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1. Preface 

The eyes are constantly exposed to sunlight, and oxidative stress is implicated in 

several ocular diseases including pterygium, dry eye, conjunctivochalasis, atopic 

keratoconjunctivitis, age-related macular degeneration, glaucoma, and diabetic 

retinopathy.1-7 Oxidative stress may cause or aggravate ocular injury resulting in 

decreased visual acuity or even vision loss. On the other hand, major vascular risk 

factors, such as excessive dietary, fat intake, smoking or alcohol consumption, increase 

the oxidative stress on the arterial endothelium, 8-10 and oxidative stress is thought to 

contribute to the pathogenesis of many vascular diseases, including atherosclerosis, 

hypertension and coronary artery disease.11-13 Therefore, the aggravation of oxidative 

stress in blood vessels could help evaluate the risk for development of these vascular 

disease. 

Redox homeostasis is maintained by various antioxidant enzymes (superoxide 

dismutase (SOD), catalase, and glutathione peroxidase (GPx), etc.)14-17 and dietary 

antioxidants (vitamins, carotenoids, lutein, and glutathione, etc.) (Figure 1).18-20 Lack of 

antioxidant enzymes and dietary antioxidants cause oxidative damage to biomolecules 

(lipids, proteins, DNA), eventually leading to many eye and vascular diseases (Figure 1). 

Among oxidative stresses, lipid oxidation is especially known to be implicated in a 

variety of pathophysiologic processes of various diseases.12,21-23 Oxidized lipids are 

highly reactive and lead to DNA fragmentation and protein modification.24,25 

Byproducts of lipid peroxidation such as 4-hydroxynonenal (4-HNE) have been 

identified in ocular and vascular diseases such as dry eye, glaucoma, diabetic 

retinopathy, atherosclerosis, and hypertension,21,22,26-28 and is known to induce cell 
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damage such as cell death and growth inhibition.29,30 Therefore, lipid oxidation is a key 

contributor to the progression and perhaps to the origin of ocular and vascular diseases, 

and a decrease of lipid peroxidation products may be beneficial for various pathological 

conditions. However, despite the importance of the defense mechanism against lipid 

peroxidation, the importance of specific antioxidant enzymes and dietary antioxidants in 

vascular and eye tissue is not well defined. 

 

Figure 1. Balance of oxidative stress and ant-oxidative system 

 

Glutathione peroxidase 4 (GPx4) has a high preference for lipid hydroperoxides and 

directly reduces peroxidized phospholipids in cellular membranes (Figure 2).31,32 GPx4 

is one of the eight GPx isozymes found in mammals, and is ubiquitously expressed.33 

Knockout mice of GPx4 die at embryonic day 8,34 and loss of GPx4 results in lipid 

oxidation leading to cell death in various cells such as cancer cells, neurons, and T 

cells.35-38 GPx4 is essential for maintaining tissue homeostasis by preventing cell 

demise and tissue damage. Moreover, GPx4 is considered to be a central regulator of 

ferroptosis, which is mediated by lipid peroxidation. The process of ferroptosis is 
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triggered by the iron-dependent accumulation of lipid peroxides,37,38 and is also distinct 

from apoptosis, and necrosis.39 Whereas, the overexpression of GPx4 confers protection 

against oxidative stress-mediated injury.40,41 Therefore, GPx4 is thought to be important 

for cell protection from lipid oxidative stress.  

In contrast, many dietary antioxidants have been identified,18-20 and vitamin E is one 

of the best known antioxidants.42 Vitamin E is the major lipid-soluble antioxidant, and is 

essential to protect the tissue against lipid oxidative damage.43-44 In addition, it has been 

reported vitamin E acts in conjunction with GPx4 to inhibit lipid peroxidation, and cell 

death under GPx4 depletion was rescued by vitamin E in several cells (Figure 2).36,45,46 

Thus, vitamin E can potentially compensate for the lack of GPx4. Moreover, it is known 

that sources of vitamin E include nuts, olive oil, and brown rice, etc.47-49 Thus, these 

foods may act as a highly efficient back-up system for GPx4 in the prevention of lipid 

peroxidation processes.  

 

 

Figure 2. Regulation of redox signaling, lipid hydroperoxides, as intracellular 
messengers by GPx4 and vitamin E. 
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As discussed above, lipid oxidation is involved in the pathology of ocular and 

vascular diseases, and antioxidative enzymes and dietary antioxidants play an important 

role in defense of oxidant stress. However, the essentiality of antioxidants, which are 

enzymes and dietary antioxidants, has remained unclear in eye and blood vessel. In the 

present study, I elucidated the importance of GPx4 in ocular (cornea, retina and 

conjunctiva) and vascular. Furthermore, I also assessed the effects of vitamin E, which 

is one of the dietary antioxidants, on cell damage by downregulation of GPx4. 
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2. Role of GPx4 for oxidative homeostasis in human vascular 

endothelial cells, and the compensatory activity of brown rice on 

GPx4 ablation condition 

2.1 Introduction 

Endothelial dysfunction has been identified in patients with several vascular 

diseases, including atherosclerosis, diabetes mellitus, and hypercholesterolemia.50-52 The 

accumulation of byproducts of oxidative metabolism has been observed in the blood 

vessels of patients with vascular diseases,11,13 and oxidative stress is thought to cause 

endothelial dysfunction. Antioxidants, including various agents such as antioxidant 

enzymes (glutathione peroxidase, superoxide dismutase, and catalase), and dietary 

antioxidants (carotenoids, glutathione, vitamin C, and vitamin E), play an important role 

in the cellular protection cascade against oxidative damage, and lack of antioxidants 

cause endothelial dysfunction in the vascular system. However, the importance of 

antioxidant enzyme and dietary antioxidants have not been fully understood in vascular 

endothelial cells. 

Among oxidative stresses, lipid peroxidation in particularly is known to be 

implicated in a number of pathophysiologic processes,21-23 and byproducts of lipid 

peroxidation such as 4-HNE induces cell damage such as apoptosis and growth 

inhibition.29,30 Moreover, increase of 4-HNE has been observed in a variety of vascular 

diseases such as atherosclerosis.26 GPx4 is one of eight glutathione peroxidases in 

mammals,33,34 and has been proposed to play an important role in the reduction of lipid 

peroxides and protect cells from lipid hydroperoxides.33-41 Knockout mice of GPx4 die 

at embryonic day 8,34 and loss of GPx4 results in lipid peroxidation leading to cell death 

in many cells.34-38 Therefore, GPx4 is thought to be crucial for cell protection from lipid 
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oxidative stress in various cells. 

In addition, the ablation of GPx4 induced ferroptotic cell death, and GPx4 is thought 

to regulate the ferroptosis.37-39 Ferroptosis is a recently recognized form of regulated 

cell death.37-39 The process of ferroptosis is triggered by the iron-dependent 

accumulation of lipid peroxides.37-39 Ferroptotic cell death could not be prevented by 

chemical or genetic inhibitors of apoptosis53,54 or inhibitors of necroptosis,55,39 

suggesting that ferroptotic cell death was distinct from apoptosis, and necrosis. 

Moreover, ferroptosis has been implicated in multiple physiological and pathological 

processes, including cancer cell death, neurotoxicity, neurodegenerative diseases, and 

T-cell immunity,37-39 although ferroptosis is not known to be involved in vascular 

diseases. Loss of GPx4 is reported to induce cell damage in vascular endothelial cells in 

endothelial-specific GPx4 knockout mice,46 but the regulatory mechanism of the cell 

death is not well defined in vascular endothelial cells.  

On the other hand, many dietary antioxidants have been identified,18-20 and vitamin 

E is known to be the major lipid-soluble antioxidant.42-43 Vitamin E is essential to 

protect tissue against oxidative damage induced by lipid peroxidation.43,44 In addition, it 

has been reported that vitamin E acts in conjunction with GPx4 to inhibit lipid 

peroxidation, and cell death under GPx4 depletion was rescued by vitamin E in some 

cells.36,46 Thus, vitamin E can potentially compensate for the lack of GPx4.  

Rice is one of the main foods in the diet of most populations. Brown rice is more 

nutritious than white rice, and is known to be an anti-oxidant rich food.47 Therefore, 

brown rice is thought to play an important role in the concentration of antioxidants 

ingested daily. The highest amount of vitamin E is contained in brown rice,47 and brown 

rice has been reported to possess a high antioxidant capacity, which reduces lipid 
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peroxidation.56 Thus, brown rice may rescue cell damage induced by loss of GPx4.  

In the present study, I clarified the importance of GPx4 and the implication of 

ferroptosis on cell death induced by GPx4 loss in vascular endothelial cells, using the 

siRNA knockdown technique. In addition, I examined the effect of brown rice extract 

on conditional ablation of GPx4. 

 

2.2 Material and methods 

2.2.1 Human Vascular Endothelial Cell Culture and siRNA transfection 

In this study, human umbilical vein endothelial cells (HUVECs) (Lonza) were 

cultured in EGM-2 (Lonza) containing vascular endothelial growth factor (VEGF), 

basic fibroblast growth factor (bFGF), insulin-like growth factor-1 (IGF-1), epidermal 

growth factor (EGF), hydrocortisone, heparin, gentamicin sulfate amphotericin and 2% 

fetal bovine serum (FBS) under 5% CO2 at 37°C. Cells at 20-30% confluence were 

transfected with 25 nM siRNA that specifically knockdown GPx4 and scrambled 

control siRNA (Invitrogen) using lipofectamine RNAiMAX (Invitrogen) according to 

the manufacturer's instructions. Experiments were performed on cells below passage 8. 

Morphology of transfected cells was assessed with an inverted phase-contrast 

microscope. 

 

2.2.2 RT-PCR 

Twenty four hours after transfection with GPx4 siRNA or scrambled control siRNA, 

total RNA was extracted from cells by using Nucleo Spin RNA XS (Takara Bio). 

Complementary DNA was prepared by master mix with genomic DNA remover 

(ReverTra Ace qPCR RT with gDNA Remover; Toyobo). Real-time RT-PCR was 
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carried out with 7500 Real-PCR System (Applied Biosystems) using SYBR Premix Ex 

Taq II (Takara Bio). The values for each gene were normalized to the level of GAPDH. 

The primer sequences used in RT-PCR were as follows: human GAPDH (Fwd, 

5-TTGATTTTGGAGGGATCTCG-3 and Rev, 5-AACTTTGGCATTGTGGAAGG-3), 

human GPx4 (Fwd, 5-GCACATGGTTAACCTGGACA-3, Rev, 5-CTGCTTCCCG 

AACTGGTTAC-3). 

 

2.2.3 Western Blot Analysis 

Twenty four hours after transfection of GPx4 siRNA or scrambled control siRNA, 

the proteins were extracted from cells. SDS-PAGE of cellular proteins was performed 

on gel (Mini-PROTEAN TGX Any kD; Bio-Rad Laboratories) with tris-glycine- SDS 

running buffer (Bio-Rad Laboratories) for 30 min at 250 V. Proteins were transferred to 

polyvinylidene fluoride (PVDF) membranes (Millipore Corp) at 100 V for 60 minutes at 

ice-cold temperature using tris-glycine buffer, and then incubated in blocking buffer 

made of 5% non-fat milk in phosphate-buffered saline with 0.1% Tween-20. 

Membranes were then probed with antibodies to GAPDH (Santa Cruz Biotechnology 

and GPx4 (Santa Cruz Biotechnology). Binding of secondary antibodies, conjugated to 

horseradish peroxidase, was visualized with chemiluminescent substrate (Pierce 

Biotechnology). 

 

2.2.4 Activity of apoptosis 

Activation of apoptosis was examined by immunoblotting for caspase 3 and poly 

(ADP-ribose) polymerase (PARP). Three days after transfection with siRNA, 

immunoblotting was conducted using antibodies to caspase 3 (Cell Signaling 
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Technology), PARP (Cell Signaling Technology), and GAPDH (Santa Cruz 

Biotechnology) as described above. Cells treated with 1 µM staurosporine were also 

used as a positive control for caspase activity. 

 

2.2.5 Determination of lipid peroxidation 

Accumulations of peroxidized lipids were assessed by immunohistochemical 

detection of 4-HNE. Four days after transfection with GPx4 siRNA or scrambled 

control siRNA, cells were fixed with 4% paraformaldehyde for 15 min, washed three 

times with phosphate-buffered saline (PBS), and permeabilized with a 0.1% Triton 

X-100 solution containing 5% goat serum in PBS. Permeabilized cells were washed 

three times with PBS containing 5% goat serum and incubated with anti-4-HNE 

antibodies (JaICA) overnight at 4°C. Cells were then washed three times with PBS. 

Alexa 488-conjugated anti-mouse IgG secondary antibodies (Thermo Scientific,) were 

applied for 1 h at room temperature and washed three times with PBS. Fluorescent 

images were observed using a fluorescence microscope (Keyence). The fluorescence 

intensities were semi-quantified using Image J software (http://imagej.nih.gov/ij/; 

provided in the public domain by the National Institutes of Health, Bethesda, MD, 

USA). 

 

2.2.6 Cytotoxicity assay 

Cytotoxicity assay was performed using lactate dehydrogenase (LDH) cytotoxicity 

detection kit (Takara Bio). After 4 days of transfection with GPx4 siRNA or scrambled 

control siRNA, LDH activity in the extracellular medium and cell lysate was measured 
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according to the manufacturer’s instructions; and then extracellular LDH activity was 

calculated as percentage of the total LDH activity.  

 

2.2.7 Cell Proliferation assay 

Proliferation of cells treated with GPx4 or scrambled control siRNA was assessed 

using WST-8 assay (Dojindo Molecular Tech) at 4 days after transfection. The WST-8 

assay was performed according to the manufacturer’s instructions. 

 

2.2.8 The treatment of α-tocopherol, brown rice extracts, ferrostatins-1, and 

Z-VAD-FMK in HUVEC treated with GPx4 siRNA 

α-tocopherol, the major form of vitamin E, is an important lipid-soluble 

antioxidant.42 Brown rice contains several vitamins such as vitamin E,47 and has the 

highest antioxidant activity.56 Ferrostatin-1 is the specific ferroptosis inhibitor.39 

Z-VAD-FMK is the specific caspase inhibitor.57  

α-tocopherol (Sigma) was dissolved in methanol. Brown rice (Agriculture, Kindai 

University) was mixed with methanol and kept for one overnight at 37°C. Extract from 

the rice bran was separated from the residue by a centrifugation at 1000×g for 10 min. 

Ferrostatin-1 (Sigma) and Z-VAD-FMK (Sigma) were dissolved in DMSO. 

To examine the effect of α-tocopherol, brown rice extract, and ferrostatin-1 on 

vascular endothelial cells treated with GPx4 siRNA, they were cultured with 

α-tocopherol (10 µM), extract (0.1mg/mL) from brown rice, ferrostatin-1 (10 µM), and 

Z-VAD-FMK (1 µM) 1 day after transfection.  

 

2.2.9 Statistical Analysis 
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Data are expressed as mean ± standard error of the mean (SEM). Values were 

analyzed statistically using Student’s t-test or Dunnett’s test. P < 0.05 was considered 

statistically significant. 

 

2.3 Results 

2.3.1 Knockdown of GPx4 using siRNA in HUVECs 

HUVECs were transfected with siRNA specifically silencing GPx4 or scrambled 

control siRNA. The messenger RNA expression was evaluated by real-time RT-PCR. 

After 24 hours of transfection, mRNA expression of GPx4 was downregulated by more 

than 98% (Figure 3A). Moreover, a significant reduction in GPx4 protein levels was 

observed in 25 nM GPx4 siRNA-treated cells as compared to control (Figure 3B).  

I examined the morphological characteristics of HUVECs. Control siRNA-treated 

cells showed to be compact, uniform, and cobblestone appearance in shape (Figure 3C). 

Conversely, GPx4 siRNA-treated cells exhibited signs of cell damage including 

spheroid structures (Figure 3C). 

 
Figure 3. Knockdown of GPx4 siRNA in HUVEC. (A) Knockdown efficiency evaluated by 

mRNA levels (n = 4). (B) Knockdown efficiency evaluated by protein levels using 
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immunoblot analysis. (C) Phase contrast morphology of HUVEC transfected with 

siRNA of scramble control and GPx4 24 hour after transfection. Scale bar, 50 µm. 

 

2.3.2 Effect of GPx4 knockdown on lipid peroxidation 

Lipid peroxidation induced by oxidants and oxidative stress, generates a huge 

variety of lipid peroxidation products, including ketones, alkanes and aldehydes, such as 

malondialdehyde (MDA) and 4-HNE.21,29,30 To evaluate lipid peroxidation, I performed 

immunostaining of 4-HNE. After 4 days of transfection, knockdown of GPx4 

significantly increased the level of lipid oxidation (Figure 4A, B). 

 
Figure 4. Determination of lipid peroxidation. (A) Detection of 4-HNE by fluorescence 

microscopy using 4-HNE antibodies. (B) The fluorescence intensities of 4-HNE were 
quantified using ImageJ (NIH) (n =4-5). ##P < 0.01 relative to control siRNA group 
(Student’s t-test). **P < 0.01 relative to GPx4 siRNA group (Dunnet-test). 
α-Toc=α-tocopherol. 

 

2.3.3 Effect of GPx4 knockdown on cytotoxicity and proliferation 

To test the cytotoxicity, I assessed LDH activity. The LDH activity assay showed 

that GPx4 siRNA-treated HUVEC released a significantly higher level of LDH than 

control siRNA treated-cells (Figure 5A, B, C). Next, the effect of GPx4 knockdown on 

proliferation was evaluated via a WST-8 assay. HUVECs were treated with GPx4 
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siRNA or scrambled control siRNA. At 4 days of transfection, GPx4 silencing induced a 

significant reduction in the cellular proliferation (Figure 6A, B, C), suggesting that 

GPx4 was essential for growth of HUVECs. 

 

Figure 5. LDH from HUVEC treated with control or GPx4 siRNA 4 days after transfection. (A) 

α-tocopherol (α-Toc) and brown rice extract prevented the LDH release induced by 
GPx4 knockdown (n =4). ##P < 0.01 relative to control siRNA group (Student’s t-test). 
**P < 0.01 relative to GPx4 siRNA group (Dunnet-test). (B) Ferrostatin-1 prevented 
the LDH release induced by GPx4 knockdown (n =4). (C) Z-VAD-FMK did not 
prevented the LDH release induced by GPx4 knockdown (n =4). ##P < 0.01 relative to 
control siRNA group (Student’s t-test). *P < 0.05 relative to GPx4 siRNA group 
(Student’s t-test). 

 

2.3.4 α-tocopherol and brown rice extracts rescued cytotoxic effects of GPx4  

knockdown 

α-tocopherol and brown rice extracts significantly prevented the LDH release and 

the delay of cell growth caused by knockdown of GPx4 siRNA (Figure 5A, 6A). In 

addition, increase of 4-HNE was rescued by treatment with α-tocopherol and brown rice 
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extracts (Figure 4A, B), suggesting that cell damage induced by GPx4 ablation is 

involved in lipid peroxidation.  

 
Figure 6. Proliferation of HUVEC treated with GPx4 siRNA. Proliferation was evaluated by 

WST-8 assay at 4 days after transfection. (A) α-tocopherol (α-Toc) and brown rice 
extract ameliorated suppression of proliferation by GPx4 knockdown (n =4). ##P < 
0.01 relative to control siRNA group (Student’s t-test). **P < 0.01 and *P < 0.05 
relative to GPx4 siRNA group (Dunnet-test). (B) Ferrostatin-1 ameliorated 
suppression of proliferation by GPx4 knockdown (n =4). (C) Z-VAD-FMK did not 

ameliorated suppression of proliferation by GPx4 knockdown.  ##P < 0.01 relative to 
control siRNA group (Student’s t-test). **P < 0.01 relative to GPx4 siRNA group 
(Student’s t-test). 

 

2.3.5 Action mechanism of cytotoxicity induced by GPx4 knockdown on vascular 

endothelial cells. 

Caspase 3 and PARP are well-known to be implicated in apoptosis, and is activated 

by self proteolysis or cleavage by another caspase such as active caspase-8. We 
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examined the cleavage of caspase 3 and PARP as the indicator of apoptosis activation 

by immunoblotting. 

Cleaved caspase-3 and PARP were not detected in not only control siRNA but also 

GPx4siRNA cells, though staurosporine induced the cleavage of caspase 3 and PARP 

(Figure 7).  

Ferrostatin-1 partially ameliorated the increase in LDH and the decrease in cell 

growth activity caused by GPx4 knockdown (Figure 5B, 6B), suggesting that cell 

damage induced by GPx4 ablation is involved in ferroptosis. On the other hand, 

Z-VAD-FMK, caspase inhibitor, did not rescue the cytotoxicity induced GPx4 ablation 

(Figure 5C, 6C).  

 

 

Figure 7. The influence of GPx4 knockdown on caspase-3 activation in HUVEC. The 

activation of caspase-3 was detected by immunoblot analysis using specific 

antibodies for caspase-3 and PARP. 
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2.4 Discussion 

Major findings of the present study are the following: (1) GPx4 is an essential 

antioxidant enzyme for maintaining redox homeostasis and proliferation in human 

vascular endothelial cells. (2) Cytotoxicity induced by loss of GPx4 is implicated in 

ferroptosis but not caspase dependent apoptosis. (3) The supplementation of brown rice, 

which contains a high level of vitamin E, can rescue cell damage induced by lack of 

GPx4 in vascular endothelial cells, and plays an important role in supporting antioxidant 

function in lacking GPx4 cells. 

Maintaining cellular redox balance is important for cell survival and tissue 

homeostasis. Many antioxidant enzymes have been reported to control redox balance 

and ameliorate the damaging effects of oxidative stress in vascular endothelial cell.58,59 

However, the importance of antioxidant enzymes and dietary antioxidants remains to be 

fully clarified in vascular endothelial cells. In the present study, I observed that GPx4 

knockdown caused cell death and delay of proliferation in HUVEC. These results 

suggested that GPx4 is a key antioxidant enzyme in regulating not only cell survival but 

also proliferation in vascular endothelial cells. Lipid peroxidation induces ferroptosis, 

and recently GPx4 is considered to be a central regulator of ferroptosis, which is 

mediated by lipid peroxidation.37-39,55 Ferroptosis is identified as a novel form of 

iron-dependent cell death different from apoptosis or necrosis, and has been implicated 

in various pathologies of cell death such as cancer. 37-39 However, the implication of 

ferroptosis on cell death induced by GPx4 loss in vascular endothelial cell has remained 

unknown. My data showed ferrostatin-1, an inhibitor of ferroptosis, prevented cell death 

induced by GPx4 ablation in HUVEC. These results suggest that cell death induced by 

GPx4 ablation is involved in ferroptosis in vascular endothelial cells. On the other hand, 
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GPx4 knockdown did not induce the activation of caspase 3. Furthermore, caspase 

inhibitor did not rescue cell death. Some reports showed the cell death by loss of GPx4 

was not implicated in caspase activation, my results were in line with the results of 

previous reports.36-38 Therefore, these results suggest that GPx4 may be a regulator of 

ferroptosis in vascular endothelial cells. However, the death caused by loss of GPx4 is 

also reported to be involved in necroptosis in other cells.60 The mechanism of the cell 

death mediated by GPx4 may be different among cell types, and further investigation is 

also required to fully understand the mechanism of the cell death.  

Increase in lipid peroxidation is also known to damage the vascular endothelial cells, 

and to be associated with diseases like atherosclerosis, cardiovascular disease, and 

hypercholesterolemia.26,61,62 In addition, byproducts of lipid hydroperoxide is identified 

in patients of vascular diseases.26,61,62 4-HNE is a major common byproduct of lipid 

peroxidation, and is a highly toxic molecule.26,28,29 My studies found that 4-HNE was 

significantly elevated in GPx4 knockdown, suggesting that GPx4 controls the 

production of lipid hydroperoxides in vascular endothelial cells.  

Vitamin E is known to function as a lipid-soluble antioxidant that eliminates peroxyl 

radicals and prevents the propagation of lipid peroxidation. Brown rice contains higher 

amounts of vitamin E.47 Vitamin E has been considered to be the major antioxidant in 

rice bran.56 In addition, brown rice is the rich source of γ-oryzanol and phytic acid, and  

γ-oryzanol and phytic acid has antioxidant properties.47 Thus, not only vitamin E but 

also γ-oryzanol and phytic acid in brown rice may contribute to prevent the lipid 

oxidation.  

From my results, I observed that addition of vitamin E and extract of brown rice 

prevented the cell damage and the delay of proliferation induced by Gpx4 ablation. 
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Thus, it is thought that vitamin E rich food, such as brown rice, has a protective effect 

on lipid peroxidation, acting as an effective backup system for GPx4 in vascular 

endothelial cells.  

Downregulation of the activities or expressions of antioxidant enzymes has been 

observed in some pathologies.16,63 Several studies showed decreased expression of 

antioxidant enzymes with aging,64,65 and GPx4 expression was also reported to be 

decreased in aged rats.66 Aging may increase onset risk of vascular diseases, which are 

implicated in GPx4 down regulation. Thus, dietary intake of brown rice, vitamin E rich 

food, may help to prevent vascular diseases involved in lipid peroxidation with aging. 

In conclusion, my data demonstrated that GPx4 is an essential antioxidant enzyme 

to maintain redox state and protect vascular endothelial cells from oxidative stress. 

These findings encourage a further investigation of GPx4 as a novel therapeutic target 

for vascular endothelial disorders. Cell death in the GPx4-deficient vascular endothelial 

cells is implicated in ferroptosis but not apoptosis, and I found that GPx4 is a regulator 

of ferroptosis in vascular endothelial cells. Furthermore, brown rice can compensate for 

GPx4 loss by protecting cells against lipid peroxidation. My data also suggest that 

supplementation of brown rice, and vitamin E rich foods, is useful for the pathologies of 

vascular diseases driven by lipid peroxidation.    

 

2.5 Summary 

Purpose: To elucidate the importance of GPx4 in human vascular endothelial cells, and 

the compensatory activity of brown rice on GPx4 ablation condition.  

Methods: Human umbilical vein endothelial cell (HUVEC) was used. Cells were 

transfected with siRNA for GPx4 or scramble control siRNA. Cytotoxicity measured 
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through LDH activity. Lipid peroxidation immunostained for 4-HNE, and cell 

proliferation (WST-8) were conducted. In addition, rescue effects of brown rice extract 

and α-tocopherol against the adverse effects of deficient GPx4 expression were 

examined.  

Results: Knockdown of GPx4, remarkably induced cytotoxicity in HUVEC. Cell death 

was induced through GPx4 knockdown. The proliferation of GPx4 siRNA-transfected 

cells were delayed compared with control siRNA-transfected cells. α-tocopherol and 

brown rice extract ameliorated lipid peroxidation, cytotoxicity, and delay of 

proliferation induced by GPx4 knockdown. Furthermore, ferrostatin-1, inhibitor of 

ferroptosis, also prevented the cytotoxicity, and the delay of proliferation. 

Conclusions: GPx4 is an essential antioxidant enzyme for protecting lipid peroxidation, 

and may be as a regulator of ferroptosis in vascular endothelial cells. Furthermore, 

vitamin E rich food, such as brown rice, can compensate for GPx4 loss by protecting 

cells against lipid peroxidation.   
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3. GPx4 is an essential for survival and protection against oxidative 

stress in corneal epithelial cells, and the effects of vitamin E on cell 

damage induced by GPx4 depletion 

3.1 Introduction 

The cornea is constantly exposed to environmental insults, and oxidative stress from 

these insults is considered to be implicated in corneal diseases.1-3 

Redox homeostasis is maintained by various antioxidant enzymes including catalase, 

SOD, and GPx.15,17,18 Downregulation of the activities or expressions of antioxidant 

enzymes has been observed in some pathologies.16,63 Abnormal accumulation of 

byproducts produced because of oxidative stress has been identified in corneal tissue 

and in tear fluid of the patients with corneal diseases, such as dry eye, 

conjunctivochalasis, and atopic keratoconjunctivitis,1-3 as well as in animal models for 

pathologies involving corneal epithelium.66-68 However, despite the importance of the 

defense mechanism against oxidative stress, which has been widely accepted, the 

importance of specific antioxidant enzymes in corneal epithelial cells is not fully 

understood. 

GPx4 is one of the eight GPx isozymes found in mammals.33 It is ubiquitously 

expressed34 and has a unique substrate specificity that directly reduces peroxidized 

lipids in cell membrane.33 Lipid peroxidation is implicated in a variety of 

pathophysiological processes,28,29,30 and byproducts of lipid peroxidation, such as 

4-HNE, are known to induce cell damage, including growth inhibition and cell 

death.29,30 Conventional GPx4 knockout mice die at embryonic day 8.34 Loss of GPx4 

results in lipid peroxidation leading to cell death,35,36 whereas the overexpression of 

GPx4 confers protection against oxidative stress-mediated injury.40, 41 
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In the present study, I elucidated the importance of GPx4 in corneal epithelial cells 

in vitro and in vivo.  

  

3.2 Materials and methods 

3.2.1 Cell culture and transfection of siRNA 

Human corneal epithelial cells (HCEC, SV40-T Ag-immortalized human corneal 

epithelial cell line) that was established by Araki-Sasaki et al.69 was cultured in 

Dulbecco's modified Eagle medium (DMEM)/F12 medium with 10% heat-inactivated 

fetal bovine serum (Invitrogen) and 100 U penicillin plus 100 µg/ml streptomycin under 

5% CO2 at 37°C.  

Cells were transfected with 25 nM siRNA for catalase, GPx1, GPx4, SOD1, SOD2, 

or scramble control siRNA (Invitrogen) using lipofectamine RNAiMAX (Invitrogen) 

following the manufacturer's instruction. Morphology of transfected cells was assessed 

with an inverted phase-contrast microscope. In some experiments, α-tocopherol (10 

µM) and ferrostatin-1 (10 µM) was added after 24 h of GPx4 siRNA transfections. 

  

3.2.2 Real-time RT-PCR 

Two days after transfection with siRNA, total RNA of the cells was isolated using 

Isogen (Nippon Gene) according to the manufacturer’s instructions. For the in vivo 

studies, total RNA was isolated from microsurgically dissected mouse cornea in the 

same manner. Subsequently, RNA was reverse-transcribed into cDNA by ReverTra 

Ace® qPCR RT Master Mix with gDNA Remover (Toyobo). Quantitative real-time 

PCR was carried out with thermal cycler dice (Takara) using Platinum SYBR Green 

qPCR SuperMix-UDG (Invitrogen). The levels of GAPDH were used as inner control. 
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The sequences of the primers used in the real-time RT-PCR were as follows: human 

GAPDH (Fwd, 5-TTGATTTTGGAGGGATCTCG-3-  and  Rev,  5-AACTT 

TGGCATTGTGGAAGG-3), human catalase (Fwd,  5-GCCTGGGACCCAATT 

ATCTT-3, Rev, 5-GAATCTCCGCACTTCTCCAG-3), human GPx1 (Fwd, 

5-CTCTTCGAGAAGTGCGAGGT-3, Rev, 5-TCGATGTCAATGGTCTGGAA-3), 

human GPx4 (Fwd, 5-GCACATGGTTAACCTGGACA-3, Rev, 5-CTGCTTC 

CCGAACTGGTTAC-3), human SOD1(Fwd, 5-TGGCCGATGT GTCTATTGAA-3, 

Rev, 5-GGGCCTCAGACTACATCCAA-3), human SOD2 (Fwd, 5-TTGGCC 

AAGGGAGATGTTAC-3, Rev,5- AGTCACGTTTGATGGCTTCC-3), mouse GAPDH 

(Fwd, 5- CACATTGGGGGTAGGAACAC -3  and  Rev,  5- AACTTTGGCA 

TTGTGGAAGG -3), and mouse GPx4 (Fwd, 5- CGCGATGATTGGCGCT -3 and Rev, 

5- CACACGAAACCCTGTACTTATCC -3).  

 

3.2.3 Immunoblotting 

For in vitro experiment, cells after 2 days of transfection with siRNA were used. For 

in vivo experiment, the dissected mouse corneas were used. Proteins were extracted 

from the cells and mouse corneas using LIPA buffer. SDS-PAGE of the proteins was 

performed on Mini-PROTEAN TGX Any kD gel (Bio-Rad Laboratories) with 

tris-glycine-SDS running buffer (Bio-Rad Laboratories). Immunoblot analysis was 

performed by electrotransferring proteins from the gels onto polyvinylidene fluoride 

(PVDF) membranes (Millipore, Billerica) at 100 V for 60 minutes at ice-cold 

temperature using tris-glycine buffer. The membranes were probed with antibodies to 

GAPDH (Santa Cruz Biotechnology), catalase (Santa Cruz Biotechnology), GPx1 (Cell 

Signaling Technology), GPx4 (Cayman), SOD1 (Santa Cruz Biotechnology), or SOD2 
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(GeneTex). Binding of secondary antibodies, conjugated to alkaline phosphatase or to 

horseradish peroxidase, was visualized with BCIP/NBT substrate (Bio-Rad 

Laboratories) or chemiluminescent substrate (Pierce). 

 

3.2.4 Caspase activity 

Activation of caspase was examined by immunoblotting for caspase 3. Three days 

after transfection with siRNA, immunoblotting was conducted using antibodies to 

caspase 3 (Cell Signaling Technology) and GAPDH (Santa Cruz Biotechnology) as 

described above. Cells treated with 1 µM staurosporine were also used as a positive 

control for caspase activity. 

 

3.2.5 Cytotoxicity assay 

Membrane breakage and cell death were quantified using release of LDH into the 

culture medium. Three days after transfection with siRNA, cytotoxicity by the 

knockdown of SOD1, SOD2 catalase, GPx1, or GPx4 was evaluated using LDH 

cytotoxicity detection kit (Takara). LDH activity was measured in the extracellular 

medium and in the cell lysate according to the manufacturer’s instructions, and then 

extracellular LDH activity was calculated as percentage of the total LDH activity. 

 

3.2.6 Determination of lipid peroxidation 

Accumulations of peroxidized lipids were assessed by immunohistochemical 

detection of 4-HNE. After 3 days of transfection with siRNA, cells were fixed with 4% 

paraformaldehyde for 15 min, washed three times with PBS, and permeabilized with 

0.1% of Triton X-100 solution containing 5% goat serum in PBS. Permeabilized cells 
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were washed three times with PBS containing 5% goat serum, incubated with 

anti-4-HNE antibodies (JaICA) for 1 day at 4°C. Then, cells were washed again three 

times with PBS. Alexa 488-conjugated anti-mouse IgG secondary antibodies 

(Invitrogen) were applied, the sample left at room temperature for 1 hour, and excess 

antibodies were removed by washing cells three times with PBS. Fluorescent images 

were observed with a fluorescence microscope (Keyence). The fluorescence intensities 

of the dots stained with 4-HNE were quantified using Image J software. 

 

3.2.7 Determination of reactive oxygen species (ROS) 

Production of ROS was determined using an oxidationsensitive fluorescent probe, 

2′7′-dichlorofluorescin diacetate (DCFH-DA). Cells treated with GPx4 or control 

siRNA at 4 days after transfection were incubated with 100 µM DCFH-DA (Invitrogen) 

for 30 minutes, and rinsedwith proliferation medium. Then, the fluorescence was 

analyzed at 485-/535-nm excitation. 

 

3.2.8 Annexin V and propidium iodide (PI) staining  

Annexin V/PI staining was performed using the FITC Annexin V Apoptosis 

Detection Kit (BD Bioscience). Three days after transfection with siRNA, cells were 

stained by FITC-conjugated Annexin and PI for 15 min at room temperature, and rinsed 

with PBS. Fluorescent images were obtained with a fluorescence microscope 

(Keyence).  

 

3.2.9 AIF translocation 

Apoptosis inducing factor (AIF) is an effector protein for regulated necrosis, and has 
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been shown to translocate from mitochondria to nucleus when cell death is induced.70 

Localization of AIF was evaluated by immunostaining using anti-AIF antibodies (Santa 

Cruz Biotechnology) after 3 days of transfection with siRNA. Nucleus was stained with 

DAPI. Fluorescent images were obtained with a fluorescence microscope (Keyence). 

 

3.2.10 Cell viability assay 

Cellular viability was assessed using WST-8 assay (Dojindo) at 0, 1, 3, and 5 days 

after siRNA transfection, following the manufacturer’s instructions. 

 

3.2.11 In vitro wound closure assay 

In vitro wound closure assay was performed based on the previous literature.68 

HCEC cells were seeded onto a 24-well cell culture plate, in which a 7-mm-diameter 

circular seal was affixed to the bottom of each well, and cultured for 24 hours. Next, the 

cells were transfected with siRNA. Two days after transfection, affixed seals were 

removed from the bottom of each well to generate cell-free areas of the same size. The 

cells were cultured for an additional 48 hours. Then, the plates were washed two times 

using PBS, and the cells were fixed with 10% formalin neutral buffer solution. The 

fixed cells were washed three times using PBS, and stained with 0.05% toluidine blue 

solution. The bottom of each of the stained experimental wells was photographed, and 

the remaining wound area size was measured using Image J software. 

 

3.2.12 Corneal Epithelial Wound Healing in mice 

I used GPx4+/+ and GPx4+/− mice with C57BL/6 background.71 Animals were 

maintained in ordinary animal cages under constant 12-h light/dark cycles. Food and 
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water were available ad libitum. All animal experiments were performed in accordance 

with the Association for Research in Vision and Ophthalmology (ARVO) Statement for 

the Use of Animals in Ophthalmic and Vision Research and the NIH Guiding Principles 

in the Care and Use of Animals (DHEW Publication, NIH 80-23), and were approved 

by the Institutional Animal Research Committee of the University of Tokyo. 

Mice were anesthetized by intramuscular injection of a mixture of ketamine and 

xylazine. Paper filters (2 mm diameter) soaked in n-heptanol were attached to the center 

of each corneal surface for 1 minute to remove corneal epithelia, and then the treated 

eyes were washed with saline. The epithelial defect was stained with 1% fluorescein 

solution and photographed at 0, 6, 12, 18, 24, 30, 36, 42, and 48 h after epithelial 

debridement. The area of the epithelial defect was measured on photographs using 

Image J software. 

 

3.2.13 Statistical Analysis 

Data were presented as mean ± standard error mean (SEM). Statistical analysis was 

performed with 2-tail Student’s t-test or one-way analysis of variance (ANOVA) 

followed by Tukey’s test. P < 0.05 was considered statistically significant. 

 

3.3 Results 

3.3.1 Knockdown of antioxidant enzymes 

Human corneal epithelial cells were transfected with siRNA specifically silencing 

catalase, GPx1, GPx4, SOD1, or SOD2. Two days after transfection, mRNA (Figure 

8A) and protein (Figure 8B) levels were measured through real-time RT-PCR and 

immunoblotting. The mRNA levels of all the antioxidant enzymes were downregulated 
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by >80%. In addition, a significant downregulation in the protein levels of each 

antioxidant enzyme was also confirmed. 

I examined the morphological characteristics of corneal epithelial cells treated with 

each targeted siRNA 3 days after transfection (Figure 8C). Cells transfected with control 

siRNA appeared to be compact, uniform, and cobblestone pavement in shape. The shape 

of the cells transfected with catalase, GPx1, SOD1, or SOD2 was similar to that of cells 

transfected with control siRNA. Conversely, cells transfected with GPx4 siRNA 

exhibited signs of cell damage including spheroid structures. 

Cytotoxicity was evaluated by measuring LDH activity. Knockdown of catalase, 

GPx1, and SOD2 did not affect LDH activity (Figure 8D). Knockdown of GPx4 and 

SOD1 significantly increased the activity of LDH. However, the LDH activity of GPx4 

knockdown was significantly higher than that of SOD1 knockdown. 

To further clarify the protective effect of GPx4 under oxidative stress conditions, I 

investigated the effect of GPx4 knockdown on cytotoxicity enhanced by hydrogen 

peroxide (Figure 8E). LDH activity of the cells transfected with control siRNA was not 

influenced by the addition 100 µM hydrogen peroxide. Conversely, LDH activity of the 

cells transfected with GPx4 siRNA significantly increased after treatment with 100 µM 

hydrogen peroxide. Knockdown of GPx4 enhanced cytotoxicity under mild oxidative 

stress, suggesting an important role for GPx4 against oxidative stress. 
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Figure 8. Knockdown of different antioxidant enzymes using siRNA in corneal epithelial cells. 

(A) Knockdown efficiency evaluated by mRNA levels. Mean + standard error mean 
(SEM; n = 3–4). (B) Knockdown efficiency evaluated by protein levels using 
immunoblot analysis. Reproducibility was confirmed in triplicate. (C) Phase contrast 
morphology of corneal epithelial cells transfected with siRNA of scramble control, 

catalase, GPx1, GPx4, SOD1, or SOD2 at day 3 after transfection. Scale bar, 50 µm. 
(D) LDH release from corneal epithelial cells three days after transfection with siRNA 
for scramble control, catalase, GPx1, GPx4, SOD1, or SOD2. Mean SEM (n = 4). **p 
< 0.01 using Tukey’s test. (E) Knockdown of GPx4 enhanced LDH release induced by 
H2O2. Data are mean + SEM (n = 4). **p < 0.01 using Tukey’s test. 

 

3.3.2 α-tocopherol rescued cytotoxic effects of GPx4 knockdown 

α-tocopherol has been reported to confer protection against cytotoxicity and cell 

death induced by GPx4 deficiency,36 which I subsequently tested in corneal epithelial 

cells in vitro. My results show that α-tocopherol significantly prevented LDH release 
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from cells transfected with GPx4 siRNA (Figure 9A). Next, I evaluated lipid 

hydroperoxide generation using immunostaining for 4-HNE and total intracellular ROS 

using DCFH-DA. Results show that both 4-HNE and total ROS were significantly 

elevated in cells transfected with GPx4 siRNA, which was rescued by treatment with 

α-tocopherol (Figure 9B, C, D). Figure 3 shows the cell death induced by GPx4 

knockdown. Annexin V and PI staining indicated that most of the dead cells were 

annexin V positive with PI staining after 3 days of GPx4 silencing while the number of 

cells with either Annexin V or PI staining only was relatively small. In addition, the cell 

death was rescued by α-tocopherol treatment (Figure 10A). 

Next, I investigated possible mechanisms for the cell death by GPx4. The 

percentage of cells with AIF translocation to the nucleus increased in cells transfected 

with GPx4 siRNA (Figure 10B, C). Furthermore, α-tocopherol prevented the AIF 

translocation induced by GPx4 knockdown (Figure 10B, C). In contrast, cleaved 

caspase-3, implicated in caspase-dependent apoptosis, was not detected in cells 

transfected with control siRNA or GPx4 siRNA (Figure 10D), while staurosporine 

treatment(positive control) led to the activation of caspase 3. I further examined the 

implication of ferroptotic mechanism using ferrostatin-1, an inhibitor of ferroptosis. 

Ferrostatin-1 partially ameliorated the decrease in cell viability (Figure 10E) and the 

increase in LDH activity (Figure 10F) caused by GPx4 knockdown.  
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Figure 9. α-tocopherol rescues cytotoxic effects of GPx4 knockdown in corneal epithelial cells. 

(A) α-tocopherol prevented the LDH release induced by GPx4 knockdown (n = 4). **p 

< 0.01 using Tukey’s test. (B) Accumulation of 4-HNE was evaluated by 

immunofluorescence. Scale bar, 50 µm. (C) Fluorescence intensities for 4-HNE were 

quantified using Image J (n = 8–9). **p < 0.01 using Tukey’s test. (D) Total 

intracellular ROS was quantified using DCFH-DA (n = 4). **p< 0.01 and *p < 0.05 

using Tukey’s test. 
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Figure 10. Cell death caused by GPx4 knockdown in corneal epithelial cells. (A) Representative 

image of annexin V and PI staining. Majority of the staining was annexin V positive 

with or without PI staining. Scale bar, 50 mm. (B, C) Nuclear translocation of AIF 

(green) induced by GPx4 knockdown was evaluated in the total number of cells. DAPI 

was used for nuclear staining (n = 6–10). **p < 0.01 using Tukey’s test. Scale bar, 50 

mm. (D) Caspase-3 and cleaved caspase-3 (active form) were immunoblotted for cells 

transfected with siRNA for scramble control or GPx4. Staurosporin (1 µM) served as a 

positive control. Reproducibility was confirmed in triplicate. (E) Effect of ferrostatin-1 

(10 µM) to rescue the decreased cell viability induced by GPx4 knockdown. **p < 
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0.01 using Tukey’s test. (F) Effect of ferrostatin-1 (10 µM) to rescue the increased 

LDH activity induced by GPx4 knockdown. **p < 0.01 using Tukey’s test. 

 

3.3.3 Effects of GPx4 knockdown on cell viability 

I examined the effects of GPx4 knockdown on corneal epithelial cell growth. First, I 

evaluated cell viability using WST-8 assay. There was no significant difference in cell 

viability between cells transfected with GPx4 and control siRNA up to one day after 

transfection (Figure 11A). However, at 3 and 5 days after transfection, the viability of 

GPx4 siRNA-transfected cells was significantly lower than that of control 

siRNA-transfected cells (Figure 11A), suggesting that GPx4 is essential for growth of 

corneal epithelial cells. 

Next, I examined the effects of GPx4 knockdown on the wound closure system of 

corneal epithelial cells in vitro. Two days after wound creation, a significant delay in the 

wound closure was observed in the cells treated with GPx4 siRNA, and α-tocopherol 

ameliorated the delay caused by GPx4 knockdown (Figure 11B, C). 
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Figure 11. Wound healing model of corneal epithelial cells in vitro. (A) Viability was 

evaluated by WST-8 assay at day 0, 1, 3, 5, and 7 after transfection (n = 5). **p 

< 0.01 by Student’s t-test. (B, C) Cell viability and migration was evaluated in 

wound healing model in vitro. Remaining wound area (% of each initial area) 

at 48 h after wound creation was compared (n = 4). *p<0.05 and **p < 0.01 

using Tukey’s test. 
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3.3.4 Corneal epithelial wound healing in GPx4+/+ and GPx4+/− mice 

I confirmed the decreased expression of GPx4 in both the mRNA and protein level 

in the cornea of GPx4+/− mice compared to that of GPx4+/+ mice (Figure 12A, B). In line 

with the decreased GPx4 expression, lipid peroxidation levels in the cornea of GPx4+/− 

mice were significantly higher than those in the cornea of GPx4+/+ mice (Figure 12C, D). 

Then, I examined corneal epithelial wound healing in GPx4+/− mice and GPx4+/+ mice 

after topical exposure to n-heptanol. At 18, 24, 30, and 36 h after n-heptanol treatment, 

the remaining epithelial defect area in GPx4+/− mice was larger than that in GPx4+/+ 

mice (Figure 12E, F). The epithelial defect was resurfaced in all the GPx4+/+ mice by 36 

h after exposure to n-heptanol, whereas even at 42 h the defect was not completely 

resurfaced in GPx4+/− mice. 
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Figure 12. Corneal epithelial wound healing in GPx4+/− and GPx4+/+ mice. (A) GPx4 

mRNA levels in the cornea of GPx4+/− and GPx4+/+ mice (n = 5–6). **p < 0.01 

by Student’s t-test. (B) GPx4 protein levels were determined using western blot. 
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Reproducibility was confirmed in triplicate. (C) Accumulation of 4-HNE was 

evaluated by immunofluorescence. Scale bar, 100 µm. (D) Fluorescence 

intensities for 4-HNE were quantified using Image J (n = 3). *p < 0.05 by 

Student’s t-test. (E) Representative photographs of corneal epithelial. Wound 

healing in GPx4+/− and GPx4+/+ mice. Green areas represented 

fluorescein-stained wounded areas (F) The remaining area size of the wounds 

(% of each initial wound area) was compared between GPx4+/− and GPx4+/+ 

mice (n =10–12). **p<0.01 and *p<0.05 using Student’s t-test. 

 

3.4 Discussion 

The major contribution of the present study is that I show that GPx4 is by itself an 

important antioxidant enzyme for maintaining redox homeostasis and wound healing in 

corneal epithelial cells. Decreased expression of GPx4 led to cytotoxicity by oxidative 

stress, caspase-independentcell death with nuclear translocation of AIF, and decreased 

viability and wound healing in corneal epithelial cells. I confirmed that α-tocopherol 

could potentially compensate for the lack of GPx4 in corneal epithelial cells.  

Oxidative stress and antioxidant system have been intensively discussed in the 

cornea pathologies.68.72,73 However, the importance of a specific antioxidant enzyme has 

not been fully understood. Degeneration and dysfunction of lacrimal glands leading to 

age-related dry eye signs has only been reported in mice deficient of SOD1.74 In the 

present study, I silenced the expression of various antioxidant enzymes in corneal 

epithelial cells and found that GPx4 deficiency led to a significant increase in 

cytotoxicity compared to the silencing of other antioxidant enzymes. Although the 

remnant expression levels of each antioxidant enzymes after knockdown might be 
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slightly different, the results might suggest the paramount importance of GPx4 as a 

defense mechanism in the corneal epithelium. In fact, even in the GPx4-haplodeficient 

mice, a significant delay in epithelial wound repair was observed in vivo.  

It is known that byproducts of lipid hydroperoxide cause cell death and inhibition of 

cell proliferation,29,30 and are considered to be implicated in pathologies of corneal 

diseases such as atopic keratoconjunctivitis and dry eye.63,67 4-HNE is a major product 

generated during lipid peroxidation, and is a highly toxic molecule.28-30 Recently, a 

distinctive iron-dependent cell death, called ferroptosis has been primarily characterized 

in cancer cells and GPx4 is considered to be a central regulator of ferroptosis that is 

mediated by lipid peroxidation.38 In the present study, α-tocopherol prevented lipid 

peroxidation and cell death due to GPx4 deficiency, and moreover, ferrostatin-1 

partially rescued decreased cell viability and increased LDH release by GPx4 

knockdown. My results suggest an implication of ferroptosis in the cytotoxicity and cell 

death in the GPx4-deficient corneal epithelial cells. However, further investigations are 

necessary for the exact mechanism of cells death. 

To the best of my knowledge, I firstly observed a delay in the corneal epithelial 

wound healing because of lack of a specific antioxidant enzyme. It has been reported 

that dry eye phenotypes appear in aged SOD1 knockout mice.66 The researchers 

observed degeneration and dysfunction of lacrimal glands that have been speculated as 

causes of corneal epithelial damage.66 Although my in vitro data indicated that the loss 

of GPx4 in corneal epithelium led to impaired viability and delayed wound healing, an 

implication of dysfunctional lacrimal gland was not examined in GPx4+/− mice. Another 

related report highlighted a delay in corneal epithelial wound healing in nuclear 

factor-like 2 (Nrf2) mice.68 The Nrf2 protein is a transcription factor that regulates the 
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expressions of numerous antioxidant enzymes and proteins. Therefore, the importance 

of the specific antioxidant enzyme was not the focus of the study, whereas the 

importance of Nrf2-associated antioxidant defense mechanisms was clearly delineated.  

In conclusion, my data demonstrated that GPx4 is a major antioxidant enzyme that 

is not only crucial for maintaining redox homeostasis but also for wound healing in 

corneal epithelial cells. Deficient GPx4 can aggravate the corneal pathology and may 

highlight a new therapeutic target for corneal disorders such as dry eye and 

keratoconjunctivitis. In addition, α-tocopherol has a protective effect on lipid 

peroxidation, acting as an effective backup system for GPx4 in corneal epithelial cells. 

 
3.5 Summary 

Purpose: Oxidative stress is involved in the pathologies of corneal epithelial cells. 

However, the importance of specific antioxidant enzymes in corneal epithelial cells is 

not fully understood. The purpose of this study is to elucidate the role of GPx4 in 

corneal epithelial cells. In addition, I examined the compensatory activity of vitamin E 

on GPx4 ablation condition. 

Methods: For in vitro studies, an immortalized human corneal epithelial cell line was 

used. Cells were transfected with siRNA for catalase, GPx1, GPx4, SOD1, SOD2, or 

scramble control siRNA. Cytotoxicity measured through LDH activity, lipid 

peroxidation immunostained for 4-HNE, cell proliferation, and cell death were 

compared between cells transfected with GPx4 siRNA or scramble control siRNA. In 

addition, the rescue effects of α-tocopherol and ferrostatin-1, a ferroptosis inhibitor, 

were examined in the cells with deficient GPx4 expression. For in vivo studies, I applied 

n-heptanol on the cornea of GPx4+/+ and GPx4+/− mice to create corneal epithelial 

wound. The epithelial defect area size was measured at 0, 6, 12, 18, 24, 30, 36, 42, and 
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48 h after epithelial wound creation. 

Results: Knockdown of GPx4 strongly induced cytotoxicity and cell death in human 

corneal epithelial cells. Cell death induced by GPx4 knockdown was characterized by 

positive staining for both annexin V and propidium iodide, nuclear translocation of AIF, 

and without activation of caspase 3, and was rescued by α-tocopherol and ferrostatin-1. 

The delayed wound healing of GPx4 siRNA-transfected cells were ameliorated by 

α-tocopherol in vitro. In addition, loss of one GPx4 allele was sufficient to significantly 

delay the healing of experimental corneal epithelial wounds in vivo. 

Conclusions: GPx4 is an antioxidant enzyme that is by itself important for oxidative 

homeostasis, cell survival, and wound healing in corneal epithelial cells. In addition, 

α-tocopherol has a protective effect on lipid peroxidation, acting as an effective backup 

system for GPx4 in corneal epithelial cells.  
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4. Role of GPx4 in glutamate-induced oxytosis in the retina. 

4.1 Introduction 

Glutamate-induced neurotoxicity has been studied for its possible role in the 

pathogenesis of numerous neurological disorders, including Alzheimer’s disease, 

Parkinson’s disease, amyotrophic lateral sclerosis, and ischemic stroke.75 

Glutamate-induced toxicity may also be implicated in the ocular neurodegenerative 

changes in glaucoma76-79 and diabetic retinopathy.80,81 In fact, several studies have 

reported an increase in glutamate levels in the vitreous of patients with glaucoma76 and 

proliferative diabetic retinopathy.80,81 Because excess extracellular glutamate induces 

oxidative stress and cell death, glutamate-induced neurotoxicity is commonly called 

“oxytosis” 75.Treatments with antioxidants ameliorated the progression of the mouse 

model of glaucoma82,83 and diabetic retinopathy84 and suppressed cytotoxicity in retinal 

ganglion cells (RGCs) induced by N-methyl-D-aspartate (NMDA), the selective agonist 

for the glutamate receptor (NMDA receptor).85,86 Furthermore, treatment with an 

antioxidant suppressed the elevation of glutamate levels in the retinas of diabetic rats.87 

In addition, several studies have suggested the importance of endogenous antioxidative 

defense mechanisms, including a superoxide dismutase and thioredoxins in RGCs.88,89 

In glutamate-induced oxytosis, elevated levels of extracellular glutamate or 

increased susceptibility to extracellular glutamate can induce glutathione depletion and 

lipid peroxidation.75 Among antioxidant enzymes, GPx4 can directly reduce complex 

lipid hydroperoxides that are incorporated in biomembranes or lipoproteins.90 

GPx4-deficient mice are lethal on embryonic day 8,34 and studies have identified drastic 

disease phenotypes of photoreceptors,35 and cerebral neurons,91 in conditional knockout 

mice. 
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  In the present study, I evaluated the role of GPx4 in glutamate-induced oxytosis in 

the rat retinal precursor cell line R28 and the mouse retina. 

 

4.2 Material and methods 

4.2.1 Cell culture and transfection of siRNA 

The rat retinal precursor cell line R28 was a kind gift from Dr. Yoshiaki Kiuchi 

(Hiroshima University, Department of Ophthalmology and Visual Sciences). R28 was 

established by immortalization of postnatal day 6 rat neuroretinal tissue using the psi2 

replication incompetent retroviral vector.92 Unlike the RGC-5 cell line, R28 cells have 

been confirmed for validity and shown to express a variety of retinal cell-type markers, 

including RGC markers.93,94 The R28 cell line is considered suitable for neurotoxicity 

and neuroprotection studies.93 Cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM; Invitrogen) containing 10% FBS and 100 U of penicillin along with 

100 μg/mL streptomycin under 5% CO2 at 37°C. Cells at 20–30% confluence were 

transfected with siRNA that specifically knockdown GPx4 and scrambled control 

siRNA (Invitrogen) using lipofectamine RNAiMAX (Invitrogen) according to the 

manufacturer's instructions. 

 

4.2.2 Real-time RT-PCR 

Two days after transfection with GPx4 siRNA or scrambled control siRNA, total 

RNA was isolated using Isogen (Nippon Gene) according to the manufacturer’s 

instructions. For the in vivo studies, total RNA was isolated from microsurgically 

dissected mouse retinas in the same manner. Subsequently, RNA was 

reverse-transcribed into cDNA by the ReverTra Ace® qPCR RT Master Mix with 



42 
 

gDNA Remover (Toyobo). Quantitative real-time PCR was carried out with the Thermal 

Cycler Dice Real-time System (Takara Bio) using Platinum SYBR Green qPCR 

SuperMix-UDG (Invitrogen). The values for each gene were normalized to the level of 

β-actin. The primer sequences used in the real-time RT-PCR were as follows: rat a-actin 

(Fwd, 5- CACCCGCGAGTACAACCTTC -3  and  Rev,  5- 

CCCATACCCACCATCACACC -3), rat GPx4 (Fwd, 5- ATGCCCAC 

CCACTGTGGAA -3 and Rev, 5- GGCACACACTTGTAGGGCTAGAGA -3), mouse 

GAPDH (Fwd, 5- CACATTGGGGGTAGGAACAC -3 and Rev, 5- AACTTTG 

GCATTGTGGAAGG -3), and mouse GPx4 (Fwd, 5- CGCGATGATTGGCGCT -3 and 

Rev, 5- CACACGAAACCCTGTACTTATCC -3). 

 

4.2.3 Immunoblotting 

Two days after transfection with GPx4 siRNA or scrambled control siRNA, the 

proteins were extracted from cells and mouse retinas. SDS-PAGE of cellular proteins or 

retinal proteins was performed on Mini-PROTEAN TGX Any kD gel (Bio-Rad 

Laboratories, Hercules, CA) with Tris-glycine-SDS running buffer (Bio-Rad 

Laboratories). Immunoblot analysis was performed by electrotransfer of the proteins 

from the gels onto polyvinylidene difluoride (PVDF) membranes (Millipore, Billerica 

MA) at 100 V for 60 min at ice-cold temperature using Tris-glycine buffer. The 

membranes were probed with antibodies for β-actin (Santa Cruz Biotechnology) and 

GPx4 (Cayman). Binding of secondary antibodies, conjugated to alkaline phosphatase 

or horseradish peroxidase, was observed using a chemiluminescent substrate (Pierce). 

 

4.2.4 Cytotoxicity assay 
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Two days after transfection with GPx4 siRNA or scrambled control siRNA, a 

cytotoxicity assay was performed using the LDH cytotoxicity detection kit (Takara Bio). 

LDH activity was measured in the extracellular medium and in the cell lysate, according 

to the manufacturer’s instructions; subsequently, extracellular LDH activity was 

calculated as a percentage of the total LDH activity. In the glutamate stimulation study, 

cells transfected with GPx4 siRNA or scrambled control siRNA were treated with 1 mM 

and 2 mM glutamate (Wako). LDH activity was measured after 24 h. 

 

4.2.5 Determination of lipid peroxidation 

Accumulated peroxidized lipids were assessed by immunohistochemical detection 

of 4-HNE. Two days after transfection with GPx4 siRNA or scrambled control siRNA, 

cells were fixed with 4% paraformaldehyde for 15 min, washed three times with PBS, 

and permeabilized with a 0.1% Triton X-100 solution containing 5% goat serum in PBS. 

Permeabilized cells were washed three times with PBS containing 5% goat serum and 

incubated with anti-4-HNE antibodies (JaICA) overnight at 4°C. Cells were then 

washed three times with PBS. Alexa 488-conjugated anti-mouse IgG secondary 

antibodies (Invitrogen) were applied for 1 h at room temperature and washed three 

times with PBS. Fluorescent images were observed using a fluorescence microscope 

(Keyence). The fluorescence intensities of the dots stained with 4-HNE were quantified 

using the Image J software). 

 

4.2.6 Annexin V staining 

Two days after transfection with GPx4 siRNA or scrambled control siRNA, cells 

were stained by Alexa Fluor 488 annexin V (Invitrogen) for 15 min at room temperature 
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and washed and rinsed with PBS. Fluorescent images were observed with a 

fluorescence microscope (Keyence). The percentages of annexin V-positive apoptotic 

cells relative to the total number of cells were calculated. 

 

4.2.7 Experimental animals: GPx4+/+ and GPx4+/− mice 

I used GPx4+/+ and GPx4+/− mice on the C57BL/6 background.71 Animals were 

maintained in ordinary animal cages under constant 12-h light/dark cycles. Food and 

water were available ad libitum. All animal experiments were performed in accordance 

with the Association for Research in Vision and Ophthalmology (ARVO) Statement for 

the Use of Animals in Ophthalmic and Vision Research and the NIH Guiding Principles 

in the Care and Use of Animals (DHEW Publication, NIH 80-23), and were approved 

by the Institutional Animal Research Committee of the University of Tokyo 

 

4.2.8 Immunohistochemistry 

Mice were sacrificed with an overdose of pentobarbital (100-150 mg/kg) injected 

intraperitoneally, and eyes were enucleated. Enucleated eyes of GPx4+/+ mice were 

fixed in 4% paraformaldehyde in PBS. The samples were paraffin-embedded and cut 

into 5-μm-thick sections. Slides were first incubated with blocking solution (2% normal 

goat serum) overnight and further incubated with anti-GPx4 antibodies at room 

temperature for 2 h and with Alexa 488-conjugated anti-mouse IgG secondary 

antibodies (Invitrogen) for 1 h. The sections were then coverslipped with mounting 

medium. Fluorescent images were observed using a fluorescence microscope 

(Keyence). 

 



45 
 

4.2.9 NMDA-induced retinal toxicity 

The intravitreal injection of NMDA was performed as described previously.77,78 A 

total of 2 µl of 25-mM NMDA in PBS was injected into the vitreous body of GPx4+/+ 

and GPx4+/− mice under anesthesia with intraperitoneal injection of a mixture of 

xylazine hydrochloride and ketamine hydrochloride. 

The accumulation of peroxidized lipids in the retina was evaluated 12 h after 

intravitreal injection of NMDA. Mice were sacrificed with an overdose of pentobarbital 

(100-150 mg/kg) injected intraperitoneally, and eyes were enucleated. Then, eyes were 

fixed for 2 h in 4% paraformaldehyde solution in 0.1-M phosphate buffer (pH 7.4) and 

immersed for 1 h in PBS containing 20% sucrose. Further, the eyes were embedded in a 

supporting medium for frozen-tissue specimens (OCT compound). 

Retinal sections of 10-μm thickness were prepared using a cryostat at −25°C. 

Sections were immersed in PBS for 20 min at room temperature and incubated with 

anti-4-HNE antibodies (JaICA) overnight at 4°C. Sections were then washed three times 

with PBS. Alexa 488-conjugated anti-mouse IgG secondary antibodies (Invitrogen) 

were applied for 1 h at room temperature. The sections were washed three times with 

PBS and coverslipped with mounting medium. The intensity of immunofluorescence in 

the ganglion cell layer (GCL) and inner plexiform layer (IPL) was evaluated using the 

Image J software. 

Retinal cell death was evaluated 24 h after intravitreal injection of NMDA. Mice 

were sacrificed with an overdose of pentobarbital (100-150 mg/kg) injected 

intraperitoneally, and eyes were enucleated. After fixation, the enucleated eyes were 

embedded in paraffin and incised through the optic disc of each eye at 3-μm thickness. 

TUNEL staining was performed according to the manufacturer’s protocol (In Situ Cell 
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Death Detection Kit; Takara Bio Inc.) to analyze NMDA-induced cell death. Sections 

were treated with the TdT enzyme and stained with dUTP-fluorescein isothiocyanate. 

TUNEL-positive cells were observed using a fluorescence microscope (Keyence). 

TUNEL-positive cells were counted in GCL at a distance between 300 and 750 μm from 

the optic disc. 

Hematoxylin and eosin staining for morphological evaluation was performed 7 days 

after NMDA injection. Mice were sacrificed with an overdose of pentobarbital (100-150 

mg/kg) injected intraperitoneally, and eyes were enucleated, immersed for at least 24 h 

in 10% formalin, embedded in paraffin, and incised through the optic disc of each eye at 

3-μm thickness. Thick sections were stained with hematoxylin and eosin. 

Light-microscope images were photographed, and the cell number in GCL was counted 

at a distance between 300 and 750 mm from the optic disc. 

 

4.2.10 Statistical Analysis 

Data are expressed as mean ± SEM. Statistical analysis was performed with 2-tailed 

Student’s t-test. P < 0.05 was considered statistically significant. 

 

4.3 Results 

4.3.1 Effects of GPx4 knockdown in R28 cells 

First, I confirmed a ubiquitous expression of GPx4 in mouse retinas (Figure 13). 

The effects of GPx4 silencing in retinal cells were then evaluated using R28 cells. R28 

cells were transfected with GPx4 siRNA to specifically knockdown GPx4. Two days 

after transfection, a favorable efficiency was confirmed at both mRNA (Figure 14A) 
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and protein levels (Figure 14B) measured by real-time RT-PCR and western blot, 

respectively.  

 

Figure 13. GPx4 expression in the mouse retina. GPx4 was ubiquitously expressed in the mouse 

retina except outer segments of photoreceptors. Scale bar, 50 µm. 

 

Figure 14. Knockdown efficacy of GPx4 in retinal precursor R28 cells. (A) The knockdown of 

GPx4 mRNA was confirmed by real-time RT-PCR. Data are mean ± SEM. (n = 3–4). 
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**p < 0.01. (B) The knockdown of GPx4 protein was also confirmed by western blot 

in triplicate. 

Cytotoxicity was evaluated by measuring LDH activity. GPx4 knockdown 

significantly increased LDH activity (Figure 15A). Morphologically, cells treated with 

scrambled control siRNA appeared compact, uniform, and cobblestone-pavement 

shaped. On the other hand, cells treated with GPx4 siRNA exhibited signs of cell 

damage such as spheroid shapes (Figure 15B).  

 

Figure 15. The effects of GPx4 knockdown on cytotoxicity in R28 cells. (A) LDH release from 

cells treated with control and GPx4 siRNA after 2 days of transfection. Data are means 

± SEM (n = 4). **p < 0.01. (B) Phase contrast images of R28 cells after 2 days of 

transfection with scramble control or GPx4 siRNA. Scale bar, 50 µm. 

The accumulation of peroxidized lipids was evaluated by immunostaining of 4-HNE. 

4-HNE immunostaining was three times higher in R28 cells transfected with GPx4 

siRNA than in those transfected with scrambled control siRNA (Figure 16). 
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Figure 16. The level of peroxidized lipids in R28 cells. (A) 4-HNE detected by fluorescence 

microscopy using antibodies for 4-HNE. (B) Quantification of the fluorescence 

intensities for 4-HNE. Data are mean ± SEM (n = 4). **p < 0.01. Scale bar, 50 µm. 

Next, I evaluated apoptotic cell death using annexin V staining. As shown in Figure 

17, the number of annexin V-positive cells significantly increased in R28 cells 

transfected with GPx4 siRNA compared with those transfected with scrambled control 

siRNA. 
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Figure 17. Annexin V staining in R28 cells. (A) Representative image of annexin V staining by 

fluorescence microscopy. (B) The percentage of annexin V-positive cells relative to the 

total number of cells. Data are means ± SEM (n = 5). **p < 0.01. Scale bar, 50 µm. 

I also investigated the effects of GPx4 knockdown on the cytotoxicity induced by 

glutamate (Figure 18). LDH activity of cells transfected with scrambled control siRNA 

was not influenced by glutamate up to 2 mM. However, GPx4 knockdown significantly 

enhanced the cytotoxicity induced by glutamate. 

 
Figure 18. GPx4 knockdown enhanced LDH release by glutamate cytotoxicity. LDH activity 

was evaluated after 24 h of glutamate treatment. Data are means ± SEM (n = 4). **p < 

0.01. 

 

4.3.2 NMDA-induced neurotoxicity in the retina of GPx4+/+ and GPx4+/− mice. 

First, I confirmed the decreased expression of GPx4 in both mRNA and protein 

levels in the retina of GPx4+/− mice compared with those in the retina of GPx4+/+ mice 

(Figure 19A, B). 
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Figure 19. GPx4 expression in the retina of GPx4+/− and GPx4+/+ mice. (A) mRNA level was 

quantified by real-time RT-PCR, and normalized to GAPDH mRNA level. Data are 

means ± SEM (n = 5–6). (B) Protein level was determined by western blot. 

Reproducibility was confirmed in triplicate. 

To evaluate the accumulation of peroxidized lipids, immunofluorescence for 4-HNE 

was measured in the inner retina (i.e., GCL and IPL). In vehicle-treated retinas of both 

GPx4+/+ and GPx4+/− mice, 4-HNE immunoreactivity was rarely observed (Figure 

20A, B). In contrast, although the retinas treated with NMDA exhibited an increase in 

4-HNE immunoreactivity in both GPx4+/+ and GPx4+/− mice, 4-HNE 

immunoreactivity in GCL and IPL was significantly higher in GPx4+/− mice than in 

GPx4+/+ mice (Figure 20A, B). 
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Figure 20. Lipid peroxidation in the inner retina (i.e., GCL and IPL) of GPx4+/− and GPx4+/+ 

mice treated with vehicle or NMDA. (A) 4-HNE, as an indicator of lipid peroxidation, 

detected by immunohistochemistry using antibodies for 4-HNE. Scale bar, 30 µm. (B) 

Quantification of the fluorescent intensities of 4-HNE. Data are mean ± SEM (n = 9–

10). *p < 0.05.  

 

Next, I evaluated the extension of TUNEL-positive cell death in GCL 24 h after 

injections with NMDA or the vehicle. TUNEL-positive cells were hardly observed in 

the vehicle-treated retinas of both GPx4+/+ and GPx4+/− mice (Figure 21). Intravitreal 

injection of NMDA induced TUNEL-positive cells in GCL of both GPx4+/+ and 

GPx4+/− mice; however, the number of TUNEL-positive cells in GCL was significantly 

higher in GPx4+/− mice than in GPx4+/+ mice (Figure 21A, B). 

 

Figure 21. TUNEL staining in the retina of GPx4+/− and GPx4+/+ mice treated with NMDA or 

vehicle. (A) TUNEL staining of the retina after NMDA or vehicle treatment. Scale bar, 

30 µm. (B) Comparison of the number of TUNEL positive cells in the retina. Data are 

mean ± SEM (n = 9–10). **p < 0.05. 



53 
 

Finally, as a result of the increased toxicity in NMDA-treated GPx4+/− mice, I 

evaluated the number of remaining cells in GCL after 7 days of intravitreal injections 

with NMDA or the vehicle (Figure 22). There was no difference in retinal morphology 

and in the number of cells in GCL between vehicle-treated GPx4+/+ and GPx4+/− mice. 

However, after NMDA treatment, the number of cells in GCL was significantly more 

decreased in GPx4+/− mice than in GPx4+/+ mice. 

 
Figure 22. RGC loss in GPx4+/− and GPx4+/+ mice after 7 days of NMDA or vehicle treatment. 

(A) Hematoxylin and eosin staining of retinal sections. Scale bar, 30 µm. (B) The 

number of cells in GCL were compared between of GPx4+/− and GPx4+/+ mice. Data 

are mean ± SEM (n = 9–10). *p < 0.05. 

 

4.4 Discussion 

The major findings of the present study are as follows: (1) GPx4 is an essential 

antioxidant enzyme for maintaining oxidative homeostasis in retinal cells. Decreased 

expression of GPx4 causes the accumulation of peroxidized lipids, cytotoxicity and 

apoptosis, as well as an increased susceptibility to glutamate toxicity in vitro and (2) 
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GPx4 has an important role in protecting the retina from glutamate-induced oxytosis in 

vivo.  

Extracellular glutamate inhibits cystine uptake into the cells via the 

cystine/glutamate antiporter, leading to the depletion of glutathione and accumulation of 

reactive oxygen species.75,95 In glutamate oxytosis, glutathione depletion leads to lipid 

peroxidation through the activation of 12,15-lipoxyenase (12,15-LOX). LOX oxidizes 

polyunsaturated fatty acids (PUFAs) into lipid hydroperoxides, leading to the 

production of aldehydes, including 4-HNE. The accumulation of lethal levels of 

peroxidized lipids leads to mitochondrial damage and subsequent programmed cell 

death. Interestingly, 12,15-LOX has been shown to be involved in cell death in 

GPx4-deficient cells,36 which suggest a crosstalk between GPx4 and glutamate oxytosis. 

Consistently, in the present study I observed an increased susceptibility to glutamate 

cytotoxicity by silencing GPx4 in R28 cells, as well as increased peroxidized lipid 

accumulation and apoptosis in the retinas of GPx4+/− mice compared with those of 

wild-type mice. 

To date, several reports have suggested the essentiality and importance of 

antioxidant enzymes for the survival of RGCs. Yuki et al. have shown an increase in the 

NMDA-induced retinal neurotoxicity in SOD1-knockout mice.88 Munemasa et al. 

transfected Trx1 and Trx2 genes by electroporation in the rat retina, and showed that 

RGC loss by elevated intraocular pressure was ameliorated in the retina transfected with 

Trx1 and Trx2.89 In addition to SOD and Trx, GPx is another major antioxidative 

defense mechanism, and to my knowledge, the present study is the first to reveal the 

role of GPx4 in the prevention of glutamate-induced oxytosis in the retina. 
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I used GPx4+/− mice to address the effect of a decreased expression of GPx4 in vivo 

due to the embryonic lethality of GPx4−/− mice and there is no established Cre mouse 

suitable for a conditional knockout in RGCs. My results show that even 50% decrease 

in the expression of GPx4 causes severe damage in NMDA-treated retinas, suggesting 

the paramount importance of this antioxidant enzyme in the retina. 

The implication of increased oxidative stress and decreased antioxidative capacity 

has also been studied in patients with glaucoma and diabetic retinopathy. In aqueous 

humor samples, decreased total antioxidative capacity and decreased concentration of 

vitamins have been observed in glaucoma patients.96,97 Specifically, because vitamin E 

is important for the prevention of cell death caused by excessive lipid peroxidation and 

GPx4 deficiency,36 a decrease in aqueous humor96 may be related to glutamate-induced 

oxytosis in the retina. In these reports, the activity of SOD and GPx was upregulated in 

aqueous humor of glaucoma patients,96,97 which was considered a compensatory 

mechanism. However, the measured GPx activity in aqueous humor might have 

reflected the activity of GPx3, the extracellular glutathione peroxidase, and not the 

activity of GPx4, the intracellular GPx. However, in the samples of peripheral blood 

cells, the activity of SOD and GPx was downregulated in glaucoma patients.98 In 

diabetic patients with microvascular complications, the level of serum peroxidized 

lipids was upregulated while erythrocyte GPx and SOD activities were downregulated.99 

In conclusion, my data suggest that GPx4 is an essential antioxidant enzyme for 

protecting the neural retina from glutamate-induced oxytosis both in vitro and in vivo. 

Further studies are necessary to elucidate the role of GPx4 in the neurodegenerative 

changes in patients with glaucoma and diabetic retinopathy. 
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4.5 Summary 

Purpose: The purpose of the present study was to investigate the role of GPx4 in 

glutamate-induced oxytosis in the retina. 

Methods: For in vitro studies, an immortalized rat retinal precursor cell line R28 was 

used. Cells were transfected with siRNA specifically silencing GPx4 or with scrambled 

control siRNA. Lipid peroxidation was evaluated by 4-HNE immunostaining. 

Cytotoxicity and cell death were evaluated using an LDH activity assay and annexin V 

staining, respectively. Cells transfected with GPx4 siRNA or control siRNA were 

treated with glutamate (1 or 2 mM), and the cytotoxicity was evaluated using the LDH 

activity assay. For in vivo studies, retinal ganglion cell damage was induced by 

intravitreal injection of 25-mM N-methyl-D-aspartate (NMDA, 2 μL/eye) in GPx4+/+ 

and GPx4+/− mice. The evaluation of lipid peroxidation (4-HNE immunostaining), 

apoptosis (TUNEL staining), and cell density in the GCL were performed at 12 h, 1 day, 

and 7 days after the NMDA injection. 

Results: GPx4 knockdown significantly increased LDH activity by 13.9-fold (P < 0.01) 

and increased peroxidized lipid levels by 3.2-fold in R28 cells (P < 0.01). In cells 

transfected with scrambled control siRNA, treatment with glutamate at 1 or 2 mM did 

not increase LDH activity; whereas, in cells transfected with GPx4 siRNA, glutamate 

treatment significantly increased LDH activity (1.52-fold, P < 0.01). GPx4+/− mice 

exhibited higher levels of lipid peroxidation in retinas treated with NMDA than 

GPx4+/+ mice (1.26-fold, P < 0.05). GPx4+/− mice had more TUNEL-positive cells 

induced by NMDA in GCL (1.45-fold, P < 0.05). In addition, the cell density in GCL of 

GPx4+/− mice was 19% lower than that in GPx4+/+ mice after treatment with NMDA 

(P < 0.05). 
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Conclusion: These results suggest that defective GPx4 expression is associated with 

enhanced cytotoxicity by glutamate-induced oxytosis in the retina. 
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5. Role of GPx4 in conjunctival epithelial cells 

5.1 Introduction 

The ocular surface is constantly endangered to oxidative stress due to exposure to 

light and oxidative stress is implicated in several ocular surface diseases including 

pterygium, dry eye, conjunctivochalasis, and atopic keratoconjunctivitis.1-3, 67 Thus, the 

ocular surface needs anti-oxidants to maintain its oxidative homeostasis and redox 

balance. 

Among various kinds of anti-oxidative enzymes and small molecules, glutathione 

peroxidase is one of the major players in the anti-oxidative defense. The biochemical 

function of glutathione peroxidase is to reduce lipid hydroperoxides to their 

corresponding alcohols and to reduce free hydrogen peroxide to water. Eight isozymes 

of glutathione peroxidase have been identified in humans, which vary in cellular 

location and substrate specificity.15,33,34 GPx4 has a high preference for lipid 

hydroperoxides and directly reduces peroxidized phospholipids in cellular 

membranes.15,33,34  

Lipid peroxidation is implicated in a number of pathophysiologic processes of not 

only systemic diseases,21,23 but also ocular surface disorders.1-3 Peroxidized lipids are 

highly reactive and lead to DNA fragmentation and protein modification.21 Byproducts 

of lipid peroxidation such as 4-HNE are known to induce cell damage such as apoptosis 

and growth inhibition.29,30 In vivo, knockout mice of GPx4 die at embryonic day 8,34 

and GPx4 is critically important for neuronal development including photoreceptors.35,36 

GPx4 is also important to avoid neurodegeneration,91,40 β-cell dysfunction,41 male 

infertility,34 and choroidal neovascularization.71 Therefore, GPx4 is thought to be crucial 

for cell protection from oxidative stress. In previous study, Ueta et al. generated 
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photoreceptor-specific conditional knock-out mice of GPx4, in which photoreceptor 

cells rapidly underwent drastic degeneration and completely disappeared by P21, 

indicating GPx4 is a critical antioxidant enzyme for the maturation and survival of 

photoreceptor cells.35 

The purpose of the current study was to examine the role of GPx4 in the conjunctiva, 

the main component of the ocular surface, using the siRNA knockdown technique. 

 

5.2 Materials and methods 

5.2.1 Cell culture and transfection of siRNA 

Human conjunctival epithelial cells (Wong-Kilbourne derivative of Chang 

conjunctiva, American Type Culture Collection) were cultured under 5% CO2 at 37°C in 

Medium 199 (Invitrogen) containing 10 % FBS and 100 U penicillin plus 100 µg/ml 

streptomycin. 

Cells with 30% to 40% confluence were transfected with catalase, GPx1, GPx4, 

SOD1, SOD2, or control siRNA (Invitrogen) of 25 nM using lipofectamine 

RNAiMAX21 (Invitrogen) following manufacturer's instruction. Morphology of 

transfected cells was assessed with an inverted phase-contrast microscope. 

 

5.2.2 Real-timeRT-PCR 

Cells treated with catalase, GPx1, GPx4, SOD1, SOD2, and control siRNA were 

used at 2 days after transfection for detecting knockdown efficiency by RT-PCR. 

Cellular total RNA was isolated with Isogen (Nippon Gene) according to the 

manufacturer’s instructions. Subsequently, RNA was reverse-transcribed into cDNA by 

ReverTra Ace® qPCR RT Master Mix with gDNA Remover (Toyobo). Quantitative 
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real-time PCR was carried out with thermal cycler dice (Takara) using Platinum SYBR 

Green qPCR SuperMix-UDG (Invitrogen). Values for each gene were normalized to 

expression levels of GAPDH. The sequences of the primers used in the real-time 

RT-PCR were as follows: human GAPDH (Fwd, 5-TTGATTTTGGAGGGATCTCG-3- 

and Rev, 5-AACTTTGGCATTGTGGAAGG-3), human catalase (Fwd, 5-GCCT 

GGGACCCAATTATCTT-3, Rev, 5-GAATCTCCGCACTTCTCCAG-3), human GPx1 

(Fwd, 5-CTCTTCGAGAAGTGCGAGGT-3, Rev, 5-TCGATGTCAATGGTCT 

GGAA-3), GPx4 (Fwd, 5-GCACATGGTTAACCTGGACA-3, Rev, 5-CTGCTTC 

CCGAACTGGTTAC-3), human SOD1(Fwd, 5-TGGCCG ATGTGTCTA TTGAA-3, 

Rev, 5-GGGCCTCAGACTACATCCAA-3), and SOD2 (Fwd, 5-TTGG CCAAGGG 

AGATGTTAC-3, Rev, AGTCACGTTTGATGGCTTCC-3). 

 

5.2.3 Immunoblotting 

Cells treated with catalase, GPx1, GPx4, SOD1, SOD2, and control siRNA were 

used at 2 days after transfection for detecting knockdown efficiency by immunoblotting. 

SDS-PAGE of cellular proteins was performed on Mini-PROTEAN TGX Any kD gel 

(Bio-Rad Laboratories) with tris-glycine-SDS running buffer (Bio-Rad Laboratories). 

Immunoblot analysis was performed by electrotransferring proteins from the gels onto 

polyvinylidene fluoride (PVDF) membranes (Millipore) at 100 V for 60 minutes at 

ice-cold temperature using tris-glycine buffer. The membranes were probed with 

antibodies to β-actin (Santa Cruz Biotechnology), catalase (Santa Cruz Biotechnology), 

GPx1 (Cell Signaling Technology), GPx4 (Santa Cruz Biotechnology), SOD1(Santa 

Cruz Biotechnology), and SOD2 (GeneTex). Binding of secondary antibodies, 
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conjugated to alkaline phosphatase or to horseradish peroxidase, was visualized with 

BCIP/NBT substrate (Bio-Rad Laboratories) or chemiluminescent substrate (Pierce). 

 

5.2.4 Cytotoxicity assay 

Four days after transfection, a cytotoxicity assay for SOD1, SOD2 catalase, GPx1, 

and GPx4 knockdown cells was performed using the lactate dehydrogenase (LDH) 

cytotoxicity detection kit (Takara). LDH activity was measured in the extracellular 

medium and in the cell lysate according to the manufacturer’s instructions, and then 

extracellular LDH activity was calculated as percentage of the total LDH activity. 

In oxidative study, cells treated with GPx4 or control siRNA were then stimulated 

with hydrogen peroxide (Wako; 0, 0.1, and 1 µM) or ferric sulfide (Wako; 0, 100, and 

1000 µM) at 2 days after transfection. Two days later, I evaluated LDH activity of cells 

treated with hydrogen peroxide or ferric sulfide.   

 

5.2.5 Determination of lipid peroxidation 

Determination of lipid peroxidation was assessed by immunohistochemical 

detection 4-HNE. Cells treated with GPx4 or control siRNA at 4 days after transfection 

were fixed with 4% paraformaldehyde for 15 min, washed three times with PBS, and 

permeabilized with 0.1% of Triton X-100 solution containing 5% goat serum in PBS. 

Permealized cells were washed three times with PBS containing 5% goat serum, 

incubated with anti-4-HNE antibodies (JaICA) for 1 day at 4°C. Then, cells were 

washed again three times with PBS. Alexa 488-conjugated anti-mouse IgG secondary 

antibodies (Invitrogen) were applied, the sample left at room temperature for 1 hour, 

and excess antibodies were removed by washing cells three times with PBS. Fluorescent 
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images were observed with a fluorescence microscope (Keyence). The fluorescence 

intensities of the dots stained with 4-HNE were quantified using Image J software. 

Fluorescent probe C11-BODIPY581/591 is used for indexing lipid peroxidation, and 

has been used as the indication of lipid peroxidation in mammalian cells. The evaluation 

of lipid peroxidation was conducted by using not only 4-HNE immunostaining but also 

C11-BODIPY581/591. Cells treated with GPx4 or control siRNA at 4 days after 

transfection were incubated with 10 µM C11-BODIPY 581/591 (Invitrogen) for 30 

minutes, and rinsed with proliferation medium. Then, the fluorescence was analyzed at 

485-nm excitation/535-nm excitations. 

 

5.2.6 Determination of Reactive Oxygen Species (ROS)  

DCFH-DA is a cell-permeant indicator for ROS, and the cellular levels of ROS were 

determined using DCFH-DA. Cells treated with GPx4 or control siRNA at 4 days after 

transfection were incubated with 5 µM DCFH-DA (Invitrogen) for 30 minutes, and 

rinsed with proliferation medium. Then, the fluorescence was analyzed at 485-/535-nm 

excitation. 

 

5.2.7 Annexin V staining  

At 4 days after transfection, cells treated with GPx4 or control siRNA were stained 

by Alexa Fluor 488 Annexin V (Invitrogen) for 15 min at room temperature, and rinsed 

with PBS. After fixation using 2% paraformaldehyde, cell were then mounted in 

mounting medium (Vectashield; Vector Laboratories) containing DAPI. Fluorescent 

images were observed with a fluorescence microscope (Keyence). The percentages of 
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annexin V-positive, apoptotic cells relative to the total number of DAPI-positive cells 

were calculated. 

 

5.2.8 Assay of proliferation  

Proliferation of cells treated with GPx4 or control siRNA was assessed using WST-8 

assay27 (Dojindo) at 0, 1, 3, 5, and 7 days after transfection. WST-8 assay was 

performed according to the manufacturer’s instructions. 

 

5.2.9 Statistical Analysis  

Data are expressed as mean + SEM. Statistical analysis was performed with 2-tail 

Student’s t-test or Dunnett’s test. P < 0.05 was considered statistically significant. 

 

5.3 Results  

5.3.1 Knockdown of the antioxidant enzymes using siRNA 

Human conjunctival epithelial cells were transfected with catalase, GPx1, GPx4, 

SOD1, or SOD2 siRNA to cause the knockdown of each antioxidant enzyme. The 

mRNA expression was evaluated by quantitative RT-PCR. The mRNA expression of all 

antioxidant enzymes was downregulated by more than 85% (Figure 23A). Moreover, 

protein expression level was determined by immunoblotting analysis. The treatment of 

siRNA prominently reduced the protein expression of each gene in all antioxidant 

enzymes (Figure 23B). I confirmed remarkable gene knockdown of all antioxidant 

enzymes in the expression of mRNA and protein. 
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Figure 23. Knockdown of antioxidative enzymes, catalase, GPx1, GPx4, SOD1, and SOD, by 

siRNA in conjunctival epithelial cells. (A) mRNA expression of each antioxidative 

enzyme was quantified by real-time RT-PCR, and normalized to GAPDH mRNA level. 

Data were means+ SEM. (n = 3-4). (B) Protein expression of each antioxidative 

enzyme was determined by immunoblot analysis.. 

 

5.3.2 Effects of antioxidant enzymes knockdown on morphologic changes of 
conjunctival epithelial cells. 

The morphologic characteristics of conjunctival epithelial cells treated with each 

targeted siRNA were investigated at 4 days after transfection. Cells treated with control 

siRNA appeared to be compact, uniform and cobblestone pavement in shape (Figure 24). 
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Shape of cells treated with catalase, GPx1, or SOD2 was similar to that of cells treated 

with control siRNA (Figure 24). On the other hand, cells treated with GPx4, and SOD1 

siRNA exhibited signs of cell damage such as spheroids. 

 
Figure 24. Phase contrast morphology of conjunctival epithelial cells treated with control, 

catalase, GPx1, GPx4, SOD1, or SOD2 siRNA at 4 days after transfection. 

 

5.3.3 Effects of antioxidant enzymes knockdown on LDH activity 

Cytotoxicity was evaluated by measuring LDH activity. Knockdown of GPx4 and 

SOD1 significantly increased the activity of LDH (Figure 25). On the other hand, 

knockdown of catalase, GPx1, and SOD2 did not affect LDH activity (Figure 25). These 

results suggest that GPx4 and SOD1 play important roles in maintaining oxidative 

homeostasis under physiological condition in conjunctival cells.  



66 
 

 
Figure 25. LDH release from conjunctival epithelial cells treated with control, catalase, GPx1, 

GPx4, SOD1, or SOD2 siRNA 4 days after transfection. Data are means + SEM (n = 

4). **p < 0.01 relative to control siRNA group (Dunnett’s test) 

 

5.3.4 Effects of GPx4 knockdown on lipid peroxidation and ROS 

To assess lipid hydroperoxide generation in the GPx4 knockdown cells, I performed 

immunostaining for 4-HNE. 4-HNE was significantly elevated in GPx4 knockdown 

cells as demonstrated by immunofluorescence microscopic detection (Figure 26A, B). 

In addition, GPx4 knockdown significantly increased the fluorescence intensity of 

oxidized BODIPY-C11 (Figure 26C). These results suggest that GPx4 is implicated in 

controlling the lipid hydroperoxides production of conjunctival epithelial cells.     

Moreover, GPx4 knockdown significantly increased fluorescence intensity of 

DCFH-DA (Figure 26D). Thus, GPx4 is thought to play a role in regulating also ROS 

production of conjunctival epithelial cells. 
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Figure 26. Determination of lipid peroxidation and ROS. (A) Detection of 4-HNE by 

fluorescence microscopy using 4-HNE antibodies. (B) The fluorescence intensities of 
4-HNE were quantified using ImageJ (NIH). Data are means + SEM (n = 5). (C) The 
fluorescence intensities of oxidized lipid marker Bodipy C-11. Data are means + SEM 
(n=12). (D) The fluorescence intensities of DCFH-DA, the indicator of ROS. Data are 
means + SEM (n=11–12). **P < 0.01 and *P < 0.05 relative to control siRNA group 

(Student’s t-test). Scale bar: 10 µm. 

 

5.3.5 Effects of GPx4 knockdown on apoptosis and cell proliferation 

The percentage of annexin V-positive cells increased in GPx4 siRNA treated cells 

(Figure 27).  

Next, the effects of GPx4 knockdown on conjunctival epithelial cell growth were 

examined. The proliferation was evaluated by WST-8 assay. There were no significant 

differences in cell proliferation among GPx4 and control siRNA treated cells until 3 
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days after transfection (Figure 28). However, at 5 and 7 days after transfection, 

proliferation of GPx4 siRNA treated cells significantly lower than that of control siRNA 

treated cells, suggesting that GPx4 was essential for growth of conjunctival epithelial 

cells (Figure 28). 

 

Figure 27. Representative image of annexin V staining in conjunctival epithelial cells. (A) Cells 

stained with annexin V and DAPI by fluorescence microscopy. (B) The percentage of 

cells annexin V-positive cells relative to the total number of DAPI-positive cells. Data 

are means + SEM (n = 5). **p < 0.01 relative to control siRNA group (Student’s t-test). 

Scale bar, 25 µm. 

 
Figure 28. Proliferation of cells treated with GPx4 siRNA. Proliferation was evaluated by 
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WST-8 assay at 0, 1, 3, 5, and 7 days after transfection. Data are means + SEM (n = 5). 
**p < 0.01 relative to control siRNA group (Student’s t-test). 

 

5.3.6 Effects of GPx4 knockdown on cytotoxicity induced by oxidative stress 

Hydrogen peroxide and iron are potent generators of oxidative stress, and these 

agents are reported to induce oxidative damage in many cells.100-102 I investigated the 

effects of GPx4 knockdown on cytotoxicity induced by hydrogen peroxide or iron in 

conjunctival epithelial cells. LDH activity of cells treated with control siRNA was not 

changed by 0.1 and 1 µM hydrogen peroxide or 100 and 1000 µM ferric sulfide (Figure 

29A, B). On the other hand, LDH of cells treated with GPx4 siRNA significantly 

increased by 1 µM hydrogen peroxide or 1000 µM ferric sulfide. Knockdown of GPx4 

enhanced cytotoxicity by oxidative stress, and these results suggest that GPx4 is 

involved in the defense against oxidative stress.  

 

Figure 29. GPx4 knockdown enhanced LDH release induced by oxidative stress. LDH activity 

was evaluated at 2 days after application hydrogen peroxide or iron. Data are means + 

SEM (n = 4). **p < 0.01 relative to control siRNA group of each peroxide or iron dose 
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(Student’s t-test). ##p<0.01 and #p<0.05 relative to untreated GPx4 siRNA group 

between the groups of GPx4 siRNA (Dunnett’s test). si: siRNA. 

 

5.4 Discussion 

The major findings of the present study were that (1) GPx4 was an essential 

antioxidative enzyme for maintaining redox homeostasis in conjunctival epithelial cells. 

In the other antioxidative enzymes, SOD1 but not catalase, GPx1, or SOD2 seemed also 

essential for conjunctival cells. (2) Reduction in the expression of GPx4 caused the 

apoptosis and inhibited the proliferation of conjunctival epithelial cells. (3) Furthermore, 

GPx4 has an important role in protecting cells from cytotoxicity induced by the 

stimulation of oxidative stress in conjunctival epithelial cells. 

The present study found that GPx4 plays a critical role in maintaining redox 

homeostasis and preventing cytotoxicity in conjunctival epithelial cells. Additionally, I 

found that not many of the anti-oxidant enzymes could be essential to prevent 

cytotoxicity because the knockdown of catalase, SOD2, and GPx1 did not increase 

cytotoxicity in conjunctival epithelial cells. It has been reported that GPx4 is essential in 

different kinds of cells and loss of GPx4 leads to cell death in vivo and in vitro.34-37 My 

results in the present study is considered to concur with these reports. The unique role of 

GPx4 that directly reduces the peroxidized lipid in cell membrane is considered 

important for conjunctival epithelial cells in redox homeostasis, morphological integrity, 

and the regulation of cell death and proliferation. In the GPx4-deficient conjunctival 

epithelial cells, an increased accumulation of 4-HNE, a byproduct of lipid 

hydroperoxide and increased cytotoxicity was confirmed. Knockdown GPx4 also 

caused the increase of ROS production. Glutathione peroxidase 4 cannot directly 
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control the production of ROS. However, the byproducts of lipid hydroperoxide such as 

4-HNE are reported to enhance ROS production. 103,104 Thus, it is thought that GPx4 

indirectly reduces ROS production. Because the accumulation of lipid hydroperoxide 

byproducts is associated with conjunctival diseases such as allergic conjunctivitis and 

dry eye,1,3 the GPx4 expression may be important for the susceptibility to conjunctival 

diseases and may be a therapeutic target. In addition, because the cytotoxicity induced 

by loss of GPx4 can be at least partially rescued by endogenous46 or exogenous 

supplementation of vitamin E,36 it may also be important to evaluate the role of vitamin 

E for the disorders of conjunctival epithelium. 

In my experiments, I detected the increase in cytotoxicity and 4-HNE at 4 days after 

transfection. However, I did not detect the change of cytotoxicity in GPx4 knockdown 

cells 2 day after transfection (data not shown), although I observed knockdown of GPx4. 

These results suggested that accumulation of peroxidized lipid at 2 day after transfection 

would not be sufficient for causing cytotoxicity in conjunctival cells. 

SOD family is a major antioxidant system.105 A previous study reported that the 

corneal and conjunctival epithelia are damaged in the elderly SOD1-deficient mice.106 

In the present study, knockdown of SOD1 caused cell cytotoxicity (Figure 2 and 3), and 

these results indicate that not only GPx4 but also SOD1 would be irreplaceable for the 

maintenance of oxidative homeostasis in conjunctival cells. On the other hand, my 

results indicate that SOD2 is not as important as SOD1 or GPx4 for conjunctival 

epithelial cells. The result was unexpected considering that SOD2 is a major 

anti-oxidant enzyme in mitochondria, SOD2 knockout mice are lethal at neonatal 

stage,107 and loss of SOD2 in neuronal108 and musculature 109 cells leads to significant 

cytotoxicity and cell death. However, cell type-specific essentiality of anti-oxidant 
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enzymes can be possible, and I speculate that other anti-oxidant enzymes in 

mitochondria can play a complementary role for SOD2. As for catalase and GPx1, the 

intracellular hydrogen peroxide can be degraded by both catalase or GPx1.110 GPx1 and 

catalase can be substitute for each other in the reduction of hydrogen peroxide. 110    

Therefore, my results were considered reasonable that the knockdown of these enzymes 

did not induce significant cytotoxicity in conjunctival epithelial cells. 

In the present study, I showed that loss of GPx4 led to conjunctival epithelial cell 

death in vitro, and I found annexin V-positive apoptosis in the cell death. Although the 

cell death in the loss of GPx4 itself was in line with literature35-37 there have currently 

been a discussion on a novel mechanism of cell death, ferroptosis, where GPx4 is 

involved in cancer cells.38,39 Ferroptosis is an iron-dependent cell death and important in 

cancer cells where iron is highly concentrated. GPx4 plays an important role in 

preventing cancer cell death through inhibition lipid peroxidation.42  

In conclusion, the results in the present study demonstrated that GPx4 is an essential 

anti-oxidant enzyme for not only maintaining redox homeostasis but also keeping 

defense against oxidative stress in conjunctival epithelial cells. Loss of GPx4 might 

cause the aggravation of pathology in conjunctiva, and GPx4 might be a new 

therapeutic target for conjunctival disorders such as dry eye and keratoconjunctivitis.  

 

5.5 Summary 

Purpose: The purpose of the present study was to investigate the role of GPx4 in 

conjunctival epithelial cells. 

Methods: An immortalized human conjunctival epithelial cell line was used. Cells were 

transfected with catalase, GPx1, GPx4, SOD1, SOD2, or control siRNA. Knockdown 
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was confirmed by RT-PCR and immunoblotting. The cytotoxicity induced by 

knockdown of these antioxidant enzymes was examined by assay of LDH activity. 

Furthermore, evaluations of lipid peroxidation (immunostaining of 4-HNE), cell 

proliferation (WST-8), and apoptosis (annexin V) were conducted in cells treated with 

GPx4 or control siRNA. In oxidative stress study, cells treated with GPx4 or control 

siRNA were applied with hydrogen peroxide or ferric sulfide, and their cytotoxicity was 

evaluated by assay of LDH activity.  

Results: siRNA of catalase, GPx1, GPx4, SOD1, and SOD2 siRNA remarkably 

inhibited the mRNA and protein expression of each gene. Knockdown of GPx4 and 

SOD1 but not catalase, GPx1, and SOD2 significantly induced cytotoxicity. GPx4 

knockdown caused increase in the levels of lipid oxidation. The proliferation of GPx4 

siRNA-treated cells was reduced as compared with control siRNA treated cells. 

Moreover, cell death in GPx4 siRNA-treated cells was characterized by positive 

staining for annexin V. In oxidation stress study, GPx4 siRNA knockdown enhanced the 

cytotoxicity induced by hydrogen peroxide or ferric sulfide. 

Conclusion: These results suggest that GPx4 is essential for maintaining oxidative 

homeostasis and keeping defense against oxidative stress in conjunctival epithelial cells.  
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6. Summary and perspectives 

Background 

Oxidative stress has been implicated in ocular and vascular diseases. The eye is 

subjected constantly to oxidative stress due to daily exposure to sunlight, high metabolic 

activities, and oxygen tension. In addition, vascular tissues are highly susceptible to 

oxidative stress. Antioxidant defense system is essential for the maintenance of redox 

homeostasis and protection against oxidative damage. The antioxidant defense system 

consists of antioxidant enzymes (SODs, catalase and GPx, etc.) and dietary antioxidants 

(carotenoids, glutathione, vitamin C, and vitamin E). However, despite the importance 

of the defense mechanism against oxidative stress, the importance of specific 

antioxidant enzymes and dietary antioxidants in vascular and eye tissue is not fully 

understood.  

Among oxidative stresses, lipid peroxidation is especially known to be implicated in 

a number of pathophysiologic processes. Byproduct of lipid peroxidation such as 

4-HNE was identified in the patients of ocular and vascular diseases, and 4-HNE was 

reported as a cytotoxic product. GPx4 is one of eight glutathione peroxidases, and 

protects cells against detrimental lipid peroxidation. Also, vitamin E acts in conjunction 

with GPx4 to inhibit lipid peroxidation and cell death under GPx4 depletion was 

rescued by vitamin E in several cells. 

In the present study, I elucidated the importance of GPx4 in vascular endothelial 

cells, and ocular cells (corneal epithelial cells, retinal cells and conjunctival epithelial 

cells), and determined the effect of dietary vitamin E on GPx4 depletion condition. 
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Role of GPx4 for oxidative homeostasis in human vascular endothelial cells, and 

the compensatory activity of brown rice on GPx4 ablation condition  

The purpose of this study was to elucidate the importance of GPx4 in human 

vascular endothelial cells, and the compensatory activity of brown rice on GPx4 

ablation condition. Human umbilical vein endothelial cells (HUVEC) were transfected 

with GPx4 or scramble control siRNA. GPx4 knockdown caused the increase in the 

levels of lipid oxidation, and induced cytotoxicity. On the other hand, α-tocopherol 

(vitamin E) and extract of brown rice, ameliorated lipid peroxidation, cytotoxicity, and 

delay of proliferation induced by GPx4 knockdown. Furthermore, ferrostatin-1 also 

prevented the cytotoxicity, and the delay of proliferation. 

In conclusion, my data demonstrated that GPx4 is an essential antioxidant enzyme 

for protecting lipid peroxidation, and may be as a regulator of ferroptosis in vascular 

endothelial cells. Furthermore, vitamin E rich food, such as brown rice, can compensate 

for GPx4 loss by protecting cells against lipid peroxidation. 

 

GPx4 is an essential for survival and protection against oxidative stress in corneal 

epithelial cells, and the effects of vitamin E on cell damage induced by GPx4 

depletion  

I investigated the importance of GPx4 in corneal epithelial cells in in vitro and in 

vivo model. In addition, I examined the effect of α-tocopherol on conditional ablation of 

GPx4.  

For in vitro experiments, an immortalized human corneal epithelial cell line was 

used. Cytotoxicity measured through LDH activity, lipid peroxidation immunostained 

for 4-HNE, cell viability, and cell death were compared between cells transfected with 
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either GPx4 siRNA or scrambled control siRNA. In addition, the rescue effects of 

a-tocopherol and ferrostatin-1, a ferroptosis inhibitor, were examined in the cells with 

deficient GPx4 expression. For in vivo experiments, I applied n-heptanol on the cornea 

of GPx4+/+ and GPx4+/−mice to create corneal epithelial wound. The epithelial defect 

area size was measured up to 48 h after epithelial wound creation. 

Knockdown of GPx4 strongly induced cytotoxicity and cell death in human corneal 

epithelial cells. Cell death induced by GPx4 knockdown was characterized by positive 

staining for both annexin V and propidium iodide, nuclear translocation of AIF, and 

without activation of caspase 3, and was rescued by a-tocopherol and ferrostatin-1. The 

delayed wound healing of GPx4 siRNA-transfected cells were ameliorated by 

a-tocopherol in vitro. In addition, loss of one GPx4 allele was sufficient to significantly 

delay the healing of experimental corneal epithelial wounds in vivo. 

In conclusion, the results in the present study demonstrated that GPx4 is an 

antioxidant enzyme that is by itself important for oxidative homeostasis, cell survival, 

and wound healing in corneal epithelial cells, and is an essential regulator of ferroptotic 

cell death. In addition, α-tocopherol has a protective effect on lipid peroxidation, acting 

as an effective backup system for GPx4 in corneal epithelial cells. 

 

Role of GPx4 in glutamate-induced oxytosis in the retina 

Glutamate-induced toxicity may also be implicated in the ocular neurodegenerative 

changes in glaucoma and diabetic retinopathy. The excess extracellular glutamate 

induces oxidative stress and cell death, and glutamate-induced neurotoxicity is 

commonly called “oxytosis”.  In this study, I evaluated the role of GPx4 in 
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glutamate-induced oxytosis in the rat retinal precursor cell line R28, and GPx4+/+ and 

GPx4+/− mice. 

For in vitro studies, R28 cells were transfected with siRNA specifically silencing 

GPx4 or with scrambled control siRNA. GPx4 knockdown significantly increased LDH 

activity and increased peroxidized lipid levels in R28 cells. In addition, GPx4 

knockdown enhanced the cytotoxicity induced by glutamate. For in vivo study, NMDA 

injection increased lipid oxidation and TUNEL positive cells in GCL, and reduced cell 

density of GCL. GPx4+/− mice exhibited higher levels of lipid peroxidation in retinas 

treated with NMDA than GPx4+/+ mice. GPx4+/− mice had more TUNEL-positive 

cells induced by NMDA in GCL. In addition, the cell density in GCL of GPx4+/− mice 

was lower than that in GPx4+/+ mice after treatment with NMDA. 

In conclusion, my data suggest that GPx4 is an essential antioxidant enzyme for 

protecting the neural retina from glutamate-induced oxytosis both in vitro and in vivo.  

 

Role of GPx4 in conjunctival epithelial cells 

The purpose of the current study was to examine the role of GPx4 in the conjunctiva, 

the main component of the ocular surface, using the siRNA knockdown technique. An 

immortalized human conjunctival epithelial cell line was used. Cells were transfected 

with catalase, GPx1, GPx4, SOD1, SOD2, or control siRNA. Knockdown of GPx4 and 

SOD1 but not catalase, GPx1, and SOD2 significantly induced cytotoxicity. GPx4 

knockdown increased lipid oxidation and reactive oxygen species. The proliferation of 

GPx4 siRNA-treated cells was reduced as compared with control siRNA treated cells. 

Moreover, cell death in GPx4 siRNA-treated cells was characterized by positive 
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staining for annexin V. In oxidation stress study, GPx4 siRNA knockdown enhanced the 

cytotoxicity induced by hydrogen peroxide or ferric sulfide. 

In conclusion, these results suggest that GPx4 is essential for maintaining oxidative 

homeostasis and keeping defense against oxidative stress in conjunctival epithelial cells. 

 

Conclusion 

The results demonstrated that GPx4 is an essential anti-oxidant enzyme for not only 

maintaining redox homeostasis but also keeping defense against oxidative stress in 

vascular endothelial cells and ocular cells (corneal epithelial cells, retinal cells and 

conjunctival epithelial cells). Loss of GPx4 might cause the aggravation of pathology in 

ocular and vascular tissues, and GPx4 might be a new therapeutic target for vascular 

and ocular disorders such as atherosclerosis, dry eye, and diabetic retinopathy. In 

addition, vitamin E rich food, such as brown rice, may be potentially helpful in reducing 

the pathologies associated with loss GPx4. 
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7. Abbreviations 

AIF   Apoptosis inducing factor 

α-Toc   α-tocopherol 

DCFH-DA  2’ 7’-dichlorofluorescein diacetate 

GPx4   Glitathione peroxidase 4 

GCL   Ganglion cell layer 

LDH   Lactate dehydrogenase 

4-HNE    4-hydroxynoenal   

HUVEC   Human vascular endothelial cells 

NMDA   N-methyl-D-aspartate 

PBS   Phosphate-buffered saline 

PI    Propidium iodide 

RGC   Retinal ganglion cells 

ROS    Reactive oxgen species 

SOD   Superoxide dismutase 
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