasatinib as previously described [30]. Cells were 118 
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cultured in RPMI 1640 medium (Wako, Osaka, Japan) supplemented with 10% heat-119 

inactivated fetal bovine serum (FBS; Sigma-Aldrich, St. Louis, MO) at 37°C in a 120 

humidified incubator containing 5% CO2. Erlotinib (a first-generation reversible 121 

EGFR-TKI), dasatinib (an ABL/Src kinase inhibitor) and osimertinib (a third-122 

generation irreversible EGFR-TKI) were purchased from Selleck Chemicals (Houston, 123 

TX, U.S.).  124 

 125 

2.2. Growth inhibition assay 126 

Cell proliferation was measured using Cell Counting Kit-8 (Dojindo, Kumamoto, 127 

Japan) according to the manufacturer’s protocol. Briefly, cancer cells (4 x 103) were 128 

plated onto each well of a 96-well flat-bottomed plate and grown in RPMI containing 129 

10% FBS. After 24 hours, dimethyl sulfoxide (DMSO), erlotinib, dasatinib, osimertinib, 130 

or a combination of these drugs was added at the desired drug concentrations, and 131 

the cells were incubated for an additional 72 hours. A colorimetric assay was 132 

performed after adding 10 µL of Cell Counting Kit-8 reagent to each well and 133 

incubating the plates at 37°C for 2–4 hours. The absorbance at 450 nm was read 134 

using a multiplate reader (Tecan, Männedorf, Switzerland), and the growth 135 

percentage was expressed relative to DMSO-treated controls.  136 
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 137 

2.3. Preparation of DNA and RNA 138 

Genomic DNA was extracted using a DNeasy Blood & Tissue Kit (Qiagen, Venlo, 139 

the Netherlands) according to the manufacturer’s protocol. Total RNA from cell lines 140 

was isolated using a mirVana miRNA Isolation Kit (Qiagen), and complementary DNA 141 

was synthesized from total RNA using ReverTra Ace® qPCR RT Master Mix with 142 

gDNA Remover (TOYOBO, Osaka, Japan) according to the manufacturer’s protocol. 143 

 144 

2.4. Mutation analysis and gene copy number analysis 145 

Mutational analyses of exons 18 to 21 of the EGFR gene were conducted by 146 

performing direct sequencing. PCR was performed as previously described [21]. 147 

Direct sequencing was performed using a BigDye Terminator v3.1 Cycle Sequencing 148 

Kit (Life Technologies, Carlsbad, CA,) and an ABI 3130XL instrument (Life 149 

Technologies) according to the manufacturer’s protocol. The copy numbers of the 150 

MET and HER2 genes relative to LINE1 repetitive elements were measured by real-151 

time PCR using Power SYBR Green PCR Master Mix (Life Technologies) and the 152 

StepOnePlus system (Life Technologies). PCR was performed in triplicate for each 153 

primer set. Normal genomic DNA was used as a standard sample. 154 

 155 

2.5. Western blot analysis 156 

Cells were cultured until subconfluency was reached, and the medium was 157 

changed to fresh medium containing DMSO or the indicated drug concentrations. 158 

After 8 hours, cell lysates were collected using sodium dodecyl sulfate (SDS) buffer. 159 

Approximately 20 µg of total cell lysate was separated by SDS-poly-acrylamide gel 160 
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electrophoresis and transferred to polyvinylidene difluoride membranes (Bio-Rad, 161 

Hercules, CA). After blocking with Western BLoT Blocking Buffer (Protein Free) 162 

(Takara, Shiga, Japan) or PBS containing 2.5% skim milk and 2.5% bovine serum 163 

albumin, the membranes were incubated overnight with primary antibodies (1:1,000) 164 

and washed with PBS containing 0.05% Tween 20 (PBS-T). Then, the membranes 165 

were incubated with a secondary antibody (1:4,000) and washed again with PBS-T 166 

before detection with an Amersham ECL Western Blotting Detection Kit (GE 167 

Healthcare, Fairfield, CT) or Western BLoT Quant HRP Substrate (Takara). 168 

Chemiluminescence was detected with an Amersham Imager 600 instrument (GE 169 

Healthcare). Anti-phospho-EGFR, anti-EGFR (Tyr1068), anti-phospho-AKT, anti-170 

AKT(Ser473), anti-phospho-ERK, anti-ERK (Tyr202/Tyr187), anti-E-cadherin, anti-171 

vimentin and anti--actin antibodies were purchased from Cell Signaling Technologies 172 

(Danvers, MA). 173 

 174 

 175 

3. Results 176 

3.1. Dasatinib treatment did not alter the EMT phenotype in HCC4006ER cells 177 

HCC4006ER cells which we had established previously were approximately 178 

1,000-fold more resistant to erlotinib compared with parental HCC4006 cells (Fig. 1A). 179 

We first investigated the effects of dasatinib on HCC4006 and HCC4006ER cells. 180 

HCC4006ER cells were slightly more sensitive to dasatinib compared with HCC4006 181 

parental cells (IC50 values of 0.19 μM and 0.46 μM, respectively) (Fig. 1B). We also 182 

investigated the expression of EMT markers by western blot analysis as in the recent 183 

studies [34-36]. Neither short-term (8 hours) nor long-term treatment (1 month) with 184 
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500nM dasatinib affected E-cadherin and vimentin expression in both parental 185 

HCC4006 cells and HCC4006ER cells (Fig. 1C).  186 

 187 

3.2. Upfront combination therapy with erlotinib and dasatinib 188 

Next, we examined if upfront combination treatment of dasatinib and erlotinib 189 

could prevent the emergence of the EMT phenotype or not. We chronically exposed 190 

HCC4006 parental cells to increasing concentrations of erlotinib (20 nM to 2 µM) in 191 

the presence of fixed 500 nM dose of dasatinib; the concentration is based on the 192 

IC50 of dasatinib (460nM) in HCC4006 cells. Four months later, we were able to 193 

obtain resistant cells, which we designated as HCC4006EDR cells (Fig. 2A). 194 

HCC4006EDR cell identity was confirmed by a cell-line authentication service using 195 

short tandem repeat profiling (Promega, Madison, WI, U.S.). 196 

We analyzed the protein expression of E-cadherin and vimentin in HCC4006, 197 

HCC4006ER, and HCC4006EDR cells. HCC4006EDR cells maintained E-cadherin 198 

expression and lost vimentin expression, indicating that combination treatment 199 

prevented the emergence of EMT-mediated acquired resistance in HCC4006 cells 200 

(Fig. 2B).  201 

 202 

3.3. Resistance mechanism of HCC4006EDR cells 203 

To analyze the acquired resistance mechanism in HCC4006EDR cells, we 204 

investigated currently known resistance mechanisms. HCC4006EDR cells did not 205 
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exhibit MET gene amplification or HER2 gene amplification (Fig. 2C). However, we 206 

observed a T790M secondary mutation in HCC4006EDR cells (Fig. 2D). As expected, 207 

HCC4006EDR cells were highly sensitive to osimertinib (Fig. 3A), and EGFR 208 

downstream pathways were notably inhibited by osimertinib treatment in 209 

HCC4006EDR cells (Fig. 3B).  210 

 211 

 212 

4. Discussion 213 

We demonstrated that upfront combination therapy with dasatinib prevented the 214 

emergence of EMT-mediated acquired resistance in HCC4006 cells. Cells resistant 215 

to combination therapy acquired the T790M secondary mutation, which is highly 216 

sensitive to osimertinib.  217 

EMT is a biological process through which epithelial cells lose their polarity and 218 

cell-cell adhesions and acquire mesenchymal phenotypes characterized by higher 219 

motility, invasion, and metastases [37–39]. EMT is also the reported cause of 220 

resistance to therapies such as molecular targeted drugs [20,21], cytotoxic agents 221 

[40–43], and radiation [44]. Given that no currently available drugs specifically kill 222 

cancer cells with EMT, the identification of novel treatment strategies that prevent 223 

EMT would be promising. 224 

Similar attempts have recently been reported. Soucheray et al. utilized a TGF-225 

beta inhibitor (SB431542) in combination with erlotinib in HCC4006 cells and found 226 

that resistant cells acquired the T790M secondary mutation [35]. This is consistent 227 

with the fact that TGF-beta regulated genes were upregulated in HCC4006ER cells 228 

compared with the parental cells by the gene set enrichment analysis [21].  229 
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The aforementioned results by Soucheray, et al., together with ours, suggest that 230 

EMT inhibitors are able to alter the resistance mechanism from EMT to the T790M 231 

secondary mutation. With the availability of third-generation EGFR-TKIs, T790M-232 

mediated resistance became far easier to deal with. Therefore, upfront combination 233 

therapy preventing EMT and instead guiding cancer cells to the T790M secondary 234 

mutation would result in prolonged overall survival. This phenomenon is similar to 235 

what we reported previously: the upfront combination of PHA-665752 (MET-TKI) plus 236 

erlotinib resulted in T790M in HCC827 cells, which otherwise become resistant via 237 

MET amplification without PHA-665752 [30]. 238 

When considering combination therapy, toxicities is a concern. Currently, there 239 

are no available data regarding the combination of TGF-beta receptor inhibitors and 240 

EGFR-TKIs. However, the combination therapy of erlotinib with dasatinib was 241 

conducted in a phase Ⅰ/II clinical trial [45]. Although this trial did not focus on lung 242 

cancer patients with EGFR mutations, the results showed tolerable adverse events 243 

by this combination.  244 

The frequency of the resistance through EMT has been incompletely clarified. 245 

Sequist et al. reported that EMT occurred in 3 patients out of seven without known 246 

other resistance mechanisms, and none out of five patients with T790M mutation 247 

after acquisition of resistance to first-generation EGFR-TKIs [14]. While, Uramoto et 248 

al. reported that EMT was observed in 4/9 cases of resistance to EGFR-TKI, 249 

independent of T790M mutation [18]. At this time, it is not possible to predict which 250 

patients become resistant through EMT. In the future, however, we may be able to 251 

predict such patients and whether they would be candidates for dasatinib and 252 

erlotinib combination therapy. Thus far, it is unclear if resistant cells with EMT are 253 
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derived from the “selection” of pre-existing minor EMT clones or from the “acquisition” 254 

of the EMT phenotype by epithelial cells that persist during early EGFR-TKI 255 

treatment. However, it can be speculated that the clinical application of third-256 

generation EGFR-TKIs that inhibit the emergence the T790M mutation results in a 257 

higher incidence of acquired resistance via EMT. 258 

  In conclusion, targeting the resistance mechanism after the acquisition of resistance 259 

to EGFR-TKIs is one important strategy to improve outcomes for patients with EGFR 260 

mutations. However, for those resistance mechanisms for which there is no specific 261 

treatment, including EMT, preemptive combination therapy should be a promising 262 

strategy to guide cancer cells towards treatable resistance. 263 

 264 
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Figure Legends 

Figure 1. Effect of dasatinib treatment on HCC4006 and HCC4006ER cells.  

(A and B) Anti-proliferative effects of erlotinib (A) and dasatinib (B) in HCC4006 and HCC4006ER 

cells. Four thousand cells were incubated for 24 hours and treated with the indicated concentrations 

of each drug for additional 72 hours. 

(C) Western blot analysis of E-cadherin and Vimentin in HCC4006 and HCC4006ER cells. Both cells 

were treated with 500nM dasatinib for 8 hours or 1 month.  

 

Figure 2. Analysis of the resistance mechanism of HCC4006EDR cells. 

(A) Anti-proliferative effects of the combination of erlotinib and dasatinib in HCC4006, HCC4006ER 

and HCC4006EDR cells. 

Four thousand cells were incubated for 24 hours and treated with the combination of 0.5μM dasatinib 

and indicated concentrations of erlotinib for additional 72 hours. 

(B) Western blot analysis of E-cadherin and vimentin in each cell line. In HCC4006EDR cells, 

E-cadherin expression was increased and vimentin expression was decreased compared with 

HCC4006ER cells.  

(C) Gene copy numbers of MET and HER2 in HCC4006EDR cells. Data are expressed relative to 

LINE-1 elements. MET and HER2 gene copy numbers of each cell line were measured by 

quantitative real-time PCR. 

(D) Antisense strands of sequencing chromatograms for EGFR exon 20 are shown. C to T 

substitution at nucleotide 2369 (G to A on the antisense strand) resulted in the T790M mutation. 

 

 

 

 



Figure 3. In vitro sensitivity to the third-generation EGFR-TKI osimertinib in HCC4006EDR 

cells. 

(A) Anti-proliferative effects of osimertinib in HCC4006, HCC4006ER and HCC4006EDR cells. Four 

thousand cells were incubated for 24 hours and treated with the indicated concentrations of 

osimertinib for additional 72 hours. 

(B) Western blot analysis of EGFR and its downstream signaling components in HCC4006, 

HCC4006ER and HCC4006EDR cells. Total cell lysates were extracted 8 hours after exposure to 

DMSO (D), erlotinib (E; 2 µM) or osimertinib (O; 160 nM). 
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