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Abstract 
The flow characteristics of wood pulp suspensions in circular pipes have been investigated experimentally. In studying the 
flow mechanism, we mainly consider the yield shear stress, which represents the fiber-network strength in the flocculation of 
pulp fibers. The experimental results for five regimes, into which the flow was classified on the basis of the behavior of pulp 
fibers and the flow characteristics, as reported in the author’s recent work (2010), were correlated with the fiber concentration 
Cs in equation of the form   a Cs 

b where  is the shear stress on the pipe wall and a and b are constant. The yield shear 
stresses were determined by the measurement of the pressure loss. They are not dependent so much on the pipe diameter and 
become large with increase of the pulp-fiber concentration. The flocculation of pulp fibers starts to become loose near the 
pipe wall when a shear stress exceeding about four times the yield shear stress acts on the suspension. The values of the 
disruptive and dispersive shear stresses are formulated as simple expressions depending on only the fiber concentration. 
Furthermore, the corresponding critical and turbulent Reynolds numbers are presented. The pressure loss of the pulp 
suspension in the turbulent flow becomes smaller than that for water, and the ratio of both can be expressed by a simple 
empirical equation. 
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Fig. 1 Schematic diagram of relationship between pressure loss and velocity on logarithm axes and flow regime.   
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Fig. 2 Schematic diagram of experimental apparatus.  
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Fig. 3 Photograph of pulp fibers. 
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Fig. 7 Relationship between wall shear stress  and fiber 
concentration Cs. 0 : yield shear stress, d : disruptive 
shear stress, c : critical shear stress, t : turbulent shear 
stress.  : 0 from Ogawa et al. (1992).  

Fig. 6 Relationship between viscosity w at pipe wall 
and mean velocity Ua. The broken lines in the 
figure show where the flow pattern of Cs = 0.8 
wt% divides.  
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Fig. 8 Effects of fiber concentration on viscosity w at pipe wall and apparent viscosity a in pattern III.  
: a from Ogawa et al. (1992) (LBKP pulp, d =25 mm).  
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(a) Critical Reynolds number Re,c.             (b) Turbulent Reynolds number Re,t. 

Fig. 9 Critical Reynolds number Re,c and turbulent Reynolds number Re,t. The critical Reynolds number Re,c and 
the turbulent Reynolds number Re,t can be expressed approximately by the solid lines with Eqs. (13) and 
(15), respectively.  : Re,t  from Ogawa et al. (1992) (LBKP pulp, d =25 mm). 

Fig. 10 Effect of fiber concentration on pressure loss in turbulent flow. 
: data from Ogawa et al. (1992) (LBKP pulp, d =25 mm). : data from Robertson and 

Mason (1957) (Sulphite pulp, d =22.2 mm). 
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Fig. 11 Distributions of turbulence intensity (Ua = 2.0 m/s, d = 22 mm).  
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Fig. 12 Ratios of disruptive and turbulent shear stresses to yield shear stress. : t / 0 from Robertson and Mason 
(1957) (Sulphite pulp, d =22.2 mm).  (bleached kraft pipe pulp, d =53 mm) and  (bleached hardwood 
kraft pulp, d =100 mm) : d / 0 from Duffy and Titchener (1975).  
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