PAPER

From vector analysis to fluid dynamics

T．Kaida ${ }^{1)}$ ｜G．Hirano ${ }^{2)}$ K．Takahashi ${ }^{33}$ S．Kanemitsu ${ }^{4)}$ T．Matsuzaki ${ }^{\text {5 }}$

M．Fujio ${ }^{\text {6 }}$
T．Kaida

概要：音楽と揺らぎの研究［17］中に，流体力学の基礎的な部分の展開が些か分明でないことに注目し，本論文では，そのいく つかをより明確化する，それには，連鎖律，微分形式，一般のストウクスの定理をうまく組み合わせることで達成される。回転と湧き出しの概念を定理3．1で定式化する。 さらに，2次元の流れの場合には，複素関数論を用いて同定理が導出できること を示す

Abstract ：

キーワード：流体力学，発散，回転，一般のストゥクスの定理，グリーンの公式，ガウスの発散定理，微分形式，連鎖律
Key words ：fluid mechanics，divergence，rotation，general Stokes＇theorem，Green＇s theorem，Gauss divergence theorem， differential forms，chain rule

1．Vector－valued functions

1．1 Differentiability
Let a vector－valued function $\boldsymbol{y}=\boldsymbol{y}(\boldsymbol{x})$ in a vector argument $\boldsymbol{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) \in D \subset \mathbb{R}^{n}$ be given by

$$
\left(\begin{array}{c}
y_{1} \tag{1.1}\\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=\boldsymbol{y}=\boldsymbol{y}(\boldsymbol{x})=\left(\begin{array}{c}
y_{1}(\boldsymbol{x}) \\
y_{2}(\boldsymbol{x}) \\
\vdots \\
y_{m}(\boldsymbol{x})
\end{array}\right)=\left(\begin{array}{c}
y_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
y_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
y_{m}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
\end{array}\right),
$$

which is equivalent to the system of equations

$$
\left\{\begin{array}{l}
y_{1}=y_{1}(\boldsymbol{x})=y_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \tag{1.2}\\
y_{2}=y_{2}(\boldsymbol{x})=y_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
\cdots \\
y_{m}=y_{m}(\boldsymbol{x})=y_{m}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
\end{array}\right.
$$

Definition 1．The vector－valued function $\boldsymbol{y}=\boldsymbol{y}(\boldsymbol{x})$ is said to be
totally differentiable（or Fréchet differentiable）at \boldsymbol{x} if （1．3）

$$
\boldsymbol{y}(\boldsymbol{x}+\boldsymbol{h})=y(x)+A \boldsymbol{h}+o(|\boldsymbol{h}|)
$$

as $\boldsymbol{h} \rightarrow \boldsymbol{o}$ ，，i．e．$|\boldsymbol{h}| \rightarrow 0$ ．．Here A is an（ m, n ）－matrix and is called the gradient（or the Jacobi matrix）of \boldsymbol{y} ，denoted $\nabla \boldsymbol{y}$ ．

$$
\nabla \boldsymbol{y}=\nabla\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=\left(\begin{array}{c}
\nabla y_{1} \\
\nabla y_{2} \\
\vdots \\
\nabla y_{m}
\end{array}\right)
$$

$$
=\left(\begin{array}{llll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \tag{1.4}\\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{2}}{\partial x_{n}} \\
\cdots & & & \\
\frac{\partial y_{m}}{\partial x_{1}} & \frac{\partial y_{m}}{\partial x_{2}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right)
$$

In the case of a scalar function $\boldsymbol{y}=y=y\left(x_{1}, \cdots, x_{n}\right)$ ，the increment term $A \boldsymbol{h}$ in（1．1）amounts to

[^0]\[

$$
\begin{equation*}
\nabla y \mathrm{~d} x=\frac{\partial y}{\partial x_{1}} \mathrm{~d} x_{1}+\cdots \frac{\partial y}{\partial x_{n}} \mathrm{~d} x_{n} \tag{1.5}
\end{equation*}
$$

\]

on writing $\boldsymbol{h}=\mathrm{d} \boldsymbol{x}=\left(\mathrm{d} x_{1}, \cdots, \mathrm{~d} x_{n}\right)$ ．
1．2 Chain rule
Theorem 1．1．Suppose（1．1）and
（1．6）

$$
\begin{aligned}
\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{\ell}
\end{array}\right)^{-}=z=z(y)= & \left(\begin{array}{c}
z_{1}(\boldsymbol{y}) \\
z_{2}(\boldsymbol{y}) \\
\vdots \\
z_{\ell}(y)
\end{array}\right) \\
& =\left(\begin{array}{c}
z_{1}\left(y_{1}, y_{2}, \cdots, y_{m}\right) \\
z_{2}\left(y_{1}, y_{2}, \cdots, y_{m}\right) \\
\cdots \\
z_{\ell}\left(y_{1}, y_{2}, \cdots, y_{m}\right)
\end{array}\right)
\end{aligned}
$$

are differentiable．Then the composite function
（1．7）$\quad(\boldsymbol{z} \circ \boldsymbol{y})(\boldsymbol{x})=\boldsymbol{z}(\boldsymbol{y}(\boldsymbol{x}))=\left(\begin{array}{c}z_{1}\left(y_{1}\left(x_{1}, \cdots, x_{n}\right), \cdots\right) \\ z_{2}\left(y_{1}\left(x_{1}, \cdots, x_{n}\right), \cdots\right) \\ z_{\ell}\left(y_{1}\left(x_{1}, \cdots, x_{n}\right), \cdots\right)\end{array}\right)$
is differentiable and the gradient is given as the product of the gradients
（1．8）

$$
\nabla(z \circ y)=\nabla \boldsymbol{z} \nabla \boldsymbol{y}
$$

i．e．the chain rule holds true which reads componentwisely，

$$
\begin{equation*}
\frac{\partial z_{i}}{\partial x_{j}}=\sum_{k=1}^{m} \frac{\partial z_{i}}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{j}} \tag{1.9}
\end{equation*}
$$

2．Vector analysis

Definition 2．For a vector－valued function $\boldsymbol{f}=\left(\begin{array}{c}P \\ Q \\ R\end{array}\right) \in C^{1}(X)$ （i．e．$P, Q, R \in C^{1}(X)$ ），we define its divergence（divf）and curl （curlf）（also called rotation $\operatorname{rot} \boldsymbol{f})$ by

$$
\begin{equation*}
\operatorname{div} \boldsymbol{f}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=\nabla \cdot \boldsymbol{f} \tag{2.1}
\end{equation*}
$$

and
（2．2）

$$
\operatorname{curl} \boldsymbol{f}=\left(\begin{array}{cc}
\left|\begin{array}{cc}
\frac{\partial}{\partial y} & Q \\
\frac{\partial}{\partial z} & R
\end{array}\right| \\
-\left|\begin{array}{cc}
\frac{\partial}{\partial x} & P \\
\frac{\partial}{\partial z} & R
\end{array}\right| \\
\left|\begin{array}{cc}
\frac{\partial}{\partial x} & P \\
\frac{\partial}{\partial y} & Q
\end{array}\right|
\end{array}\right)=\left(\begin{array}{c}
\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z} \\
-\left(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z}\right) \\
\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}
\end{array}\right)=\nabla \times \boldsymbol{f}
$$

Theorem 2．1．（General Stokes＇theorem）Let \mathcal{M} be a $k+1$－dimensional manifold，$\partial \mathcal{M}$ its boundary and let ω be a differential form of degree k in n variables．Then the identity

$$
\begin{equation*}
\int \cdots \int_{M} \mathrm{~d} \omega=\int \cdots \int_{\partial M} \omega \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{d} \omega(\mathcal{M})=\omega(\partial \mathcal{M}) \tag{2.4}
\end{equation*}
$$

name	degree	number of var．
General Stokes＇theorem	k	n
Green＇s theorem	1	2
Stokes＇theorem	1	3
Gauss divergence theorem	2	3

Table 2．1．Special cases of general Stokes＇theorem
In what follows we apply the following rule for computing the product of differential forms．

$$
\begin{equation*}
\mathrm{d} y \mathrm{~d} x=-\mathrm{d} x \mathrm{~d} y, \quad \mathrm{~d} x \mathrm{~d} x=\mathrm{d} y \mathrm{~d} y=0 \tag{2.5}
\end{equation*}
$$

The first equality in（2．5）may be thought of as representing the area with sign of an infinitesimal parallelogram and the second as the area of a degenerated parallelogram．

Theorem 2．2．（Green＇s theorem）Let $\mathcal{M}=D \subset \mathbb{R}^{2}$ be a domain， $\partial \mathcal{D} \subset \mathbb{R}^{2}$ its boundary and let ω be a C^{1} class differential form of degree 1 in 2 variables：

$$
\begin{equation*}
\omega=P \mathrm{~d} x+Q \mathrm{~d} y \tag{2.6}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\iint_{\mathcal{D}} \mathrm{d} \omega=\int_{\partial \mathcal{D}} \omega \tag{2.7}
\end{equation*}
$$

or more concretely，

$$
\begin{equation*}
\iint_{\mathcal{D}}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y=\int_{\partial \mathcal{D}} P \mathrm{~d} x+Q \mathrm{~d} y \tag{2.8}
\end{equation*}
$$

Proof．

$$
\begin{align*}
\mathrm{d} \omega=\mathrm{d} P \mathrm{~d} x+\mathrm{d} Q \mathrm{~d} y & =\left(\frac{\partial P}{\partial x} \mathrm{~d} x+\frac{\partial P}{\partial y} \mathrm{~d} y\right) \mathrm{d} x \\
& +\left(\frac{\partial Q}{\partial x} \mathrm{~d} x+\frac{\partial Q}{\partial y} \mathrm{~d} y\right) \mathrm{d} y \\
& =\frac{\partial P}{\partial y} \mathrm{~d} y \mathrm{~d} x+\frac{\partial Q}{\partial x} \mathrm{~d} x \mathrm{~d} y \tag{2.9}\\
& =\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y
\end{align*}
$$

Theorem 2．3．（Stokes＇theorem）Let $\mathcal{M}=S \subset \mathbb{R}^{3}$ be an orientable surface，$\partial S \subset \mathbb{R}^{3}$ is a positively－oriented curve seen from the front side of S and let ω be a C^{1} class differential form of degree 1 in 3 variables：
（2．10）

$$
\omega=P \mathrm{~d} x+Q \mathrm{~d} y+R \mathrm{~d} z
$$

Then we have

$$
\begin{equation*}
\iint_{\mathcal{S}} \mathrm{d} \omega=\int_{\partial S} \omega \tag{2.11}
\end{equation*}
$$

where the left side is the surface integral if δ is positively oriented and it is -1 times of the surface integral if \mathcal{S} is negatively oriented．Or more concretely，
holds true or in the form

$$
\begin{aligned}
\iint_{S}\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathrm{d} y \mathrm{~d} z & +\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathrm{d} z \mathrm{~d} x \\
& +\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y \\
& =\int_{\partial S} P \mathrm{~d} x+Q \mathrm{~d} y+R \mathrm{~d} z
\end{aligned}
$$

Proof.
(2.13)

$$
\begin{aligned}
& \mathrm{d} \omega=\mathrm{d} P \mathrm{~d} x+\mathrm{d} Q \mathrm{~d} y+R \mathrm{~d} z \\
& \quad=\left(\frac{\partial P}{\partial x} \mathrm{~d} x+\frac{\partial P}{\partial y} \mathrm{~d} y+\frac{\partial P}{\partial z} \mathrm{~d} z\right) \mathrm{d} x \\
& +\left(\frac{\partial Q}{\partial x} \mathrm{~d} x+\frac{\partial Q}{\partial y} \mathrm{~d} y+\frac{\partial Q}{\partial z} \mathrm{~d} z\right) \mathrm{d} y \\
& \quad+\left(\frac{\partial R}{\partial x} \mathrm{~d} x+\frac{\partial R}{\partial y} \mathrm{~d} y+\frac{\partial R}{\partial z} \mathrm{~d} z\right) \mathrm{d} z \\
& =-\frac{\partial P}{\partial y} \mathrm{~d} x \mathrm{~d} y+\frac{\partial P}{\partial z} \mathrm{~d} z \mathrm{~d} x+\frac{\partial Q}{\partial x} \mathrm{~d} x \mathrm{~d} y-\frac{\partial Q}{\partial z} \mathrm{~d} y \mathrm{~d} z \\
& \\
& \quad-\frac{\partial R}{\partial x} \mathrm{~d} z \mathrm{~d} x+\frac{\partial R}{\partial y} \mathrm{~d} y \mathrm{~d} z,
\end{aligned}
$$

which leads to (2.12).

Theorem 2.4. (Gauss divergence theorem) Let $\mathcal{M}=D \subset \mathbb{R}^{3}$ be a domain, $\partial \mathcal{D} \subset \mathbb{R}^{3}$ its oriented boundary surface with its front side positive and let ω be a C^{1} class differential form of degree 2 in 3 variables:
(2.14)

$$
\omega=P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} z \mathrm{~d} x+R \mathrm{~d} x \mathrm{~d} y
$$

Then we have

$$
\begin{equation*}
\iiint_{\mathcal{D}} \mathrm{d} \omega=\iint_{\partial \mathcal{D}} \omega \tag{2.15}
\end{equation*}
$$

or more concretely,
(2.16)

$$
\begin{aligned}
& \iiint_{\mathcal{D}}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
& =\iint_{\partial \mathcal{D}} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} z \mathrm{~d} x+R \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

Proof.
(2.17)

$$
\begin{aligned}
\mathrm{d} \omega= & \mathrm{d} P \mathrm{~d} y \mathrm{~d} z+\mathrm{d} Q \mathrm{~d} z \mathrm{~d} x+d R \mathrm{~d} x \mathrm{~d} y \\
& =\left(\frac{\partial P}{\partial x} \mathrm{~d} x+\frac{\partial P}{\partial y} \mathrm{~d} y+\frac{\partial P}{\partial z} \mathrm{~d} z\right) \mathrm{d} y \mathrm{~d} z \\
& +\left(\frac{\partial Q}{\partial x} \mathrm{~d} x+\frac{\partial Q}{\partial y} \mathrm{~d} y+\frac{\partial Q}{\partial z} \mathrm{~d} z\right) \mathrm{d} z \mathrm{~d} x \\
& +\left(\frac{\partial R}{\partial x} \mathrm{~d} x+\frac{\partial R}{\partial y} \mathrm{~d} y+\frac{\partial R}{\partial z} \mathrm{~d} z\right) \mathrm{d} x \mathrm{~d} y \\
= & \frac{\partial P}{\partial x} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z+\frac{\partial Q}{\partial y} \mathrm{~d} y \mathrm{~d} z \mathrm{~d} x+\frac{\partial R}{\partial z} \mathrm{~d} z \mathrm{~d} x \mathrm{~d} y .
\end{aligned}
$$

The name comes from the fact that the left-hand side of (2.16) is equal to the integral of divergence defined by (2.1).

3. Rudiments of fluid mechanics

3.1 Divergence

Let v be the vector field of velocity of the fluid flowing in a domain $\Omega \subset \mathbb{R}^{3}$ and let $X \subset \Omega$ be a bounded closed domain with its boundary ∂X forming a surface. Let ρ denote the density (distribution) function of the fluid in Ω. Then $\boldsymbol{f}=\boldsymbol{\rho} \boldsymbol{v}$ is the vector field describing the flow of mass
distribution of the fluid.
At a point $X \ni P: \boldsymbol{x}=\boldsymbol{x}(u, v)$, the normal vector \boldsymbol{n} is given by

$$
\begin{equation*}
n=\frac{1}{\left|x_{u} \times x_{v}\right|} x_{u} \times x_{v} \tag{3.1}
\end{equation*}
$$

and we write
(3.2)

$$
f_{n}=f \cdot \boldsymbol{n}
$$

for the component of \boldsymbol{f} in the direction of \boldsymbol{n}. Hence $f_{\boldsymbol{n}}$ expresses the ratio of mass flowing out at P.

Lemma 3.1. Let $\boldsymbol{f}=\left(\begin{array}{c}P \\ Q \\ R\end{array}\right) \in C(\Omega)$ be a continuous vector field in $\Omega \subset \mathbb{R}^{3}, \omega=P d y d z+Q d z d x+R d x d y$ a differential form of degree 2, $S \subset \Omega$ a smooth surface given by $S: x=x(u, v)$, $(u, v) \in \mathbb{R}^{2}$. Then we have

$$
\begin{equation*}
\iint_{S}(P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} z \mathrm{~d} x+R \mathrm{~d} x \mathrm{~d} y)=\iint_{S} f_{n} \mathrm{~d} A \tag{3.3}
\end{equation*}
$$

where the right-hand side is the surface integral defined by

$$
\begin{equation*}
\iint_{S} f_{n} \mathrm{~d} A=\iint_{D} f_{n}(x(u, v))\left|\boldsymbol{x}_{u} \times x_{v}\right| \mathrm{d} u \mathrm{~d} v \tag{3.4}
\end{equation*}
$$

Proof. By (3.1) and (3.2), we have

$$
\begin{equation*}
f_{n}\left|x_{u} \times x_{v}\right|=f \cdot\left(x_{u} \times x_{v}\right) \tag{3.5}
\end{equation*}
$$

Substituting this, we have
(3.6) $\iint_{S} f_{n} \mathrm{~d} A=\iint_{D}\left(P \frac{\partial(y, z)}{\partial(u, v)}-Q \frac{\partial(z, x)}{\partial(u, v)}+R \frac{\partial(x, y)}{\partial(u, v)}\right) \mathrm{d} u \mathrm{~d} v$,
which amounts to (3.3).
Therefore integral of $f_{\boldsymbol{n}}$ over all ∂X

$$
\begin{equation*}
Q=Q(\partial X):=\iint_{\partial X} f_{n} \tag{3.7}
\end{equation*}
$$

expresses the totality of masses flowing out of \boldsymbol{X} in a unit time interval.

Suppose there is no source or sink in X. Then since $Q(\partial X)$ indicates the rate of decrease of all masses in X, we have

$$
\begin{equation*}
\iint_{\partial X} f_{n}=-\frac{d}{d t} \iiint_{X} \rho . \tag{3.8}
\end{equation*}
$$

By Lemma 3.1 and Theorem 2.4, the left-hand side is $\iiint_{X} \operatorname{div}(f):$:

$$
\begin{equation*}
\iint_{\partial X} f_{n}=\iiint_{X} \operatorname{div}(f) \tag{3.9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\iiint_{X} \operatorname{div}(f)=-\frac{d}{d t} \iiint_{X} \rho \tag{3.10}
\end{equation*}
$$

If $\frac{d \rho}{d t}$ is continuous, then we may change the integration and differentiation on the right of (3.8) and we obtain
（3．11）

$$
\iiint_{X} \operatorname{div}(f)=-\iiint_{X} \frac{\partial \rho}{\partial t} .
$$

Since（3．11）holds for any bounded domain X ，we must have
（3．12）

$$
\operatorname{div}(\boldsymbol{f})=-\frac{\partial \rho}{\partial t^{\prime}}
$$

which is called the equation of continuity of fluid．

Definition 3．Fluid with constant density $\frac{\partial \rho}{\partial t}=0$ is called incompressible fluid．For incompressible fluid，we have

$$
\begin{equation*}
\operatorname{div}(f)=0 \tag{3.13}
\end{equation*}
$$

3．2 Circulation

Let C be a smooth Jordan curve and let $f_{\boldsymbol{t}}$ be the component of \boldsymbol{f} in the direction of the tangent vector $\boldsymbol{t}=\dot{\boldsymbol{x}}(t)$ at a point $P \in C::$

$$
\begin{equation*}
f_{t}=f \cdot \frac{t}{|t|} \tag{3.14}
\end{equation*}
$$

Define the circulation of \boldsymbol{f} around c by

$$
\begin{equation*}
\Gamma=\Gamma(C)=\int_{C} f_{t} \mathrm{~d} s \tag{3.15}
\end{equation*}
$$

Lemma 3．2．Let $\boldsymbol{f}=\left(\begin{array}{l}P \\ Q \\ R\end{array}\right) \in C(\Omega)$ be a continuous vector field in $\Omega \subset \mathbb{R}^{3}, \omega=P d x+Q d y+R d z$ a differential form of degree 1，$C \subset \Omega$ a smooth curve given by $C: x=x(s), s \in[0, \Lambda]$ ．．Then we have

$$
\begin{equation*}
\int_{C} \boldsymbol{f} \cdot \mathrm{~d} \boldsymbol{x}=\int_{C} P \mathrm{~d} x+Q \mathrm{~d} y+R \mathrm{~d} z=\int_{C} f_{\mathrm{t}} \mathrm{~d} s, \tag{3.16}
\end{equation*}
$$

where the right－hand side is the 3－dimensional line integral

$$
\begin{equation*}
\int_{C} f \cdot \mathrm{~d} x=\int_{C} \omega \tag{3.17}
\end{equation*}
$$

and the right－hand side is an integral in the arc length．
Proof．We find that the vector

$$
\boldsymbol{v}=\boldsymbol{v}(s)=\boldsymbol{x}^{\prime}(s)
$$

satisfies $\mid \boldsymbol{v} \boldsymbol{|}=1$ ．Hence the component in（3．14）is $\boldsymbol{f}_{t}=\boldsymbol{f} \cdot \boldsymbol{v}$ ． Hence

$$
\begin{equation*}
\int_{C} f_{t}=\int_{C}\left(P \frac{d x}{d s}+Q \frac{d x}{d s}+R \frac{d x}{d s}\right) \tag{3.18}
\end{equation*}
$$

which amounts to（3．17）．
Combined with Stokes＇theorem，Theorem 2．3，this gives

$$
\begin{equation*}
\int_{C} f_{t}=\iint_{D} \operatorname{curl}(f)_{n} . \tag{3.19}
\end{equation*}
$$

From（3．9）and（3．19）we deduce the following

Theorem 3．1．If If $X \subset \mathbb{R}^{3}$ is a bounded closed domain with its boundary ∂X forming a surface，then

$$
\begin{equation*}
Q=Q(\partial X)=\iint_{\partial X} f_{n}=\iiint_{X} \operatorname{div}(f) \tag{3.20}
\end{equation*}
$$

If $D \subset \mathbb{R}^{3}$ is a domain with its boundary curve $\partial D=C$ ，then

$$
\begin{equation*}
\Gamma=\Gamma(C)=\int_{C} f_{t}=\iint_{D} \operatorname{curl}(f)_{n} . \tag{3.21}
\end{equation*}
$$

4．2－dimensional flow

In this section we shall illustrate Theorem 2.1 by elucidating the results［7，pp．5－7］by complex analysis． Consider a 2 －dimensional flow with its 3 －velocity vector in the 3 －dimensional space $v=\left(\begin{array}{l}P \\ Q \\ 0\end{array}\right) \in C(D)$ ，where D is a domain with its boundary as a closed Jordan curve C ．

$$
\begin{equation*}
\operatorname{div}(\boldsymbol{v})=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y} \tag{4.1}
\end{equation*}
$$

and

$$
\operatorname{curl}(v)=\left(\begin{array}{c}
0 \tag{4.2}\\
0 \\
\omega
\end{array}\right)
$$

where $\omega=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ indicates the vorticity． We consider the complex velocity

$$
w=P-i Q
$$

and integrate the function
（4．3）$\quad \mathrm{W}: \operatorname{curl}(\boldsymbol{v})+\operatorname{idiv}(\boldsymbol{v})=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}+i\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right)$
over D：

$$
\begin{align*}
& \iint_{D} W \mathrm{~d} A=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A+i \iint_{D}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) \mathrm{d} A \\
& =\int_{C} P \mathrm{~d} x+Q \mathrm{~d} y+i \int_{C}-Q \mathrm{~d} x+P \mathrm{~d} y \tag{4.4}
\end{align*}
$$

by Green＇s theorem．The last curvilinear integrals may be combined as $\int_{C} w \mathrm{~d} z$ ，where $z=x+i y$ ．I．e．．I．e．

$$
\begin{equation*}
\iint_{D} W \mathrm{~d} A=\int_{C} w \mathrm{~d} z \tag{4.5}
\end{equation*}
$$

We also have

$$
\begin{equation*}
w \mathrm{~d} z=\left(v_{\boldsymbol{t}}+i v_{n}\right) \mathrm{d} s, \tag{4.6}
\end{equation*}
$$

where $v_{\boldsymbol{t}}=\boldsymbol{v} \cdot \boldsymbol{t}$ is the component in the direction of the tangent vector and $v_{\boldsymbol{n}}$ the component in the direction of the tangent vector as defined in Section 3.
From（4．3），（4．5）and（4．6）we conclude that

$$
\begin{equation*}
\iint_{D}(\operatorname{curl}(v)+i \operatorname{div}(v)) \mathrm{d} A=\int_{C}\left(v_{t}+i v_{n}\right) \mathrm{d} s \mathrm{~d} z . \tag{4.7}
\end{equation*}
$$

Comparing the real and imaginary parts，we conclude the 2－dimensional version of Theorem 3．1．

References

[1] T. M. Apostol, Mathematical analysis, Addison-Wesley, Reading 1957.
[2] B. C. Buck, Advanced calculus, McGraw-Hill, New York 1956.
[3] K. Chakraborty, S. Kanemitsu and H. Tsukada, Vistas of special functions II, World Sci.. New Jersey-LondonSingapore etc. 2009.
[4] J. B. Dettman, Applied complex variables, Dover, New York 1984 (Reprint, first published by Macmillan in 1965).
[5] W. J. Donoghue Jr., Distributions and Fourier transforms, Academic Press, New York-London, 1969
[6] F. S. Grodins, Control theory and biological systems, Columbia Univ. Press, New York and London 1963.
[7] I. Imai, Applied Hyperfunction, Science-sha, Tokyo 1963 (in Japanese).
[8] H. Grunsky, The general Stokes' theorem, Pitman, Boston-London-Melbourne 1983.
[9] S. Kanemitsu and H. Tsukada, Vistas of special functions, World Sci.. New Jersey-London-Singapore etc. 2007.
[10] A. Khono, Science of frictions, Shokabo, Tokyo 1989.
[11] H. Lamb, Hydrodynamics, Reprint Dover New York, 1945.
[12] L. Lichtenstein, Grundlagen der Hydromechanik, Springer, Berlin. 1929
[13] S. Mizohata, The theory of partial differential equations, Iwanami-shoten, Tokyo 1965
[14] S. Okamoto, Fluid mechanics, Morikita-shuppan, Tokyo 1995.
[15] A. Papoulis, The Fourier integral and its applications, McGraw-Hill, 1962
[16] H. M. Schey, div, grad, curl, and all that, W.W-Norton \& Co. New York, 1992.
[17] K. Takahashi, T. Matsuzaki, G. Hirano, T. Kaida, M, Fujio, and S. Kanemitsu, Fluctuations in science and music, Kayanomori 21 (2014), 1-7.
[18] T. Toyokura and K. Kamemoto, Fluid mechanics, Jikkyo-shuppan, Tokyo, 1976.
[19] D. W. Widder, Advanced calculus, Prentice-Hall, Reprint Dover New York 1956.
[20] K. Yoshida, Modern analysis, Kyoritsu Shuppan, Tokyo (in Japanese) 1956.

Record of the conducted interdsciplinary

 seminarsThe 25th by Professor S. Kanemitsu:
On point groups--MS for "Computational Chemistry"
May 14th, 2014, Wed. 18:20-19:20, expected but not conducted. Only the MS was circulated

Music, math. and fluctuations I
Jun. 25th, 2014, Wed. 18:20-19:20, Rm. 1303

The 27th by Professor S. Kanemitsu:
Music, math. and fluctuations II
Jul. 23rd, 2014, Wed. 18:20-19:20, Rm. 1303

The 28th by Professor T. Kaida:
On generalized constant-weight codes over GF(q) from a cyclic difference set and their properties Sep. 24th, 2014, Wed. 18:20-19:20, Rm. 1305

The 29th by Professor S. Kanemitsu:
Besprechung von Professor Kaida's talk and Descartes'dream I
Oct. 22nd, 2014, Wed. 18:20-19:20, Rm. 1305

The 30th by Professor T. Matsuzaki
Rotational characteristics of feudal-lords spins Jan. 28th, 2015, Wed. 18:20-19:20, Rm. 1305

The 31st sem. by Professor Kanemitsu
Music and fluctuations II
Apr. 22nd, 2015, Wed. 18:20-19:20, Rm. 1305

The 32nd sem. by Professor Kanemitsu
Music as mathematics of senses
Jun. 10th, 2015, Wed. 18:20-19:20, Rm. 1305

The 33rd sem. by Professor Kanemitsu
Special functions in number theory and science Jul. 22nd, 2015, Wed. 18:20-19:00, Rm. 1305

The 34th sem. by Professor Kanemitsu
Special functions in number theory and science Sep. 19th 2015, Wed. 18:20-19:00, Rm. 1305

[^0]: 1）産業理工学部情報学科准教授 kaida＠fuk．kindai．ac．jp
 2）産業理工学部電気通信工学科准教授 hira＠fuk．kindai．ac．jp
 3）産業理工学部情報学科准教授 ktakahas＠fuk．kindai．ac．jp
 4）産業理工学部情報学科教授 kanemitu＠fuk．kindai．ac．jp
 5）産業理工学部電気通信工学科准教授 takanori＠fuk．kindai．ac．jp
 6）産業理工学部情報学科教授 fujio＠fuk．kindai．ac．jp

