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Reduction Formulae in the Electric Circuit Equations and Their Applications
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Abstract  : After reviewing a wide class of electric circuit equation and its formal solution expressed independently of the 

fundamental tie-sets or fundamental cut-sets, we present some reduction formulae relating certain determinants and 

coefficients appearing in the solution. We also apply the formulae to generalizing the compensation theorems and to 

deriving a graph formula for the four-terminal constants.

1 Introduction 

Although the formal solution of electric circuit equation and its general property have been widely 
studied, in many cases a solution is left being in a representation depending on a particular fundamental 
tie-sets or cut-sets; i.e., each branch is classified as it belongs to the tree (T) or cotree (T) of the circuit 
graph. However, without fundamental tie-sets or cut-sets, one cannot solve the equation systematically, 
such a solution is not convenient for one to treat all branches symmetrically, and it is complicated to 
develop further theoretical investigation or applications. 

  In this article, to avoid this kind of complexity, we first introduce a circuit equation taking all the 
branch voltages and currents as unknown quantities, and review a class of its solutions and a procedure 
how to recover the symmetry among the branches. 

  Hereafter, without loosing generality, we confine ourselves within the system of direct currents, and 
let n and b indicate the numbers of nodes and branches, respectively, in each connected graph of the 
circuit. Therefore, the numbers of the independent tie-sets and cut-sets are given by  1  = b —  n 1 and 
m = n — 1, respectively.

2 A Review on the Tree-independent Solution 

Let  Vi indicate the voltage and  I, the current of the i-th branch  e, in an electric circuit. However one 
tries to solve the  circuit, one has to specify the set of unknown quantities among  V and  I. Here, all of 

 V, and  Ii are treated as 2b unknown quantities and a circuit equation is written in the following form.

where E is the electromotive force contained in  ez and  Ti is the current originated from external source 
current. (The present procedure should be that of the extreme case of "the hybrid  analysis"[1].) 

  In order to solve the equation (2.1), we first choose a particular pair of tree (T) and cotree (T) from 
the circuit graph  G, and introduce fundamental cut-sets and fundamental tie-sets to specify the basis of
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the vector V and I. Then we obtain the explicit expressions of M and-1,as follows:

where 1(b) is the b-dimensional unit matrix,  p(C)  =  (1(1) B) E  Rib and  p(D) =  (—tB  1(m)  )  E  Rr are 
fundamental tie-set matrix and fundamental cut-set matrix, R(d) is the branch resistance matrix,TRLI) E 

 RI is the sub-matrix of R(d) limited to the diagonal cotree space, and  tp is the total current flowing over 
the p-th cut-set. (Hereafter, we omit definitions of self-evident notations.) Since M is regular', we can 
calculate the inverse matrix  M—' easily in terms of the fundamental resistance matrix r=  tp(c)R(d)p(c) 
and the fundamental conductance matrix g= tp(D)G(d)p(D),that is,

Now, let us introduce another matrix N E  KR defined by

to compare with  /1/—". Since the matrices M
 —1 and N have the same elements except the first  1  columns'

.



we can write the solution of (2.1) in terms of N instead of  M-1. as follows:

where 

                       f  =  tpC  td(r)  p(C)  , h  =  tpD  tji(g)p(D)  . (2.7) 

(The symbols  A(r) and  A(g) denote the cofactor matrices of r and g, respectively.) 
  The above representation for N shows that it is independent of the fundamental tie-sets and the 

fundamental cut-sets[2], and that the solution (2.6) is invariant under the transformation of  I, such as 

                   i:  IT  +  tio(c)  j (with J  e  IV being arbitrary) . (2.8)

This means that the expression of the solution (2.6) allows the external and internal currents forking 
arbitrarily as long as the current conservation is maintained. Therefore, the expression, which is written 
in terms of 1", replaced as (2.8), is independent of a particular set of T and T. 

  It should be insisted that one cannot write a symmetric solution without arbitrary variables such 
as J; otherwise, one has to sacrifice the symmetry among the branches, where the current  t has no 
ambiguity as 

                       t =  p(D)[  p(D)  (-IT  ±  tp(C)  j) =  t  . (2.9) 

  There are several advantages in writing the solutions for electric circuits using  IrI,  f,  I  gl and h, as 
follows: (i) Each of the quantities has a possible expression independent of a set of T and T as already 
stated above. (ii) There are some remarkable relations among them; e.g., 

 R(d)  f hG(d) __  R(d) G(d)h=1(b)                   
IrI  + IgI= ± IgI(2.10)          H 

(iii) They are calculated by means of formulae related with the topology of circuit graphs3. (iv) Their 
differential coefficients w.r.t. Rk and  Gk are written by certain combinations of themselves, which will 
be shown as reduction formulae.

3 Reduction Formulae

The differential coefficients of the determinant of fundamental resistance matrix  't-1 and of the matrix 
elements of f w.r.t. a resistance (say, R1) are calculated as,

 '-,-'-I l/ -L IL I

 

I  ' I

 3See the reference [3] for  Eq.(2.10) and many of related formulae.
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where  7-•1 denotes the determinant of the fundamental resistance matrix of the circuit  G—  =  G — e14. 
Then, in general for s < 1,  OsHIORT(i)•  •  •  01=4(8) coincides with the determinant of the fundamental 
matrix of  G —  {e,(1),  er(2), , er(s)}. 

  In the following, we present some theorems which are applicable to arbitrary sets of  {e,(1), ,  eT(s)}, 
by generalizing the relations (3.1) and (3.2). For this purpose, we present a lemma. 
Lemma 3.1 Let a and  7 be mappings from  {1, ,  v, v 1} (1 < v < b — 1) to  {1, , b} and 

 a(v  + 1) =  T(P  + 1), then

Taking a convention that v  + 1  =  v'  for  a  w hile, each term in  Eq.(3.4) can be rewritten as

with 4( .1) being the  (i,  A-cofactor of  f(v). From these relation,  Eq.(3.4) can be rewritten as

  On the other hand, introducing  Dm'  A and  1),A as the matrices  f(v+1) and  f(v), respectively, with the 
 ic-th row and the  )-th column removed, the determinant  f(u+1)1 is expanded as

 4Contrary  to  1r —  191G,  =O.



This is exactly the same as the factor in the r.h.s. of  Eq.  (3.10), 
  The following theorems are generalizations of (3.1) and (3.2) 

Theorem 3.1 Let  T be a mapping from  {1, , s} (1  < s  < b) 

                          

I f .

which immediately proves  Eq.(3.3) 

to  {1,  ,  b}, then 

 f „

. ^

  Since these theorems are easily proved by means 

proofs. 
  We call Eqs. (3.15) and (3.16) reduction formulae 

 fii are expressed in terms of themselves. 
  Similarly to and f, we can derive another set 

written down simply by replacing and  fii with  1M

of the mathematical induction, we here omit the 

in sense that the differential coefficient of and 

of reduction formulae for and h, which can be 

and  hip  , respectively.

4 Applications

4.1 Response Formulae 

Taking advantage of the reduction formulae, 
to the changes of R(d) and  GO). Actually, we

we can derive a type of response formulae corresponding 
have relations between higher rank derivatives as
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(  We can easily prove these by the mathematical induction.) Then we immediately obtain the following
, I' 1

cnanges as response  iormuiae.

4.2 Compensation Theorems Revisited

We can generalize so-called compensation theorems making use of our response formulae. 
the solution for the branch currents in a circuit G, that is,

We start with

In a change of the branch resistances as R R' =  R+  AR, the branch currents are changed as

The present change is recovered by a suitable change of the electromotive forces as E E' 

Since the recovery condition I'  -+ I is given by

= E +  AE .

                                

. . , 

we obtain the following equations successively.

 

I  r   LITI  J  In 
Then we finally find the suitable change  AE as 

 AE =  ARO)  I  +tp(D)  AK (with  AK e  R being  arbitrary)  . (4.10) 

Note that the second term at the r.h.s. of (4.10) keeps the branch currents I invariant even if  AR are 
absent. 
  Meanwhile, the change of the branch currents by the independent change of the branch resistances 
is given by 

 AT =  T'  —  T  (4.11)



as expected.

In a similar  way, since the solution of the cut-set equation for the branch voltages o f a circuit  G  is

given by

the voltages are changed as

under the change of the branch conductances, 

  This time, the voltages V' are recovered 

t t'  = t  +  At. This is realized by

G 

 to  V  by

 =  G  +  AG. 

the change of the external source currents as

which is led to the following equations.

Then we again a similar result, which is 

            AT =  AG(d)(E — V)  + tp(c),AJ (with  of E R1 being arbitrary) . (4.20)

Contrary to  ACT, the currents  At have no ambiguities because 

                      At =  p(D) =  p(D)  AGA (E  v) 

  The change of the branch voltages under the independent change of the conductances is 

calculated as

 (4.21) 

similarly



4.3 A Graph Formula for the Four-terminal Circuit 

Let  G be the graph of a four-terminal circuit. By adding new branches  ei and/or  e2 connecting the pair 
of input/output terminals, we introduce the following graphs. 

               G+-  =  G  U  ei  , G-+  =  G  U  , G++ = G U ei U (4.27) 

We also express their fundamental resistance matrices as and 
  Since the solution of the tie-set equation for the circuit  G++ with no external source currents contains 

        x+++
.+,.fx,  TV       Ii —'T2 —  (Ri  = R2 = 0) , (4.28) 

in the input/output sector, we can rearrange the partial solution (4.28) as

Furthermore, making use of the reduction formulae and relations between different graphs such as 

                         ,++4.++ 
          1Jiifit 021r++1 ++++              

1r++,++4,++ OR.21OR.                              =M ,= 1r±—, fii = Ir-±1 ,  (4.30) 
                      .1i _J 

we can rewrite the r.h.s. of (4.29) and finally obtain that 

                      F = 
                           1

+Ir+-Ir±±1                             (R1 =R2 =  0) (4.31)                        ,f.i_ H 1r 1) 
for the four-terminal constants  F. 

  It is possible to evaluate the all factors at the r.h.s. of (4.31) using the following formulae[3]. 

                  f.,i = E [ecii  [  ] E fi Rk .      r = E H Rk , (4.32) 
              T  ek  ET C T°9C ek E,/,o 

(The symbols C and T° denote a tie-set and a pseudotree, respectively, in  G, and [ Cemeans the tie-set 
index, with which the elements of tie-set matrix are written as pc,i) = C' .) Therefore, Eq.(4.31) is 

             [ 

                                                                       ei 
nothing but the graph formula to calculate the matrix elements of  F. 

5 Summary 

Taking advantage of the ambiguity originated from the external source currents, we obtained an expres-

sion of the solution for a wide class of electric circuit equations which is independent of a particular
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set of tree and cotree of the graph. We also obtained certain reduction formulae, and applied them to 

the compensation theorems and to a graph formula for the four-terminal constants. We found that the 

present formulae prove extremely powerful in symmetric calculations and in relating the different types 
of circuit graphs.
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