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Fluctuations in science and music

K. Takahashi1) T. Kaida2) G. Hirano3) T. Matsuzaki4) M. Fujio5) S. Kanemitsu6)

 概要：音楽は18－19世紀にその最高の高みに達したとよくいわれる。その原動力の一つは、音楽の作曲の堅牢さにあるといえ
る。その点、数学の堅牢さと通ずるものがある。ゲーテの言葉を借りれば、幾何学は凍れる音楽である、となる。ここで幾何
学は数学にまで拡大される。それは、中世ヨーロッパの大学の高等教育で教えられていたのは７科目であり、そのうち３科
目は、文法、論理学、修辞法であった。この３=triからtrivial（自明）ということばが派生した。数論、幾何学、天文学、音
楽の４科目はより高等なものとして扱われ、quadriviaとよばれていた。ゲーテにとって幾何学=数学であったと思われる。音
楽と数学のこの密接な関係に鑑みて、両者をつなぐ新理論の展開の場である関数空間を模索した結果、有限パワー信号（関数）
の空間ではないかと考えるに至った。本論文はこれまで本セミナーシリーズで展開してきたフーリエ変換理論の頂点であり、
生き物と死に物の境界に位置する対象研究の魁である。

 キーワード：有限エネルギー信号、有限パワー信号、自己相関関数、フーリエ変換、音階、ゆらぎ
 Key words：finite energy signals, finite power signals, autocorrelation, Fourier transform, musical scales, fluctuations

1. Introduction
1.1. HiFi vs. WiFi

Before the time of reproduction by digital apparatuses, sonic 

data, esp. music was always recorded in tapes (or records before 

the tape-recorders) and the principle was to reproduce as near 

as possible the original sound—high fidelity, hifi. However, in 

the time of computers, the wifi is prevailing, wide fidelity not 

high fidelity. Already in the times of records, there was a bud of 

such a tendency represented by Dolby system, which cuts higher 

frequencies in order to reduce the noise made by the record 

player. 

There is wide-spread misunderstanding of the digital data 

that they reproduce the whole data, i.e. after analogue to digital 

transform / , certain processing conducted, and the resulting 

digital data  remaining the same as the original digital data , and 

finally by the digital analogue transform / , the output  is 

obtained, but the output is not  but ′ and the whole process 

gives only 

(1.1) / → / ′,

where ′ is an avatar of . 

What is missing here is the fact that the output is perceived 

by human senses (ears in the case of sound) first and then 

interpreted according to the stored data in the brains. Therefore, 

e.g. for tapping, only the obtained data is essential and the tones 

or musical flavor is not relevant. Or in the case of pictures, the 

brains can be easily deceived. By the very principle of evolution, 

the human brains tend to recognize human faces in all objects 

as the humans were the only their allies against many fierce 

carnivorous predators. Thus, 

“what is perceived by sight can be easily deceived by mind.” 

But the case of music can be different and digital music 

cannot deceive trained musical ears and many experienced 

worshipers of music cannot tolerate the processed music. 

Digital reproduction looks like finding an avatar—wifi rather 

than re-creating an as near as the original—hifi. 

The reason for such a sloppy misunderstanding lies rather 

deep in our modern culture influenced too much by the 20th 

century sectionalism and the local global principle to the effect 
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that decomposing an object into smaller and smaller objects until 

one gets some simple governing principles, processing them 

in terms of modern science, and finally compiling them into 

something, which one is feasible to believe to be the original 

whole. This can be seen typically in molecular biology—

Phenotype determines genotype, which cannot be true. One must 

bear in mind that the obtained model is a means to describes the 

object from one direction or other and cannot be the original. 

In [6, pp.30-33] the principle of CD is stated. The pitch 

of the sound can be divided into 2＝65536 parts because a 

CD can record 16 convex-concave points as one information 

and transforms into 0 and 1 signal. The CD reads these 16 

information 44100 times per second. The reason for this 

depends on the assumption that human ears can hear the sound 

whose frequencies are up to 20 ＝20000 . Since the sound 

with frequency   20000  oscillates 20000 times per second 

and so more than this times of sampling is needed. And for 

stereo recording, we need twice as many, whence the sampling 

frequency 44100. Thus the sampling (Nyquist) rate π
τ

 is 

1/44100and the input digital signal is restored by the sampling 

theorem (Theorem 1.1 below) [12], [13] etc. 

The assumption that all the frequencies higher than 20000  

may be neglected is rather controversial. For recording simple 

conversation may not need more, but for music as supreme art, 

this omission can be a serious problem because what is missing 

is often more meaningful as art, cf. the next subsection. We 

recall that as soon as the real sound is transformed into digital 

signals, it is not the real signal but an approximation.

1.2. Real world sampling theorem
The following theorem ([17, Theorem 5.2, pp.119-120]), 

stated in [13], explains why the sampling rate may be taken as 

the samples per cycle of the highest frequency. Re call that a 

signal is called almost band-limited if the support of its Fourier 

transform is contained in a finite interval, say － , , 

being called the band-length. 

Theorem 1.1.  (Real world sampling theorem) If the function 

 is almost band-limited with band-length 2  and almost 

time-limited with time limit 2 : 

(1.2) d＜ε, d＜ε,

then  can be recovered to any desired accuracy from its 

sampled values at uniformly-spaced intervals Δ ＜
1
10Ω

 

apart: 

(1.3) ＝ ∑ Δ
sin2π5Ω － Δ
2π5Ω － Δ

＋

where 

(1.4) ＜＜ε, Δ＞ , Δ＜ 1
10Ω

.

Remark 1.1. An example of a function which is both almost 

band-limited and almost time-limited is the Gaussian function or 

its several-variables version 

(1.5)  ＝ , ＞0.
This is a density function of the normal (Gaussian) distribution as 

well as an almost unique example of a rapidly decreasing function. 

Phenomena whose distribution is in terms of this density function is 

often referred to as Gaussian. 

Comparing the sample frequency 44100 with (1.4), it seems 

that Ω＝4410 only and that much lower frequencies are cut. We 

are going to analyze this aspect further on. 

1.3. Praise of the non-present
Not only in music but flower arrangement, it is said that what 

is important is rather the blank space surrounding the arranged 

flowers. We recall a poem of R. Kinoshita 

Peony flowers  

So stable and in full bloom  

The solidness of the position  

The flowers occupy. 

–“As is true with all artifacts, completed ones are less 

interesting; those which are unfinished and left at that are more 

appealing and give liveliness.”

from An hermite’s miscellany by K. Urabe.  

Here of course, “an hermite’s” is a play on words of math. 

flavor. For the word “hermit” is naturally associated with the 

name Hermite and since in French, the ‘h’ is not pronounced, the 

indefinite article is to be ‘an’. K. Urabe is more well-known as 

Kenko Yoshida. 

–Hans describes the crystal of snow as “This is too regular. A 

living thing cannot be so symmetric. Things with such perfection 

smell of death. The Creator, it seems, has designed all that 

exists in his world in a fashion slightly deviated from perfect 

symmetry”–Der Zauberberg by Thomas Mann.  

Also “In Praise of Shadows” by J. Tanizaki explores the 

Japanese sense of beauty—the subtle interplay of shade and light 

in several important aspects of Japanese life. I.e. it puts stress on 
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what is missing. It’s a pity that music is not referred to here. 

2. Finite power signals
2.1. Finite energy and finite power signals
We follow [10, pp.240-264]. For a signal  its average 

power is defined by 

(2.1)   ＝lim
1
2

d,

which is often denoted by some other symbols like power  

[12, (7.2.7)]. The class of functions with the average value 0, 

called the class of finite energy signals, has been extensively 

studied and which clearly contains the subclass of finite energy 

functions for which 

(2.2)   d＜∞,

i.e. -functions (square integrable functions). 

We consider the class of functions with non-zero average 

power, i.e. 0＜ ＜∞ , calling it the finite power signals class. 

Such functions do not have Fourier transforms in general. An 

important feature is that this class contains all periodic functions. 

Indeed, let  be a periodic function given by 

(2.3)   ＝ ∑

with ∑ ＜∞ , so that . Then 

(2.4)  ＝2πω d＝ ∑ .

The class of finite power signals also contains non-periodic 

function which are usually specified by some averages. The most 

common one is the auto-correlation defined by 

(2.5)  ＝lim
1
2

τ ＋τdτ.

In what follows we shall speak about this average. 

2.2. Preliminarie
The theory of Fourier transform has been our main driving 

force throughout in our seminars and its rudiments have been 

given in our previous papers. Although there are some overlaps 

of stated results, the presentation is different from one paper to 

another. I.e. [12] is of functional analytic, [4] of distribution-

theoretic, and [13] is centered around the Paley-Wiener theorem. 

And in this article, we take the lines of convolutions. Needless 

to say, the most important feature is that the transform can 

be inverted, known as the inverse Fourier transform or the 

Fourier integral theorem [12, p.70], [4, p.12], [13, p.10]. This 

corresponds to the most fundamental principle in science, 

the fundamental theorem of calculus, i.e. differentiation and 

integration are inverse operations. Note that after applying any 

transformation, one cannot go back, i.e. it is one-sided. Only 

Fourier transform is invertible (which includes the wavelet 

transform). We restate [Vista I, (7.24)][12, p.70] in correct form

(2.6)  ＝
1
2π

ωdω.

Here the Fourier transform is defined by 

(2.7)  ω＝ ω＝ d.

In [13, p.10] we put the factor
 
1
2π

 in (2.7) and so in (2.6), the 

factor changes into 1
2π

, giving a more symmetric form. We 

denote the correspondence furnished by (2.6) and (2.7) by 

(2.8)   ↔ ω＝ ω.

Thus we have 

(2.9)　　　 timedomain↔ frequencydomain

and we may work with the functions in the frequency, which 

is easier in many respects. However, recall the criticism by G. 

Matsumoto [7] on the sloppy application of frequency analysis 

to the living. Then (2.6) and (2.7) may be combined into the 

symmetry property 

(2.10)  ＝ ↔2π －ω  or ＝2π － ,

which is stated [12, p.70] 

　Expressing the Fourier transform ω  as 

(2.11)  ω＝ ω＝ ω ,

we call ω＞0 the Fourier spectrum and ω：＝ ω＝ ω ω 

ω：＝ ω＝ ω ω the energy spectrum of the signal , where 

the bar indicates the complex conjugation. /  is called 

the phase angle. It follows that 

(2.12)  ↔ －ω＝ －ω.

Note that 

(2.13)  ω＝ ＝ ω ω＝ ω ω.

It follows that －ω＝ ω  is necessary and sufficient for   

 to be real. This sometimes makes argument simpler and 

will be used occasionally. 

In the theory, equally important notion is the convolution, 

which has been introduced in [4, Definition 5] and [13, 

Definition 1], which exists for square integrable functions. 

(2.14)  ＊ ＝ τ －τdτ.

The following theorem was stated as Exercise 4.1 [4] 

Theorem 2.1. (Time convolution theorem) The Fourier 

transform ω  of the convolution  of two functions  

and  is the product of the Fourier transforms ω  and 

ω . I.e. 

(2.15)  ＊ ＝ τ －τdr↔ ω･ ω

Proof. In 

(2.16)  ω＝ τ －τdrd,

we change the order of integration. Then the inner integral in  is 

(2.17)  ω＝ －τd,

which by the change of variable is seen to be ω  Hence 
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(2.16) amounts to 
(2.18)  ω＝ τ ωdτd,

leading to (2.15). □
Theorem 2.2. (Frequency convolution theorem) The Fourier 

transform ω  of the convolution   of two functions  

and  is the product of the Fourier transforms ω  and 

ω . I.e. 

(2.19) ↔
1
2π

ω･ ω＝
1
2π

τ －τdτ.

This follows from Theorem 2.1 together with (2.10). Direct 

proof can be given in the same lines as that of Theorem 2.1. 

The Parseval identity was stated as [12, (7.3.7)], which under 

(2.6) reads 

(2.20)  d＝
1
2π

ω dω.

We shall prove a slight generalization of (2.20). 

Theorem 2.3.  If 

(2.21)  ↔ ω, ↔ ω,

then 

(2.22)  d＝
1
2π

－ω ωdω.

Proof. By Theorem 2.2, 

(2.23)  ↔
1
2π

ω＊ ω,

which means 

(2.24)  1
2π

ω－ d ＝ d

Eq. (2.24) with ω＝0 amounts to (2.22).  □

Theorem 2.3 with ＝ , ＝  leads to (2.20) on account 

of (2.12). If  ,  are real, then (2.24) may be written as 

(2.25)  1
2π

ω ωdω＝ d

by (2.12) again. 

Remark 2.1. (2.20) gives justification of the name energy 

spectrum ω  under (2.11). Indeed, if we assume  is 

a voltage of a source across a resistance of 1 Ohm, then the 

left-hand side of (2.20) is the total energy delivered by the 

source. And by (2.20), it is equal to the area under the curve 

＝
1
2π

ω . 

2.3. Finite energy signals
As a starter for the study of finite power functions, we dwell 

on finite energy functions. 

Suppose that  is a signal possessing the Fourier 

transform. The Fourier inversion of the energy spectrum ω , 

cf. (2.11), called the autocorrelation, is denoted by ρ : 

(2.26) ρ ＝
1
2π

ω dω＝
1
2π

ωcosω dω.

The autocorrelation for the finite energy signals is defined by 

(2.27)   ρ ＝ ＋τ τdτ

corresponding to (2.5). 

Theorem 2.4.  (2.26) coincides with (2.27). 

Proof. Suppose for simplicity that τ  is a real signal. 

By (2.12) and (2.13), we have 

(2.28) ρ↔ ω＝ ω ω＝ ω ω＝ ω －ω

the last equality being due to realness of . 

By Theorem 2.10, we have － ↔ ＝ －ω. Hence by 

the time convolution theorem, Theorem 2.1, 

(2.29)  ρ ＝ ＊ － ＝ －τ －τ τ.

This is nothing but (2.27). For a complex signal, we merely 

separate real and imaginary parts and apply (2.29), completing 

the proof.    □

Plainly we have 

(2.30)   ρ － ＝ρ

and 

(2.31)  ρ ρ 0＝ d

by the Cauchy-Schwarz inequality and (2.2). 

2.4. Finite power signals
The argument goes almost parallel to that of §2.3. The 

autocorrelation  of a finite power signal  is defined 

by (2.5). First note that (2.1) may be written as 

(2.32) ＝lim
1
2

d＝lim
1
2

＋ d

for any constant . 

In the same way as we prove (2.31) using (2.32), we may 

prove that the autocorrelation (2.5) exists and 

(2.33)   0

and that  is even: － ＝ . 

As in §3, the power spectrum ω  of a finite power signal  

 is to be defined as the Fourier transform of the autocorrelation 

in (2.5): 

(2.34)   ω↔

or 

(2.35)  ω＝ cosω d,

Theorem 2.5. We have 

(2.36)  ω＝lim
1
2

d .

Proof. The lines of proof are exactly the same as those of 

Theorem 2.4 save for the smoothing and Helly’s theorem. First 

we show that (2.36) is the limit of 

(2.37)  ω＝
1
2

ω

which is the average power ＝ ω  of 

(2.38)  ω＝ d.
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Here ω  is the Fourier transform of  which is the 

smoothing referred to in [4, Example 11,(ii)]: 

(2.39)  ＝ ＝

⎧

⎨

⎩

＜

0
,

which is a time-limited version of  and where  is the 

rectangular pulse function. 

Since the right-hand side of (2.37) is equal to  1
2

ω  

－ω correspondingly to (2.28), it follows by Theorem 1 that 

the inverse Fourier transform  of  ω  is given by 

(2.40) ＝
1
2

－ － ＝
1
2

＋τdτ

for ＞0 (similarly for ＜0). Hence 

(2.41)  → , →∞.

Helly’s theorem then asserts that (2.36) is true.  □

3. Fluctuations and musical scales
This section is still in the preliminary stage and is t be developed 

subsequently. 

3.1. /  - fluctuations
Let  be a signal and consider its DFT 

(3.1)  ＝∑

for the frequency . In analogy with (2.13), its energy spectrum 

(power spectrum) is defined by 

(3.2)  ＝

It was found (e.g. [15]) that many natural phenomena possess the 

energy spectrum depending on the frequency 1/ . This kind of 

phenomena are called  1/ -noise or  / - fluctuation. 

In [18], the distribution of primes is considered from the point 

of view of 1/ -fluctuation. However, in [7] there is criticism 

against the interpretation of power spectrum, saying that it 

applies to non-living. Indeed, any function having the Fourier 

transform is more or less thought of as linear because the Fourier 

integral shows that the original signal can be restored if we 

incorporate all possible frequencies (and amplitudes). 

In studying music, which lies at this threshold of living and 

non-living, it would probably be reasonable to work with a 

more general class of functions which do not, in general, have 

Fourier transform, i.e. the class of finite power signals could be a 

possible target for research. 

3.2. Musical scales
In statistics, the strong law of large numbers is well-known 

which claims that 

(3.3)   lim ＝1.

This means that the relative frequency  of occurrences of an 

event  tends to the true probability  of the occurrences of  

 with probability 1. 

In music the counterpart is Pythagoras’ law of small 

numbers, which claims that only the small integer multiples of 

the fundamental notes can create harmony and consonance. It is 

also referred to as the law of cyclotomic numbers by Coxeter [2], 

see the remark at the end of this paper. 

In the case of natural scales, they appear as 235 , where 

＝－3, －2, －1,

0,1,2,3 and ＝－1, 0, 1. 

3.3. Various scales
The pitch of a musical note (hereafter abbreviated as a note) is 

defined by its frequency measured in Herz ( ), cycles per second. 

The bigger the frequency, the higher the pitch. 

In the case of Pythagorean scale, it is formed using only 

powers of 2 and 3. Two musical notes whose frequencies are 

different by powers of 2 are thought of as belonging to the same 

equivalence class, or those which sound alike. Musicians express 

the equivalence relation by using the same label for those notes 

in the same class. E.g. if the middle  has frequency 260 Hz, 

then the note three octaves higher than middle  has frequency  

260×2＝2080 Hz while the one two octaves below middle  

 has frequency 260×2 65 Hz. They are denoted by the 

same symbol . As is suggested by the very name, one octave 

has 12 semitones. Therefore, if we pile up the notes on the 

basic one, the 12 th power is very important. In the case of the 

Pythagorean scale, what are piled up are powers of 3
2

, so that 

(3.4)   3
2

129.7.

which is a little higher than 7 octaves: 2＝128. The interval 

(3.5)   129.7
128

is known as the comma of Pythagoras. This discrepancy 

accounts for many difficulties in obtaining an organized system 

of pitch. 

In the equal tempered system, one octave is equally divided 

into 12 semitones of ratio the 12th root of unity 

(3.6) 1temperedsemitone＝2 ＝1.05946…

3.4. The Pythagorean scale
The Pythagorean scale is made of 23 , , Z,－3 3. 

As is explained above, starting from middle C, A (la) is obtained 

as 3
2
～27
16

. 

From middle C (doh) by piling up 3
2

, we get G (sol), then 
3
2
＝
9
4
9
8

, which is D (re). The next is 3
2
＝
27
8

27
16

, 
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which  i s  A ( la )  wi th  f requency  440  Hz .  The  5 th  i s 
3
2
＝
81
16

81
64
＝
3
2

, which is E (mi). 

The 6th is 3
2
＝
243
32

243
32

1
2
＝
243
128

, which is B (si). 

Thus C (doh), G (sol), D (re), A (la), E (me), B (si). The 7th F (fa) 

is obtained by coming back from higher C. i.e. 2･3
2

＝
3
2
4
3

. 

Figure 1. The Pythagorean Scale

This is the scale used by the Greeks and early medieval 

composers as the basis of the Ecclesiastic Mode. The scale is 

suitable for melodic writing but not satisfactory for harmonic 

writing (for modulation). 

The home key could be any one of seven notes but what 

survived in tone-centered music nowadays are the Ionian scale 

beginning and ending on C and the Aeolian scale (with key-note 

A). The Ionian and Aeolian scales are known as the ordinary 

major and minor scales. 

3.5. The Verdi pitch
The Verdi pitch is the scale which fixes the freq. of A to be 432. 

Theorem 3.1. The reason for the ＝432 is that in the 

Pythagorean scale, 

(3.7)  ＝432･27
16

＝256＝2

while in just intonation ＝4263
2
427. 

Figure 2. The Verdi pitch 

3.6. The Helmholtz-Joachim scale and just intonation
Helmholtz with the help of the renowned violinist J. Joachim, 

made an experiment and tabulated the notes which are the most 

pleasing to the ears. 

Table 1.1. Helmholtz-Joachim scale
C E♭ E F G A♭

int. unison minor 3rd major 3rd perfect 4th perfect 5th minor 6th

ratio 1
1

6
5

5
4

4
3

3
2

8
5

note do mi♭ mi fa sol la♭

 

Table 1.1. Helmholtz-Joachim scale (cont.)
from 
interval major sixth octave

ratio 5
3

2
1

note la do

A partial explanation of Pythagoras’ law of small numbers 

is given in [2] to the effect that sufficiently low notes have 

harmonics or overtones whose frequencies are exact integer 

multiples of the frequency of the original note. 

Table 1.2. Multiples of low 

mult. 1 2 3 4 5 6 7 8 9 101112
note - -

Coxeter [2] states a speculation that the agreeable harmonics 

(3.8)   3,4,5,6,8,10,12

correspond to the number of sides of regular polygons that 

can be constructed by a ruler and a compass. A natural inverse 

question is where there are corresponding harmonics to 15 

and 17 since 15-gon was constructed by Euclid while 17-gon 

was by Gauss in 1797. The interval 15 from a low C to high B 

which thrilled the audience appears as the appoggiatura in the 

end of St. Matthew Passion. The interval 17 were used by the 

remaining two of the 3 B’s, i.e. by Beethoven and Brahms. Since 

regular polygons inscribed in a circle divides it into equal parts, 

cyclotomy, Coxeter refers to the law of cyclotomic numbers 

rather than small numbers.
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