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Abstract 

There is a very small but finite amplitude periodic soliton (an infinitesimal periodic soliton) 
in the DS II equation with r > 0 which interacts resonantly with a finite-amplitude periodic 
solit on under certain conditions. It is shown that these interactions always become parameter­
sensitive. 

1 Introduction parameters on the boundary surface where the 
solution changes from regular to nonregular is 
regarded as line soliton solution [6]. This soli­
ton that has parameters in the vicinity of t he 
boundary surface is called quasi-line soliton. The 

The Davey-Stewartson (DS) equation is ex­
pressed as [1] 

{ iut + PUxx + Uyy + rfuf2u - 2uv = 0, 
Vxx - PVyy - r(fu f2)xx = 0, 

(1) quasi-line soliton, unlike a line soliton, has imag-
inary components of the wave numbers and Ere­

where p = ±1 and r is a constant. Equation (1) quency as hidden parameters. Further, shape of 
with p = 1 and p = -1 is called the DS I and the quasi-line soliton is almost same as that of 
DS II equations, respectively. The solutions to the line soliton, being slightly different only in 

the DS equation were obtained previously in var- its spreading form. Recent studies have revealed 
ious aspects. The N-soliton solutions of the DS that an interesting singular interaction that can-

equation were obtained by Anker and Freeman 
by the inverse-scattering method [2], and later 
by Satsuma and Ablowitz by the Hirota method 
[3]. 

The DS I equation has line soliton solution 
for which the wave numbers and frequency con-

not be seen in the line soliton exists in the soli­

ton resonance that quasi-line soliton is related 
to, and that a parameter-sensitive phenomenon 

in which a state of the interaction varies drasti­
cally by slight variation of parameters exists in 
this interaction [ 6]. 

sist of only real number components and peri- On the other hand, the DS II equation with 
odic soliton solution for which they consist of r > 0 has the periodic soliton solution but not 
real number components and imaginary compo- the line soliton solution. It is kno-wn that this 
nents. It is well known that resonant interaction periodic soliton solution is regular in all regions 
exists between these solitons [4, 5]. Further, it of parameter space and that resonant interac­
has been shown recently that in parameter space tion exists between the periodic solitons [7]. The 
of periodic soliton solution, the solution having purpose of this study is to investigate to find 
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if parameter-sensitive singular interaction exists parameter space of the two-periodic-soliton solu­

similar to the DS I equation in the periodic soli- tion. Conclusions are presented in Sec. IV. The 

ton resonance in the DS II equation with r > 0. contents of this paper are a summarized version 

This paper is summarized as follows . In Sec. of the paper that has already been published [8]. 

II, we introduce the infinitesimal periodic soli- Moreover, this study is a collaborative research 

ton, which has extremely small amplitude. In performed with Prof. Masayoshi Tajiri (Osaka 

Sec III, we examine the interaction between ape- Prefecture University). 

riodic soliton and an infinitesimal-periodic soli-

ton. It is shown there are singular interactions 2 Infinitesimal periodic soliton 
between a periodic soliton and an infinitesimal-

periodic soliton under certain conditions and The periodic soliton solution to the DS II equa­

that there are parameter-sensitive regions in the tion with r > 0 is given by 

where 

.( ) cosh(~+ i¢r) + }M cos(TJ + i¢i) 
u = uoet (+<Pr ______ ____,_,,---____ _ 

cosh~+ }M cosT} ' 

2 {32 CY. 2 - {32 2cr.f3 . . 
a - M + VM cosh~ cos TJ + VM smh ~ sm TJ 

v = 2 2 ) 

(cosh~ + }M cos TJ) 

( = kx + ly - wt + (o, 

~ = ax + IY - Dr t + ~0 , 

TJ = (3x + Oy - nit + TJ0
) 

w = -k2 + l 2
- ru6, 

(2) 

(3) 

sin2 p_ = - (a + i(3)2 + (r + io)2 (4) 
2 2ru6 ' 

Dr + irli = -2k(a + i(3) + 2l(r + i6) + {(a+ i(3) 2 - (r + i6) 2} cot t' (5) 

2ru6 sin 1!_ sin ¢* cos ¢ - ¢* + { (a + i(3) (a - i(3) + ( 1 + i6) ( 1 - i6)} 
M = 2 2 2 (6) 

2ru6 sin t sin~* cos¢~¢* {(a+ i(3)(a- i(3) + (r + io)(r- i6)} ' 

where ¢ = ¢r + i¢i· If we express the com- set for a singular solution, and namely, the so­

plex wave number (a+ i(3, 1 + i6) in terms of¢ lution is regular for all the parameters. The pe-
and() as 

{ 
a+ i(3 = i.J2rU6 sin~ cos() , 

1 + i6 = i.J2rU6 sin~ sin(), 

then equaiton (6) is expressed as 

M = cosh cPi + cosh 2()i 
cos cPr +cosh 2()i ' 

riodic soliton solution of the DS I equation be­

comes a line soliton soliton by taking the limit 

(7) M --+ oo. Here, we examine the structure of the 

periodic soliton solution of the DS II equation 

when the limit of M --+ oo of the periodic soliton 

solution is applied. Equation (8) shows that the 

(8) value of M becomes infinite reaching the limit. 

where()= ()r +i()i· Equation (8) presents M > 1 
cos cPr + cosh 2()i --+ +0. (9) 

for all parameters. Therefore, no conditions were From the condition cos cPr = - cosh 2()i, the fol-
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lowing is obtained, with n as an integer, 

¢r = (2n + 1)7r, (10) 

Subsituting equation (10) into equations (5) and 

(7) , we see 

1 
~: ~: 
f3 : f3o ~~cosh~; ~os ()r, (ll) 
() - 6o- ~cosh 2 smer , 

and 

{
Dr= 0, 

ni = niO = -2kf3o + 2l6o + (!35 - 85) tanh ti . 
(12) 

Equations (2) and (3) become 

Therefore, although imaginary wave numbers 

and frequency are finite values (not zero), no 

solitary wave is obtained at the limit M --+ oo . 

The periodic soliton disappears at the parameter 

point where M becomes infinite. However, in the 

case of taking the parameters ¢r and ()i as 

Misgiven by 

M = 1 +cosh ¢i rv 0(1/t2) 
2(tr + t§) , 

(15) 

u = uoei(, v = 0. (13) and 

and 

and 

o: = ~ { E1 sinh t' cos ()r + E2 cosh ti sin()r + O(t3)} rv O(t), 

"( = ~ { E1 sinh t' sin ()r - E2 cosh t' cos ()r + O(t3
)} rv O(t), 

f3 = f3o-~{ E1E2 sinh t; sin ()r + E"t ;E"~ cosh ti cos ()r + O(t3)} rv 0(1) , 

6 = 6o + ~{ €1€2 sinh ti cos ()r- E"i;E"~ cosh ti sin ()r + O(t3)} rv 0(1) , 

(16) 

. - cos - sm '+'i 

{ 

2 h2 ¢; ( . h ,./.. ) } 
u = uoe1

((+ 2101) 1- v7VJ 2 sech~ cos 7J + i 2€1 tanh~+ v7VJ sech~ sin 7J + O(t2) , 

/32 
v = -2 v'JVisech~ cos 7J + O(t2). 

It is shown that the amplitude of the periodic 3 
soliton decreases with an increase of the value of 

M. This extremely small amplitude periodic soli­

ton characterized by ¢r = (2n+1)7r+2tl, ()i = €2 

(18) 

(19) 

Interactions between pen­

odic soliton and infinitesimal 

periodic soliton 

is to be called an infinitesimal periodic soliton in 
It is well known that the solution describing the 

this paper. 
interaction between two periodic solitons is given 

as 

g 
U = J' v = 2 (lnf)xx, (20) 
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with 

M1 2.: M2 2.: M1M2Li L§ 2(" +" ) c { M2L1L2 2" } f = 1 + -e "' 1 + -e "'2 + e "' 1 
"'
2 + e"' 1 cosry1 + e "'2 cos(ry1 + rp1 + rp2) 

4 4 16 4 

,; { M1L1L2 2,; } +e 2 cosry2+ 
4 

e 1 cos(ry2+rp1-rp2) 

+~e6 +6 { £1 cos( 'T/1 + 'T/2 + rp1) + £2 cos(ry1 - 'T/2 + rp2)}, (21) 

g = uoei( f(6 + i¢1r, 6 + i¢2r, 'T/1 + i¢1i, 'T/2 + i¢2i), (22) 

where 

~j = CijX + "/jY- Ojrt + ~J , 

'T/j = (3jx + Ojy - Ojit + ryJ , 
. 2 cPjr + ic/Jji ( Cij + i(3j )2 + ('Yj + iOj )2 

Sin =- 2 > 
2 2ru0 

Ojr + iOji = -2k(aj + i(3j) + 2l('Yj + ioj) 

{( ·(3 )2 ( · .r )2} cPjr +icPji + Cij + ~ j - "/j + ~uj cot 
2 

, 

where j = 1, 2. When expressing Ctj, (3j, "/j, and Oj in terms of cPj and ()j as 

{ .(3 . f2=22 . <b.. () aj+~ j=~y.:,ru0 sm 2 cos j, 
. .r . f2=22 . </>j • () "/j + ~uj = zy .:,ru0 sm 2 sm j, 

M· _ cosh cPji +cosh 2()ji 
J - cos cPjr +cosh 2()ji ' 

i'" cos </>1-2</>2 -cos( ()1 - ()2) 
£1 e .,. 1 = -----,-~------

cos </> 1 !</>2 - cos( ()1 - ()2) ' 

. cos <1>1 -<1>2 +cos(() - ()*) L t<p2 _ 2 1 2 
2e - -~, +"* , 

cos~+ cos(()1- ()2) 

where cPj = cPjr + ic/Yji and ()j = ()jr + i()ji· Equations (27) and (28) are expressed as 

· 1 ( ¢:;: +Wi + e- + ·e-) · 1 ( ¢:;: +W:- _ e- _ ,;():--) Sin 2 2 r ~ i . Sin 2 2 r • t 
£1 ei'PI = ----'----.,--------,---------=----.:........,----,------~ 

. 1 (<~>t +i<t>+ e- + ·e-) . 1 (<~>t +i<t>t e- ·e- )' sm 2 2 + r ~ i · sm 2 2 - r - z i 

cos 1 (<~>:;: +i<t>t + e- + ie+) . cos 1 ( <~>:;: +i<t>t - e- - ie+) . 2 2 r t 2 2 r t 
L et'P2 = - - --'---,------------'----....:...._.,------------'--

2 l (<~>t +w: + e- + ·e+) . l (<~>t +w: - e- - ·e+), COS 2 2 r ~ i COS 2 2 r ~ i 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

with ¢;j:- = cP1r ± cP2r, ¢t = cP1i ± cP2i, e;j:- = yields a phase shift log IL1L2I before and after 
()1r ± ()2r , and e; = ()1i ± ()2i · Following the same the collision. The conditions of singular inter­
way as the previous paper, it is seen that the actions are given from IL1L2ei(<p1 +'P2) I ---+ oo or 

interaction between two periodic soliton solitons IL1L2ei(<p1 +'P2) I ---+ 0 as 
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. ·~. ', . (31a) 

(31b) 

(32a) 

(32b) 

or 

(33a) 

(33b) 

{ 

e . _ ± c/Y2i _ (e . cPli) 
2~- 2 h =f 2 ) 

()2r = ± cP~r + (elr =f cP~r) + (2n4 + 1) 1r, 

(34a) 

(34b) 

respectively, where the conditions with suf- 1 and 2 that in vicinity of cP2r = (2n + 1)7r and 

fixes (a) and (b) after the equation number are ()2i = 0, the parameters that meet the resonant 

hereinafter called first condition and the second conditions or the condition of the long-range in­

condition, respectively. Equations (31) and (32) teractions do not exist except in the locations 

are obtained by equating the denominators of other than the points where the broken line and 
L 1ei'P1 and L2ei'P2 to zero, respectively. Equa- solid line cross each other (e.g. point S). Fur­

tions (33) and (34) are obtained by equating the ther, the following is obtained by substituting 

numerators of L1ei'P1 and L2ei'P2 to zero, respec- equation (14) into equations (29) and (30), 

tively. The conditions shown by Equations (31) 

and (32) (obtained by equating the denomina­
tors of L 1ei'P1 and L2ei'P2 to zero, respectively) 

are called resonant conditions and those shown 

by Equations (33) and (34) (obtained by equat-
ing the numerators of L 1ei'P1 and L 2ei'P2 to zero, 

respectively) are called conditions of the long- resulting in IL1L 2 1 ---+ 1 at the limit of t ---+ 0. 

range interaction, temporarily. The lines of the From the above, it is understood that the phase 

first and second conditions are derived to the shift that occurs in the case of collision of a peri­

typical conditions of ()lr, ()li , cPlr and cPli in Figs. odic soliton and an infinitesimal periodic soliton 
1 and 2, respectively. The solid and broken line turns out to be 0 and nothing occurs in the col­

indicate resonant conditions and condition of the lision of a periodic soliton with the infinitesimal 

long-range interactions, respectively. periodic soliton. 

Taking the parameter in the vicinity of cP2r = However, it is very interesting that there are 

(2n + 1)1r and ()2i = 0, the soliton having the intersections of a solid and a broken line in Fig­

parameter of the suffix 2 becomes infinitesimal ures 1 and 2. Moreover, the value of LI L§ at 

periodic soliton. It is understood from Figures the point S becomes 0/0 and the interaction 
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becomes sensitive to any small change in pa- lowing case, 

rameter in the vicinity of S. Now, we exam-

ine interactions between the periodic soliton and 

the infinitesimal periodic soliton with parame- (35) 
ters of the point S in the vicinity. Let us cal-

culate the values of parameters of the point S. 

When parameters of the first soliton are taken where O(el) "' O(e2) "' O(e3) "' O(e4) "' O(e) 

as (¢lr, ¢li, B1r, eli) = (<I>, w, 8 , A) , parameters and lei « 1. Substituting equation (35) into 

of the point P are (¢2r, ¢2i, B2r , B2i) = (1r, 2A- equations (25), (26), (29), and (30), the follow­
w, 8- (<I>+ 1r)j2, 0) . Now, we consider the fol- ings are obtained 

a 2 ~ ~ (c1 sine- sinh A-- s,cose- cosh A- ) + O(s2
), (36) 

~2 ~ -~ (e1 cos e- sinh A-+ s4 sin8- cosh A-) + O(c2
) , (37) 

{3, ~ ~ (sine- cosh A- + c2 sine- sinh A- + c3 cos e- cosh A-) + O(c2
), (38) 

52 ~ ~ (-cos e - cosh A- - c, cos El ~ sinh A ~ + £3 sine- cosh A-) + O(c2
), (39) 

M 1 + cosh(2A- w) (4o) 
2 ~ ( 2 2) , 2 e1 + e4 

. sin ( <P+iw) cosh (A - ~) 1 
L 2'f'l "-' 2 2 (41) 

1 e - - cos { 'i>+iiA} . sin { (c-1 +c-3) ~i(c:2+C4) } , 

and 

(42) 

respectively. Thus, Lr L~ is given by On the other hand, when we take the parameters 

so that le2- e4l/le2 + e4l « 1 and le1 - e3l/le1 + 
e3l « 1, LrL~ becomes infinitesimal. For exam­

ple, taking e2 = e4(1+a'e4) and e3 = e1(1+b'e1), 
where a', b' "'0(1), the following is obtained 

L2L2 "' (e1- e3)
2 

+ (e2- E4)
2 

1 2- 2 2. 
(e1 + e3) + (e2 + e4) 

( 43) 

Taking the parameters so that (e1 - e3)2 + (e2-

e4)2 ~ (e1 + e3? + (e2 + e4?, we have Lr L~ ~ 1. 

Then, the interaction has no phase shift. How­

ever, in the case that h - e4l/le2 + e4l » 1 
and le1 - e3l/le1 + e3l » 1, LrL~ becomes large 
(Lr L~ » 1). For example, taking e2 = -e4 (1 + 
ae4) and e3 = -el(1 + be1), where a , b"' 0(1), 

LIL~ "'O(e2
) « 1. (45) 

Figures 3 and 4 show a schematic diagram 

of the world lines of the soliton hump in the x­

y plane for the case a1 > 0, 11 < 0, a2 > 0, 
12 > 0 and snapshot of the area bounded by the 

squares in the case of Lr L~ » 1 and Lr L~ « 1, the following is obtained 
respectively. The difference in parameters in the 

( 44) two figures is small. However, the phenomenon 
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is different in a dramatic form. It is understood nantly with finite amplitude periodic soliton un­

that the interaction with parameters in the re- der certain conditions. Although the existence of 

gion in the vicinity of the point S is parameter resonance phenomena is interesting, it is more in­

sensitive. teresting that these interactions always become 

parameter-sensitive. It is thought that these 

4 Conclusion originate in a mathematical principle feature of 
a dispersion relation of DS II equation. 

It has been shown that there exists a very small 

amplitude periodic soliton which interacts reso-
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(A 

Figure 1: Cross section of the parameter space (¢1i, ¢2i, e1i, e2i) related to the first conditions for 

the singular interaction between two periodic solitons. The figure is drawn for fixed eli and ¢li· 
The first conditions for resonance and the long-range interaction are satisfied on the solid lines and 

the broken lines, respectively. Line (A) is e2i = -¢2i/2 +(eli- ¢li/2) (It is given from equation 

(31a)). Line (B) is e2i = ¢2i/2- (eli- ¢li/2) (It is given from equaiton (34a)). 

)B) 

Figure 2: Cross section of the parameter space (¢lr, c/Y2r, elr, e2r) related to the second conditions 

for the singular interaction between two periodic solitons. The figure is drawn for fixed elr and ¢lr· 
The first conditions for resonance and the long-range interaction are satisfied on the solid lines and 

the broken lines, respectively. Line (A) is e2r = -¢2r/2 + (elr- ¢1r/2) (It is given from equation 

(31b) with n1 = 0) . Line (B) is e2r = ¢2r/2 + (elr- ¢lr/2)- 1r (It is given from equaiton (34b) 

with n4 = -1). 
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Figure 3: A schematic diagram of the world lines of the soliton hump in the x-y plane for the case 

a1 > 0, 11 < 0, a2 > 0, 12 > 0 and a snapshot of the area bounded by the squares in the case of 
Lr L§ » 1. The parameters are as follows: <I> = (3/8)-rr, w = 1.6, 8 = (9/16)-rr, Al.O, c1 = 0.02, 
c2 = -0.02001, c3 = -0.02001, and c4 = 0.02. The values of L1L2 is 4.05 x 103. 

- 79-



.,····.· . 
.. .. -~ 

w 

' ' . 
' 0 

Figure 4: A schematic diagram of the world lines of the soliton hump in the x-y plane for the case 

a1 > 0, 11 < 0, a2 > 0, 12 > 0 and a snapshot of the area bounded by the squares in the case of 
Li L§ » 1. The parameters are as follows : <l> = (3/8)7r, w = 1.6, e = (9/16)7r, Al.O, Cl = -0.02, 
E2 = - 0.02001, E3 = - 0.02001, and c4 = - 0.02. The values of L1L2 is 2.53 x 10- 4 . 
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