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From vector analysis to fluid dynamics
　　　　　　　　　　　　　　

T. Kaida1) G. Hirano2) K. Takahashi3) S. Kanemitsu4) T. Matsuzaki5) M. Fujio6)

	 概要：音楽と揺らぎの研究[17]中に、流体力学の基礎的な部分の展開が些か分明でないことに注目し、本論文では、そのいく
つかをより明確化する．それには、連鎖律、微分形式、一般のストウクスの定理をうまく組み合わせることで達成される．回
転と湧き出しの概念を定理3.1で定式化する．さらに、２次元の流れの場合には、複素関数論を用いて同定理が導出できること
を示す

	 Abstract：                                           

	 キーワード：流体力学、発散、回転、一般のストウクスの定理、グリーンの公式、ガウスの発散定理、微分形式、連鎖律
 Key words：fluid	mechanics,	divergence,	rotation,	general	Stokes’	theorem,	Green's	theorem,	Gauss	divergence	theorem,	

differential	forms,	chain	rule

1. Vector-valued functions
1.1	Differentiability

Let	 a	 vector-valued	 function	 	 in	 a	 vector	

argument	 	be	given	by	

(1.1)

which	is	equivalent	to	the	system	of	equations	

(1.2)

Definition 1.		The vector-valued function  is said to be 

totally differentiable (or Fréchet differentiable) at  if 
(1.3)

as , i.e. . Here A is an -matrix and is called 

the gradient (or the Jacobi matrix) of , denoted .	

(1.4)

In	the	case	of	a	scalar	function	 	the	
increment	term	 	in	(1.1)	amounts	to	
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(1.5)

on	writing	

1.2　Chain	rule

Theorem	1.1.	Suppose	(1.1)	and	

(1.6)

are differentiable. Then the composite function 

(1.7)

is differentiable and the gradient is given as the product of the 

gradients 

(1.8)
i.e. the chain rule holds true which reads componentwisely, 

(1.9)

2. Vector analysis

Definition 2.	For a vector-valued function  

(i.e.  ), we define its	divergence	 ( )	and curl  

( ) (also called rotation ) by 

(2.1)

and 

(2.2)

Theorem 2.1. (General	 Stokes’	 theorem)	Let  be a 

-dimensional manifold,  its boundary and let  be a 

differential form of degree  in  variables. Then the identity 

(2.3)

holds true or in the form 

(2.4)

name	 degree	 number	of	var.
General	Stokes’	theorem	

Green’s	theorem	
Stokes’	theorem	

Gauss	divergence	theorem	

Table 2.1. Special cases of general Stokes’ theorem 

In	what	 follows	we	 apply	 the	 following	 rule	 for	

computing	the	product	of	differential	forms.	

(2.5)
The	 first	 equality	 in	 (2.5)	may	 be	 thought	 of	 as	

representing	 the	 area	with	 sign	 of	 an	 infinitesimal	

paral le logram	 and	 the	 second	 as	 the	 area	 of	 a	

degenerated	parallelogram.	

Theorem 2.2. (Green’s theorem) Let  be a domain, 

 its boundary and let  be a  class differential form 

of degree  in  variables:	

(2.6)
Then we have 

(2.7)

or more concretely, 

(2.8)

Proof. 

(2.9)

Theorem 2.3.	 (Stokes’ theorem) Let  be an 

orientable surface,  is a positively-oriented curve seen 

from the front side of  and let  be a  class differential form 

of degree  in  variables: 

(2.10)
Then we have 

(2.11)

where the left side is the surface integral if  is positively 

oriented and it is  times of the surface integral if  is 

negatively oriented. Or more concretely, 
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(2.12)

Proof. 

(2.13)

which	leads	to	(2.12).

Theorem 2.4. (Gauss divergence theorem) Let  be 

a domain,  its oriented boundary surface with its front 

side positive and let  be a  class differential form of degree 

 in  variables: 

(2.14)
Then we have 

(2.15)

or more concretely, 

(2.16)

Proof. 

(2.17)

The	name	comes	from	the	fact	that	the	left-hand	side	

of	(2.16)	is	equal	to	the	integral	of	divergence	defined	by	

(2.1).	

3. Rudiments of fluid mechanics
3.1	Divergence

Let	 	be	the	vector	field	of	velocity	of	the	fluid	flowing	

in	a	domain	 	and	let	 	be	a	bounded	closed	

domain	with	 its	boundary	 	forming	a	surface.	Let	

denote	the	density	(distribution)	function	of	the	fluid	in	 .	

Then	 	is	the	vector	field	describing	the	flow	of	mass	

distribution	of	the	fluid.	

At	a	point	 ,	 the	normal	vector	 	 is	

given	by	

(3.1)

and	we	write	

(3.2)
for	the	component	of	 	 in	the	direction	of	 .	Hence	
expresses the ratio of mass flowing out at	P.	

Lemma 3.1.	 	Let  be a continuous vector field 

in ,  a differential form 

of degree ,  a smooth surface given by , 

. Then we have 

(3.3)

where	the	right-hand	side	is	the	surface	integral	defined	by	

(3.4)

Proof.	By	(3.1)	and	(3.2),	we	have	

(3.5)
Substituting	this,	we	have	

(3.6)

which	amounts	to	(3.3).

Therefore	integral	of	 	over	all	 	

(3.7)

expresses	 the	 totality of masses flowing out of  in a unit 

time interval.	

Suppose	there	is	no	source	or	sink	in	 .	Then	since	 	

indicates	the	rate	of	decrease	of	all	masses	in	 ,	we	have	

(3.8)

By	Lemma	3.1	 and	Theorem	2.4,	 the	 left-hand	 side	 is	

:	

(3.9)

Hence	

(3.10)

If	 	 is	continuous,	then	we	may	change	the	integration	

and	differentiation	on	the	right	of	(3.8)	and	we	obtain	
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(3.11)

Since	 (3.11)	holds	 for	any	bounded	domain	 ,	we	must	

have	

(3.12)

which	is	called	the	equation of continuity of	fluid.	

Definition 3.	Fluid	with	constant	density	 	 is	called	
incompressible fluid.	For	incompressible	fluid,	we	have	

(3.13)

3.2	Circulation

Let	 	be	a	smooth	Jordan	curve	and	let	 	be	the	component	

of	 	in	the	direction	of	the	tangent	vector	 	at	a	point	

:	

(3.14)

Define	the	circulation	of	 	around	 	by	

(3.15)

Lemma 3.2.  Let  be a continuous vector field 

in ,  a differential form of degree 

,  a smooth curve given by , . Then 

we have 

(3.16)

where the right-hand side is the -dimensional line integral 

(3.17)

and the right-hand side is an integral in the arc length. 

Proof.	We	find	that	the	vector	

satisfies	 .	Hence	the	component	in	(3.14)	is	 .	

Hence	

(3.18)

which	amounts	to	(3.17).

Combined	with	Stokes’	theorem,	Theorem	2.3,	this	gives	

(3.19)

From	(3.9)	and	(3.19)	we	deduce	the	following	

Theorem 3.1.		If  is a bounded closed domain with its 

boundary  forming a surface, then 

(3.20)

 is a domain with its boundary curve , then 

(3.21)

4. 2-dimensional flow
In	 this	 section	we	 shall	 illustrate	Theorem	 2.1	 by	

elucidating	 the	 results	 [7,	 pp.5-7]	 by	complex	analysis.	

Consider	a	 -dimensional	flow	with	its	 -velocity	vector	

in	the	 -dimensional	space	 ,	where	 	is	a	

domain	with	its	boundary	as	a	closed	Jordan	curve	 .	

(4.1)

and	

(4.2)

where	 	indicates	the	vorticity.	

We	consider	the	complex velocity 

and	integrate	the	function	

(4.3) W：curl( )＋idiv( )

over	 :	

(4.4)

by	Green’s	theorem.	The	 last	curvilinear	 integrals	may	

be	combined	as	 ,	where	 .	I.e.	

(4.5)

We	also	have	

(4.6)
where	 	 is	the	component	 in	the	direction	of	the	

tangent	vector	and	 	the	component	in	the	direction	of	

the	tangent	vector	as	defined	in	Section	3.	

From	(4.3),	(4.5)	and	(4.6)	we	conclude	that	

(4.7)

Comparing	the	real	and	imaginary	parts,	we	conclude	the	

-dimensional	version	of	Theorem	3.1.	
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Record of the conducted interdsciplinary 
seminars

The	25th	by	Professor	S.	Kanemitsu:
On	point	groups--MS	for	“Computational	Chemistry”
May	 14th,	 2014,	Wed.	 18:20-19:20,	 expected	 but	 not	
conducted.	Only	the	MS	was	circulated

The	26th	by	Professor	S.	Kanemitsu:

Music,	math.	and	fluctuations	I
Jun.	25th,	2014,	Wed.	18:20-19:20,	Rm.	1303

The	27th	by	Professor	S.	Kanemitsu:
Music,	math.	and	fluctuations	II
	Jul.	23rd,	2014,	Wed.	18:20-19:20,	Rm.	1303

The	28th	by	Professor	T.	Kaida:
On	generalized	constant-weight	codes	over	GF(q)
from	a	cyclic	difference	set	and	their	properties
Sep.	24th,	2014,	Wed.	18:20-19:20,	Rm.	1305

The	29th	by	Professor	S.	Kanemitsu:
Besprechung	von	Professor	Kaida's	talk	and	Descartes'dream	
I
Oct.	22nd,	2014,	Wed.	18:20-19:20,	Rm.	1305

The	30th	by	Professor	T.	Matsuzaki
Rotational	characteristics	of	feudal-lords	spins
Jan.	28th,	2015,	Wed.	18:20-19:20,	Rm.	1305

The	31st	sem.	by	Professor	Kanemitsu
Music	and	fluctuations	II
Apr.	22nd,	2015,	Wed.	18:20-19:20,	Rm.	1305

The	32nd	sem.	by	Professor	Kanemitsu
Music	as	mathematics	of	senses
Jun.	10th,	2015,	Wed.	18:20-19:20,	Rm.	1305

The	33rd	sem.	by	Professor	Kanemitsu
Special	functions	in	number	theory	and	science
Jul.	22nd,	2015,	Wed.	18:20-19:00,	Rm.	1305

The	34th	sem.	by	Professor	Kanemitsu
Special	functions	in	number	theory	and	science
Sep.	19th	2015,	Wed.	18:20-19:00,	Rm.	1305


