
A Cache Management Strategy for Shortening
DNSSEC Name Resolution Time

Shuta FUKUDA †1 and Takayuki FUJINO †2

Abstract

 To protect the DNS data from cache poisoning attack, the DNSSEC has been deployed on a global basis.
Although the DNSSEC provides origin authentication and integrity protection to the DNS data, it requires
longer name resolution time due to digital signature processing. In this article we propose the cost metric
based cache management strategy for the DNS caching server. We explain the cost metric and show that our
proposed strategy effectively reduces the name resolution time in the DNSSEC enabled environment.

Keywords: DNSSEC, name resolution time, cache management

1. INTRODUCTION

 The Domain Name System1,2) provides the name
resolution service, which translates from a host
name to corresponding IP address. Since most of
the application software depend on the DNS, it can
be said that the DNS is a critical part of the
Internet. However, various threats including cache
poisoning attack emerged and eroded the DNS
trustworthiness. The summary of these threats is
given in3). In addition, so-called Kaminsky attack4),
which is a derivative of the cache poisoning attack,
revealed that the spoofed data could be effectively
inserted into the DNS cache.

 In order to cope with these threats the DNS
community has developed cryptographically
enhanced DNS protocol called the DNS Security
Extensions (DNSSEC)5-7). Although the DNSSEC
provides origin data authen-tication and data
integrity to the DNS, it imposes the additional
operational problems.
 This paper focuses on the name resolution time
problem. Since the DNSSEC is based on the public
key crypto-graphy, the DNS clients or the DNS
caching server needs to validate the signature

corresponding to individual DNS resource record
(RR). This processing clearly makes the name
resolution time longer. In addition, inclusion of
associated signatures increases the DNS message
size. In some case this results in TCP fall back and
it also negatively affects the name resolution time8).
To mitigate these problems we propose cost metric
based cache management strategy for the DNS
caching servers. Currently the DNS already has the
caching scheme, but it focuses on reducing
redundant DNS interactions. If the cache quota is
full the DNS caching server needs to select the
cache data to be replaced. During this process the
name resolution time from the client perspective is
not considered. We introduce the cost metric which
takes the name resolution time into account. The
cache management strategy based on this cost
metric favors the cache data which requires longer
validation time or longer retrieval time. As a result,
from the client perspective average name
resolution time become shorter.

2. DNSSEC AND NAME RESOLUTION TIME

PROBLEM

When a DNS zone enables DNSSEC, the zone
typically uses two types of signing keys, Zone Signing
Key (ZSK) and Key Signing Key (KSK). While the
ZSK is used for signing individual DNS RR, KSK is
used for signing the ZSK. Both signing keys are

†1 Graduate School of Systems Engineering, Kindai

University
†2 Department of Electronic Engineering and Computer

Science, Kindai University

47

近畿大学工学部研究報告　No.51，2017年，pp.47-51
Research Reports of the Faculty of Engineering,

Kindai University No.51 2017, pp.47-51

published as DNSKEY RRs in the zone. The signatures
associated with RRs are stored and published in RRSIG
RRs. The zone delegation is authenticated by a DS
record which stores the cryptographic digest of child
zone’s KSK.

When DNSSEC aware caching server tries to resolve
certain name, it has to establish chain-of-trust from the
DNS root zone to the target zone by using these
DNSSEC RRs. In each zone the caching server has to
verify and validate the ZSK, the KSK, and the
signatures associated with various RRs. A series of the
crypto-graphic processing increases the name resolution
time.
 Since the additional processing time depends on the
key length, we explored the impact to the name
resolution time in advance. We set up three level DNS
hierarchy (DNS root, .local, sub.local domains) as
illustrated in Fig.1. Each zone is configured as DNSSEC
enabled. We measured the name resolution time in the
DNS client while changing the key length in each zone.
Note that the processing time imposed by DNSSEC may
differ among individual implementations. Therefore we
used several well-known implementations. Specifically
BIND9) and Unbound10) are used as the DNS caching
servers, and BIND, NSD11), yadifa12) and KnotDNS13)
are used as the DNS authoritative servers. The results
are shown in Fig.2. X-axis represents key length of ZSK
and KSK of each zone in bit. Y-axis represents name
resolution time in milliseconds (ms). The prefix “C:”
and “A:” indicate “Caching server” and “Authoritative
server” respectively. The “OFF” is the case where the
DNSSEC is disabled (which is equivalent to traditional
DNS). Although there are slight differences among the
implementations, name resolution time is proportional
to the key length. While the average name resolution
time is 1.5 [ms] in the DNSSEC disabled case, it
increases to 8.1 [ms] in the case where both ZSK and
KSK adopt 4096 bit key length.

Fig. 1. Measurement environment.

0

5

10

15

20

25

30

35

40

OFF KSK512
ZSK512

KSK1024
ZSK512

KSK2048
ZSK1024

KSK4096
ZSK2048

KSK4096
ZSK4096

n
am

e
 r

e
so

lu
ti

o
n

 t
im

e
(m

s)

key length pair

C:BIND, A:BIND

C:BIND, A:NSD

C:BIND, A:yadifa

C:BIND, A:KnotDNS

C:Unbound, A:BIND

C:Unbound, A:NSD

C:Unbound, A:yadifa

C:Unbound, A:KnotDNS

Fig. 2. Signing key length and the name resolution

time

In addition to the problem mentioned above, the

DNSSEC increases the DNS message size because the
signing key information and signatures must be
included in the message to validate the DNSSEC RRs.
Broek et al. reported that additional problem caused by
message enlargement8). Since DNSSEC message size is
often greater than path MTU, the message is fragmented
to multiple IP fragments. Unfortunately some firewalls
block the fragments to prevent some types of
cyber-attacks. In such a case name resolution process
falls back to TCP instead of normal UDP interactions.
This fall back behavior clearly lengthens the name
resolution time.

Due to these reasons the name resolution time
will become longer when the DNSSEC is deployed
on the global basis. However, the study on this
problem is not conducted enough. Guillard explored
the DNSSEC impact on the authoritative server14).
The paper compared the throughput between the
traditional DNS server and the DNSSEC server,
then it clarified the DNSSEC degrades the server
performance. Soejima et al. investigated the caching
server performance in the same way15). However
there is no work focuses on the name resolution
time from the client perspective. Because DNS itself
has native caching function, it is obvious that the
cache can effectively mitigate the name resolution
time problem. But most of the work focused on the
hit ratio only16,17). They did not take additional
DNSSEC processing time into account. In next
section, we propose the cache management strategy
which focuses on reducing the name resolution time
in DNSSEC enabled configurations.

3. PROPOSED CACHE MANAGEMENT

STRATEGY

In this section we introduce cost metric based on
the name resolution time. The goal is to prefer the

DNS
client

DNS
caching
server

root domain

.local domain

.sub.local
domain

measures the name
resolution time

48

近畿大学工学部研究報告　No.51

cache which requires longer name resolution time
and is more likely to be referred frequently. We
define the cost as:

sreferrence ofnumber the
n time} validatio+ time{retrieval =cost

 (1)

 The “retrieval time” is the sum of the communication
time between the caching server and individual
authoritative servers which is required to get the desired
RRs. If TCP fall back occurs, the value of this item will
be larger. The "validation time" is the sum of the
validation time of all DNSSEC RRs. Therefore this item
is zero when the resolving name does not use the
DNSSEC. As showed in Fig.2, the value of this item is
proportional to the key length. The number of reference
is equal to the number of cache hit of the data.
 When the DNS caching server tries to replace the
cache data using this cost metric, it will select the data
which has the smallest cost value. For example,
consider the caching server which has the cache data
shown in Table 1. The caching server selects
“example1.jp A” to be replaced if it follows FIFO
strategy, or it selects “example3.jp A” based on LFU
strategy. In contrast to them, the caching server which
adopts our cost metric based strategy will choose
“example2.jp A” because the cost metric of the data has
the smallest value.

Table 1. The cache data and the cost metric.

Cache data Retrieval
time ms]

Validation
time [ms]

of
ref.

The
cost
metric

example1.jp. A 300 5 10 3050
example2.jp. A 100 7 20 2140
example3.jp. A 500 3 5 2515

4. PERFORMANCE EVALUATION

4.1 Experimental Settings

To evaluate our caching strategy, we have conducted
simulation experiment. At first, we extracted 10,356
unique domain names from anonymized query log of
the caching server located in the faculty of engineering,
Kindai University. In terms of individual domain name
we measured the communication time between our
caching server and corresponding authoritative server.
During the simulation experiment we used this data as
the communication time between the caching server and
the DNS root server or each authoritative server. We
assumed that the 30% of the 10,356 unique domain
names are DNSSEC enabled. We also assumed that the

three key length pair, KSK 4096 bit/ZSK 4096 bit, KSK
4096 bit/2048 bit and KSK 2048 bit/ZSK 1024 bit are
distributed uniformly among DNSSEC enabled domains.
We used the validation time of the DNSSEC RRs as
shown in Table 2. There are the average validation time
measured in the preliminary experiment depicted in
Fig.1 and Fig.2. We assumed that these validation times
are imposed whenever the caching server gets the
DNSSEC RRs from the authoritative servers.

Table 2. The validation time of key pairs.
KSK length

[bit]
ZSK length

[bit]
Validation time

[ms]
4096 4096 7
4096 2048 5
2048 1024 3

The simulator traces the query pattern of the query

log. It picks up the host name and sends a query to the
caching server. The caching server resolves the host
name using preprocessed communication time data and
validation time data. The caching server stores the name
resolution result. If the quota of the cache is full, the
caching server replaces the cache data based on cache
management strategy.
 We used FIFO, LFU and our proposed strategy for
the cache management. We also varied the quota of the
cache data from 3000 RRs to 10000 RRs. We measured
the total name resolution time of 100000 queries.
4.2 Simulation Results

Fig.3 and Fig.4 show the comparison of the total
name resolution time. The cache quota is different, Fig.3
is 3000 RRs and Fig.4 is 10000 RRs. Although we
investigated other cache quotas, the results are omitted
in the interest of space. In both figure X-axis represents
the number of queries and Y-axis is corresponding
cumu-lative name resolution time in seconds. Both
figures clearly indicate that our proposed strategy using
the cost metric can effectively reduce the total name
resolution time. Specifically our proposed strategy can
reduce the name resolution time from 41% (cache 3000
RRs) to 51% (cache 10000 RRs) in comparison with
FIFO strategy. Our proposed strategy achieved the
shortest name resolution time in all results including the
case where the cache quota is 5000, 8000. Fig.5 depicts
the relationship between the cache quota and total name
resolution time. Every cache management strategy can
utilize increased cache quota, but our proposed strategy
utilizes the cache data most effectively.

49

A Cache Management Strategy for Shortening DNSSEC Name Resolution Time

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

0 50,000 100,000

cu
m

u
la

ti
ve

 n
am

e
 r

e
su

lu
ti

o
n

 t
im

e
 (

s)

of queries

FIFO

LFU

Proposed

Fig. 3. Comparison of total name resolution time

(cache 3000 RRs)

0

1000

2000

3000

4000

5000

6000

7000

0 50000 100000

cu
m

u
la

ti
ve

 n
am

e
 r

e
so

lu
ti

o
n

 t
im

e
 (

s)

of queries

FIFO

LFU

Proposed

Fig. 4. Comparison of total name resolution time

(cache 10000 RRs)

0

2000

4000

6000

8000

10000

12000

14000

16000

3000 5000 8000 10000

to
ta

l n
am

e
 r

e
so

lu
ti

o
n

 t
im

e
 (

s)

cache quota (RRs)

FIFO

LFU

Proposed

Fig. 5. Cache quota and the name resolution time

transition

5. OVERHEAD CONSIDERATION

We demonstrated that our proposed strategy can
effectively reduce the name resolution time. On the
other hand, our proposed strategy requires additional
processing and data structures. These factors might give
bad influence to the name resolution time. Since the
extent of the impact depends on the quality of the
programming code, it is quite difficult to measure the
impact strictly. Therefore we conducted an approximate
estimation.

 Consider the situation where the caching server
needs to replace the cache data. If the caching server
adopts the FIFO strategy, it simply discards the first
cache data. In contrast, if the caching server follows our
proposed strategy, it has to explore the cache quota to
pick up the data which has the smallest cost metric.
Therefore the additional processing time imposed by
our proposed strategy can approximate the time required
to scan the whole cache data.

 We used the same configuration with Fig.1 but we
did not use .sub.local authoritative server. We used
BIND as the caching server implementation. At first the
DNS client queries certain amount of the host names
(we used k1.local, k2.local… k200000.local). This
enables the caching server to store the cache data. Then
the client sends the query for the host name which is
guaranteed not in the cache. When the caching server
receives the query, it checks whole cache data, after that
it tries to resolve the host name. By comparing the case
where the caching server does not have any cache data
and the case the caching server has the cache data, we
can measure the scan time of whole cache data. The
results are shown in Table 3. It is obvious that measured
scan times are quite small. The average name resolution
time measured in the simulation mentioned in Section 4
is around 32 [ms] (our proposed strategy with 10000
cache quota). Considering these factors it can be said
that the overhead imposed by our proposed strategy can
be ignorable.case where the cache quota is 5000, 8000.
Fig.5 depicts the relation

Table 3. The scan time of whole cache data.
of cache data Name resolution

time [ms]
Difference
(scan time)
[ms]

0 1.030 0
500000 1.037 0.007

1000000 1.051 0.021
1500000 1.054 0.024
2000000 1.059 0.029

6. CONCLUSION

The DNSSEC makes name resolution time longer. To
cope with the problem we introduce the cost metric
which considers the name resolution time. The cache
management strategy using this cost favors the cache
data which requires longer validation time. We
conducted the simulation experiment to estimate our
proposed strategy. The results show that our proposed
strategy can effectively reduce the name resolution time.
In our future work we plan to implement our proposed
strategy and evaluate the real world environment.

50

近畿大学工学部研究報告　No.51

REFERENCES

1) P.Mockapetris, “DOMAIN NAMES -
CONCEPTS AND FACILITIES”, RFC1034
(Nov. 1987).

2) P.Mockapetris, “DOMAIN NAMES -
IMPLEMENTATION AND
SPECIFICATION”, RFC1035 (Nov. 1987).

3) D. Atkins and R.Austein, “Threat Analysis of
the Domain Name System (DNS)”, RFC3833
(Aug. 2004).

4) S. Friedl, "An illustrated guide to the
Kaminsky DNS vulnerability.",
Unixwiz.net Tech Tips (Aug.2008)
(http://unixwiz.net/techtips/iguide-kaminsky-
dns-vuln.html).

5) R.Arends, R.Austein, M.Larson, D.Massey
and S. Rose, "DNS Security Introduction and
Requirements", RFC4033(Mar.2005).

6) R.Arends, R.Austein, M.Larson, D.Massey
and S. Rose, "Resource Records for the DNS
Security Extensions", RFC4034(Mar.2005).

7) R.Arends, R.Austein, M.Larson, D.Massey
and S.Rose, "Protocol Modifications for the
DNS Security Extensions",
RFC4035(Mar.2005).

8) Gijs van den Broek, Roland van Rijswijk-Deij,
Anna Sperotto, and Aiko Pras, "DNSSEC
meets real world: dealing with unreachability
caused by fragmentation", Communications
Magazine, IEEE, Vol.52, Issue.4,
pp.154-160(Apr.2014).

9) BIND, Internet Systems Consortium ,
(https://www.isc.org/downloads/bind/).

10) Unbound, NLnet Labs , (http://unbound.net/).
11) NSD, NLnet Labs,

(http://www.nlnetlabs.nl/projects/nsd/).
12) yadifa, EURid , (http://www.yadifa.eu/).
13) Knot DNS, CZ.NIC, EURid ,
 (https://www.knot-dns.cz/).
14) Alexis Guillard, "DNSSEC Operational

Impact and Performance", Proceedings of the
International Multi-Conference on
Computing in the Global Information
Technology (ICCGI’06)(Aug.2006).

15) Y.Soejima, T.Wakasugi, Y.Shimamura,
M.Hirano and E.Oka, "Performance Analysis
of DNS Caching Server using DNSSEC",
IEICE Technical Report, IN2008-128,
pp.37-42(Fec.2009) (in Japanese).

16) J.Jung, E.Sit, H.Balakrishnan, and R.Morris,
"DNS Performance and the Effectiveness of

Caching", Proceeding of the ACM
SIGCOMM Internet Measurement Workshop,
2001.

17) C.E.Wills and H.Shang, "The Contribution of
DNS Lookup costs to Web Object Retrieval",
Technical Report WPI-CS-TR-00-12,
Worcester Polytechnic Institute (WPI), 2000.

51

A Cache Management Strategy for Shortening DNSSEC Name Resolution Time

