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1. Vector-valued functions
1.1 Differentiability

Let a vector-valued function ¥ =¥(x) in a vector

Xy
argument x = Zlepcre be given by
xn
Y1 y1(x) Y1(x1, X, Xn)
W) |7 =y=y@=| P )< | ) )
Y Y (%) Yim (X1, X2, %)

which is equivalent to the system of equations

y1 = y1(%) = y1(x1, X2, -+, %)
(12) Y2 = Y2 (%) = Y2 (%1, 22,7+, %n)

Yin = Ym(X) = Y (%1, X2, 7, Xp)-

Definition 1. The vector-valued function ¥ = y(x) is said to be

totally differentiable (or Fréchet differentiable) at x if
13 y(x+h) = y(x) + Ah + o([h])

as h—> o, ie |h| = 0.. Here A is an (m,n)-matrix and is called

the gradient (or the Jacobi matrix) of ¥, denoted V..

Y1 Vy

Vy:V yz = Vyz

Ym Vym

(14 dx, 0x, dx,
=1 dx; Ox, dx,

dx; 0x, ax,

In the case of a scalar function ¥ =y = y(x1,',%,), the

increment term Ah in (1.1) amounts to
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(15) ydx = 22 dx, + 2 dx,
on writing h = dx = (dx;, -+, dxy,).
12 Chain rule
Theorem 1.1. Suppose (1.1) and
z\ %)
?)=z=2 = 2P
(16) Ze z(y)

2 (V1. Y2 Ym)
2,1, Y2 ") Ym)

ze(Y1, Y2, Ym)

are differentiable. Then the composite function
zy 1y, xn), )
1)@m= = | 20l )
2y O10x1, 5 x), )

is differentiable and the gradient is given as the product of the
gradients

(1Y) V(zoy) =VzVy,

i.e. the chain rule holds true which reads componentwisely,

m
dz; _ dz; Oy,

(19) 7%= Do

2. Vector analysis

P
Q) € Cl(X)
R

(ie. P,Q,R € CY(X)), we define its divergence (divf) and curl

(curlf ) (also called rotation rotf ) by

Definition 2. For a vector-valued function f = <

21 dvf =L 9 R _y
@) M=ty ta TS
and
i)
dy Q
9 R
dz 6_R_6_Q
3} p dy 0z
_ E _ (6R ap) _
1IfF=1 - = — =V x
22) curlf 2 . ox oz f
ad x oy
ax P
a
dy ¢

Theorem 2.1. (General Stokes’ theorem) Let M be a
k + 1-dimensional manifold, oM its boundary and let w be a

differential form of degree k in n variables. Then the identity

3 [of aw=[] o

holds true or in the form

(24) dw(M) = w(dM).

name degree number of var.

General Stokes’ theorem k n
Green' s theorem 1 2

Stokes’ theorem 1 3

Gauss divergence theorem 2 3

Table 2.1. Special cases of general Stokes’ theorem

In what follows we apply the following rule for
computing the product of differential forms.
(25) dydx = —dxdy, dxdx =dydy =0.

The first equality in (2.5) may be thought of as
representing the area with sign of an infinitesimal
parallelogram and the second as the area of a

degenerated parallelogram.

Theorem 2.2. (Green's theorem) Let M = D c R?* be a domain,
aD c R? its boundary and let @ be a C* class differential form
of degree 1 in 2 variables:

(26) w = Pdx + Qdy.

Then we have

27 JL dw=LDw

or more concretely,
BQ aP
(28) _U dxdy f Pdx + Qdy
oD

Proof.

P 9
dw = dPdx + dQdy = (E dx + —dy) dx

(29) aP 0
6_ dydx + I dxdy

Theorem 2.3. (Stokes’ theorem) Let M =S c R® be an
orientable surface, 3S c R® is a positively-oriented curve seen
from the front side of S and let w be a C* class differential form
of degree 1 in 3 variables:

(2.10) w = Pdx + Qdy + Rdz.

Then we have

(2.11) fL dw = fas w,

where the left side is the surface integral if § is positively
oriented and it is —1 times of the surface integral if § is

negatively oriented. Or more concretely,
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ﬂ(aR aQ)dd +(6P aR)dd
s\dy 0Oz YeET oz zax

2.12) + (gg ZP ) axdy

= f Pdx + Qdy + Rdz.
os

Proof.
dw = dPdx + dQdy + Rdz

a0 Q aQ
+(adx+@dy+gdz) dy

(2.13) (a_R oR . L OR )
+ 6xdx+ dy+azdz dz

= aPdd +and +0Qdd and
B 6yxy 6zzx 6xxy 6zyz

6Rdd +aRdd
35 129% 3y ydz,

which leads to (2.12).

Theorem 2.4. (Gauss divergence theorem) Let M =D < R? be
a domain, 8D c R® its oriented boundary surface with its front
side positive and let w be a C* class differential form of degree
2 in 3 variables:

(2.14) w = Pdydz + Qdzdx + Rdxdy.

Then we have

(215) ﬂnd“ﬂa@“’

or more concretely,

522 o

(2.16)
= ff Pdydz + Qdzdx + Rdxdy
ap

Proof.
dw = dPdydz + dQdzdx + dRdxdy
apP
37 dz) dydz
a a
+ (—de L9, +—de) dzdx
x y 0z
dR
dy

—apddd +andd +aRddd
= 3, drdvdz ayyzx 55 dzdxdy.

217

+(6Rd + 8 +aRd)dd
6xx y 6ZZ xdy

The name comes from the fact that the left-hand side
of (216) is equal to the integral of divergence defined by
2.1).

3. Rudiments of fluid mechanics
3.1 Divergence

Let v be the vector field of velocity of the fluid flowing
in a domain QcR® and let X cQ be a bounded closed
domain with its boundary aX forming a surface. Let »
denote the density (distribution) function of the fluid in Q.

Then f = pv is the vector field describing the flow of mass

distribution of the fluid.
At a point X2 P:x=x(,v),, the normal vector n is

given by

31 Xy X Xy

[, X x|

and we write
(32) fn = f -n
for the component of f in the direction of n. Hence fu

expresses the ratio of mass flowing out at P.

P
Lemma 3.1. Let f= (Q
R

in 0 cR3, w=Pdydz+ Qdzdx + Rdxdy a differential form

) € C(2) be a continuous vector field

of degree 2, S c 0 a smooth surface given by S:x =x(u,v),

(u.v) € R%. Then we have

(33) ff(dedz + Qdzdx + Rdxdy) = [ fn d4,
s s

where the right-hand side is the surface integral defined by

(34 fon dA = Jfon (x(u, )2y, X x| dudv.

Proof. By (3.1) and (3.2), we have
(35) Jaly X 25| = f - (2, X x,.).

Substituting this, we have

o= 5 o5 *aa) e

which amounts to (3.3).

Therefore integral of fu over all ax
=Q(0X):= n
37 Q= QX || K

expresses the totality of masses flowing out of X in a unit
time interval.
Suppose there is no source or sink in X. Then since Q(8X)

indicates the rate of decrease of all masses in X, we have

39 Il = - [l[e

By Lemma 3.1 and Theorem 2.4, the left-hand side is
I, div(f)::

39) J fa = ] e,

Hence

(310) I fX aiv() =~ ﬁfx .

de | . . .
If a is continuous, then we may change the integration

and differentiation on the right of (3.8) and we obtain
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@1 I @i =[] 5

Since (3.11) holds for any bounded domain X, we must
have

312 div(f) = -2

312 v(f) = T

which is called the equation of continuity of fluid.

Definition 3. Fluid with constant density Z—f =0 is called

incompressible fluid. For incompressible fluid, we have

(313) div(f) = 0.

3.2 Circulation

Let ¢ be a smooth Jordan curve and let f: be the component
of f in the direction of the tangent vector t = x(¢) at a point
PecC:

t

(314 fe=71 i

Define the circulation of f around ¢ by

(315) ['=Tr(C) = f £, ds.
¢
P
Lemma 3.2. Let f = (Q) € C(2) be a continuous vector field
R

in ) c R®, w=Pdx+Qdy+Rdz q differential form of degree
1, € ¢ 2 a smooth curve given by C:x = x(s), s € [0,4].. Then

we have

(3.16) fcf-dx=Lde+Qdy+Rdz=fotds,

where the right-hand side is the 3-dimensional line integral

(317) fcf- dx=fcw

and the right-hand side is an integral in the arc length.
Proof. We find that the vector
v =v(s) =x'(s)
satisfies [v| = 1. Hence the component in (314) is fi =f - v.

Hence

N

which amounts to (3.17).

Combined with Stokes’ theorem, Theorem 2.3, this gives

(319) fc fi= ﬂD curl(f),.

From (39) and (3.19) we deduce the following

Theorem 3.1. If If X ¢ R® is a bounded closed domain with its
boundary 3X forming a surface, then

(320) Q=00n = | L = Il e,

If D € R? is a domain with its boundary curve ap = C, then

(321) r=r() = fc 7= || f curl(f).

4. 2-dimensional flow
In this section we shall illustrate Theorem 2.1 by
elucidating the results [7, pp.5-7] by complex analysis.

Consider a 2-dimensional flow with its 3-velocity vector
P

in the 3-dimensional space v = (Q) € C(D), where D is a
0

domain with its boundary as a closed Jordan curve C.

di _ 9P 0Q
(41) IV(‘U) = a + a
and
0
4.2 curl(v) = <0>
1)

8Q 9P . . . .
where @ =7-— 7= indicates the vorticity.
We consider the complex velocity

w=P—-iQ

and integrate the function

43) W curl(v) +idiv(v)= Z—S—Z_;J“"(Z_i"Lg_g)
over D:

WA = dA @P @Q
el GB)e G

=Jde+Qdy+{'j—de+de
[ o

by Green's theorem. The last curvilinear integrals may

be combined as [, W dz, where z=x + iy. Le.. Le.
45) _UW dA = fw dz.
D c

We also have

4.6) wdz = (v, + iv,)ds,

where V¢ =Vt is the component in the direction of the
tangent vector and Y» the component in the direction of
the tangent vector as defined in Section 3.

From (4.3), (45) and (4.6) we conclude that

47 ffD(curl(v) +idiv(v))d4 = fc(vt + iv,)ds dz.

Comparing the real and imaginary parts, we conclude the

2-dimensional version of Theorem 3.1.
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Record of the conducted interdsciplinary
seminars

The 25th by Professor S. Kanemitsu:

On point groups-MS for “Computational Chemistry”
May 14th, 2014, Wed. 18:20-19:20, expected but not
conducted. Only the MS was circulated

The 26th by Professor S. Kanemitsu:

Music, math. and fluctuations I
Jun. 25th, 2014, Wed. 18:20-19:20, Rm. 1303

The 27th by Professor S. Kanemitsu:
Music, math. and fluctuations II
Jul. 23rd, 2014, Wed. 18:20-19:20, Rm. 1303

The 28th by Professor T. Kaida:

On generalized constant-weight codes over GF(q)
from a cyclic difference set and their properties
Sep. 24th, 2014, Wed. 1820-19:20, Rm. 1305

The 29th by Professor S. Kanemitsu:

Besprechung von Professor Kaida's talk and Descartes'dream
I

Oct. 22nd, 2014, Wed. 1820-19:20, Rm. 1305

The 30th by Professor T. Matsuzaki
Rotational characteristics of feudal-lords spins
Jan. 28th, 2015, Wed. 18:20-19:20, Rm. 1305

The 31st sem. by Professor Kanemitsu
Music and fluctuations II
Apr. 22nd, 2015, Wed. 18:20-19:20, Rm. 1305

The 32nd sem. by Professor Kanemitsu
Music as mathematics of senses
Jun. 10th, 2015, Wed. 18:20-19:20, Rm. 1305

The 33rd sem. by Professor Kanemitsu
Special functions in number theory and science
Jul. 22nd, 2015, Wed. 18:20-19:00, Rm. 1305

The 34th sem. by Professor Kanemitsu
Special functions in number theory and science

Sep. 19th 2015, Wed. 18:20-19:00, Rm. 1305



