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From vector analysis to fluid dynamics
　　　　　　　　　　　　　　

T. Kaida1) G. Hirano2) K. Takahashi3) S. Kanemitsu4) T. Matsuzaki5) M. Fujio6)

	 概要：音楽と揺らぎの研究[17]中に、流体力学の基礎的な部分の展開が些か分明でないことに注目し、本論文では、そのいく
つかをより明確化する．それには、連鎖律、微分形式、一般のストウクスの定理をうまく組み合わせることで達成される．回
転と湧き出しの概念を定理3.1で定式化する．さらに、２次元の流れの場合には、複素関数論を用いて同定理が導出できること
を示す

	 Abstract：                                           

	 キーワード：流体力学、発散、回転、一般のストウクスの定理、グリーンの公式、ガウスの発散定理、微分形式、連鎖律
	 Key words：fluid mechanics, divergence, rotation, general Stokes’ theorem, Green's theorem, Gauss divergence theorem, 

differential forms, chain rule

1. Vector-valued functions
1.1 Differentiability

Let a vector-valued function  in a vector 

argument  be given by 

(1.1)

which is equivalent to the system of equations 

(1.2)

Definition 1.  The vector-valued function  is said to be 

totally differentiable (or Fréchet differentiable) at  if 
(1.3)

as , i.e. . Here A is an -matrix and is called 

the gradient (or the Jacobi matrix) of , denoted . 

(1.4)

In the case of a scalar function  the 
increment term  in (1.1) amounts to 

1）産業理工学部情報学科准教授　kaida@fuk.kindai.ac.jp

2）産業理工学部電気通信工学科准教授　hira@fuk.kindai.ac.jp

3）産業理工学部情報学科准教授　ktakahas@fuk.kindai.ac.jp

4）産業理工学部情報学科教授　kanemitu@fuk.kindai.ac.jp

5）産業理工学部電気通信工学科准教授　takanori@fuk.kindai.ac.jp

6）産業理工学部情報学科教授　fujio@fuk.kindai.ac.jp



近畿大学産業理工学部かやのもり　23（2015）

�

From vector analysis to fluid dynamics

(1.5)

on writing 

1.2　Chain rule

Theorem 1.1. Suppose (1.1) and 

(1.6)

are differentiable. Then the composite function 

(1.7)

is differentiable and the gradient is given as the product of the 

gradients 

(1.8)
i.e. the chain rule holds true which reads componentwisely, 

(1.9)

2. Vector analysis

Definition 2. For a vector-valued function  

(i.e.  ), we define its divergence ( ) and curl  

( ) (also called rotation ) by 

(2.1)

and 

(2.2)

Theorem 2.1. (General Stokes’ theorem) Let  be a 

-dimensional manifold,  its boundary and let  be a 

differential form of degree  in  variables. Then the identity 

(2.3)

holds true or in the form 

(2.4)

name degree number of var.
General Stokes’ theorem 

Green’s theorem 
Stokes’ theorem 

Gauss divergence theorem 

Table 2.1. Special cases of general Stokes’ theorem 

In what follows we apply the following rule for 

computing the product of differential forms. 

(2.5)
The first equality in (2.5) may be thought of as 

representing the area with sign of an infinitesimal 

paral le logram and the second as the area of a 

degenerated parallelogram. 

Theorem 2.2. (Green’s theorem) Let  be a domain, 

 its boundary and let  be a  class differential form 

of degree  in  variables: 

(2.6)
Then we have 

(2.7)

or more concretely, 

(2.8)

Proof. 

(2.9)

Theorem 2.3. (Stokes’ theorem) Let  be an 

orientable surface,  is a positively-oriented curve seen 

from the front side of  and let  be a  class differential form 

of degree  in  variables: 

(2.10)
Then we have 

(2.11)

where the left side is the surface integral if  is positively 

oriented and it is  times of the surface integral if  is 

negatively oriented. Or more concretely, 
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(2.12)

Proof. 

(2.13)

which leads to (2.12).

Theorem 2.4. (Gauss divergence theorem) Let  be 

a domain,  its oriented boundary surface with its front 

side positive and let  be a  class differential form of degree 

 in  variables: 

(2.14)
Then we have 

(2.15)

or more concretely, 

(2.16)

Proof. 

(2.17)

The name comes from the fact that the left-hand side 

of (2.16) is equal to the integral of divergence defined by 

(2.1). 

3. Rudiments of fluid mechanics
3.1 Divergence

Let  be the vector field of velocity of the fluid flowing 

in a domain  and let  be a bounded closed 

domain with its boundary  forming a surface. Let 

denote the density (distribution) function of the fluid in . 

Then  is the vector field describing the flow of mass 

distribution of the fluid. 

At a point , the normal vector  is 

given by 

(3.1)

and we write 

(3.2)
for the component of  in the direction of . Hence 
expresses the ratio of mass flowing out at P. 

Lemma 3.1.  Let  be a continuous vector field 

in ,  a differential form 

of degree ,  a smooth surface given by , 

. Then we have 

(3.3)

where the right-hand side is the surface integral defined by 

(3.4)

Proof. By (3.1) and (3.2), we have 

(3.5)
Substituting this, we have 

(3.6)

which amounts to (3.3).

Therefore integral of  over all  

(3.7)

expresses the totality of masses flowing out of  in a unit 

time interval. 

Suppose there is no source or sink in . Then since  

indicates the rate of decrease of all masses in , we have 

(3.8)

By Lemma 3.1 and Theorem 2.4, the left-hand side is 

: 

(3.9)

Hence 

(3.10)

If  is continuous, then we may change the integration 

and differentiation on the right of (3.8) and we obtain 
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(3.11)

Since (3.11) holds for any bounded domain , we must 

have 

(3.12)

which is called the equation of continuity of fluid. 

Definition 3. Fluid with constant density  is called 
incompressible fluid. For incompressible fluid, we have 

(3.13)

3.2 Circulation

Let  be a smooth Jordan curve and let  be the component 

of  in the direction of the tangent vector  at a point 

: 

(3.14)

Define the circulation of  around  by 

(3.15)

Lemma 3.2.  Let  be a continuous vector field 

in ,  a differential form of degree 

,  a smooth curve given by , . Then 

we have 

(3.16)

where the right-hand side is the -dimensional line integral 

(3.17)

and the right-hand side is an integral in the arc length. 

Proof. We find that the vector 

satisfies . Hence the component in (3.14) is . 

Hence 

(3.18)

which amounts to (3.17).

Combined with Stokes’ theorem, Theorem 2.3, this gives 

(3.19)

From (3.9) and (3.19) we deduce the following 

Theorem 3.1.  If  is a bounded closed domain with its 

boundary  forming a surface, then 

(3.20)

 is a domain with its boundary curve , then 

(3.21)

4. 2-dimensional flow
In this section we shall illustrate Theorem 2.1 by 

elucidating the results [7, pp.5-7] by complex analysis. 

Consider a -dimensional flow with its -velocity vector 

in the -dimensional space , where  is a 

domain with its boundary as a closed Jordan curve . 

(4.1)

and 

(4.2)

where  indicates the vorticity. 

We consider the complex velocity 

and integrate the function 

(4.3) W：curl( )＋idiv( )

over : 

(4.4)

by Green’s theorem. The last curvilinear integrals may 

be combined as , where . I.e. 

(4.5)

We also have 

(4.6)
where  is the component in the direction of the 

tangent vector and  the component in the direction of 

the tangent vector as defined in Section 3. 

From (4.3), (4.5) and (4.6) we conclude that 

(4.7)

Comparing the real and imaginary parts, we conclude the 

-dimensional version of Theorem 3.1. 
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Record of the conducted interdsciplinary 
seminars

The 25th by Professor S. Kanemitsu:
On point groups--MS for “Computational Chemistry”
May 14th, 2014, Wed. 18:20-19:20, expected but not 
conducted. Only the MS was circulated

The 26th by Professor S. Kanemitsu:

Music, math. and fluctuations I
Jun. 25th, 2014, Wed. 18:20-19:20, Rm. 1303

The 27th by Professor S. Kanemitsu:
Music, math. and fluctuations II
 Jul. 23rd, 2014, Wed. 18:20-19:20, Rm. 1303

The 28th by Professor T. Kaida:
On generalized constant-weight codes over GF(q)
from a cyclic difference set and their properties
Sep. 24th, 2014, Wed. 18:20-19:20, Rm. 1305

The 29th by Professor S. Kanemitsu:
Besprechung von Professor Kaida's talk and Descartes'dream 
I
Oct. 22nd, 2014, Wed. 18:20-19:20, Rm. 1305

The 30th by Professor T. Matsuzaki
Rotational characteristics of feudal-lords spins
Jan. 28th, 2015, Wed. 18:20-19:20, Rm. 1305

The 31st sem. by Professor Kanemitsu
Music and fluctuations II
Apr. 22nd, 2015, Wed. 18:20-19:20, Rm. 1305

The 32nd sem. by Professor Kanemitsu
Music as mathematics of senses
Jun. 10th, 2015, Wed. 18:20-19:20, Rm. 1305

The 33rd sem. by Professor Kanemitsu
Special functions in number theory and science
Jul. 22nd, 2015, Wed. 18:20-19:00, Rm. 1305

The 34th sem. by Professor Kanemitsu
Special functions in number theory and science
Sep. 19th 2015, Wed. 18:20-19:00, Rm. 1305


