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                                Abstract 

  The exact solutions to the Davey-Stewartson I equation are analyzed to study the inter-

actions between two y-periodic solitons. There are two types of singular interactions; one is 

the resonant interaction that generates one periodic soliton after collision and the other is the 

long-range interaction where two solitons interchange each other infinitely apart.
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1 Introduction

  The Davey-Stewartson I (DS I) equation may 
be written as [1] 

  {  iut  +  uxx +  uyy +  rlul2u — 2uv  =  0,                       (1)      vxx — vyy — raul2)xx = 0, 

where r is constant. It is well known that this 

equation is the two-dimensional generalization 

of the nonlinear Schrodinger equation. The so-

lutions to the DS I equation has been studied 

previously in various aspect. The N-soliton so-
lution was obtained by Anker and Freeman in 

the inverse scattering method [2] and by Sat-
suma and Ablowitz in Hirota method  [3]. The 
interaction between two line solitons has been 

studied by Anker and Freeman, and they found 

the existence of soliton resonance  [4]. It is 
known that the DS I equation has not only 

line soliton solutions which have essentially one-

dimensional structures but also various soliton 

solutions which have the structures peculiar to

high-dimensionality. Over the past many years, 

several studies have been made on interactions 

between various kinds of nonlinear waves of the 

DS I equation [5, 6, 7, 8, 9, 10]. We found the ex-
istence of the resonant interactions between two 

periodic solitons and between the periodic soliton 
and other types of solitons, which are essentially 
different from the resonant interaction between 
two line solitons. We expect that it is very impor-
tant to study the interactions of nonlinear waves 
in discussing the dynamics of the unstable wave 
field. In fact, Tajiri et al and Pelinovsky have 

pointed out that the existence of the periodic soli-
ton resonance may be related to the instability of 
solitons [7, 11, 12, 13]. The purposes of this  pa-
per are (i) to review the y-periodic soliton solu-
tion and investigate the interaction between two 

y-periodic solitons and (ii) to show that there are 
two types of singular interactions.
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2 The interactions between two y- periodic solitons 

 2.1 y-periodic soliton solution 

  The one y-periodic soliton solution of the DS (2), we see that u and v are expressed as 
I equation is given by 
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                         ic .--m 

   gu = uoe 1,         u =—f, v = –2(log f )xx, (2)cosh e +   cos77 
                                                           "VM 

                                              (8) 
with 1                                                 1 + cosh e 
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       f (e ,77)  =  1  +.eCcos 77 +M—4e2.1(3){coshe+                                                     cos 77 I 
    g( e,  77,  0)  =  uoeiV(e  +74,77) (4) (9) 

                                 where e =  ei+log(‘ra/2). From (8) and (9), we 
where see that the existence condition for nonsingular 

                                     solution is given by M > 1. If we express the 
                                     wave numbers a and  6 in terms of  0 and 0 as 

 ( =  kx  +  ly  –  cot  +  (13, 

      e = ax –  C2t  +  e, a = \/2ru2r,sin– cos 0, (10)                                                    ,,2 

        77 = Sy – ^It + 77°, 

      (5)2       sinea2  + 62 6 = V2ru2r,sin–sin 0,                        s,(11) 
          2 2ru?' 

         +  i-y = 2ka + 2i1.6then equation (7) is rewritten as  c2 

             – (a2 – 52) cot–(1),(6) 1  –  cos  20                    M= (12)              2 
cos  0  –  cos  20  –462 

   M= (7)             4
a2 – 2ruFsine 0.From equation (12), the existence condition for 

                                   the non-singular solution (8) and (9) is give by 

Substituting equations (3) and (4) into equation cos  0 > cos 20. (13) 

 2.2 Interactions between two y-periodic solitons 

  Now, we consider the phase shift of two y- lution describing the interaction between two y-
periodic solitons due to the interaction. The so- periodic solitons is given by equation (2) with 

           f(6, 6, 771,772)= 1 + Mi   e26' + M2 e262 + Mi.M2Ni-lqe2(6+6) 
        4 4 16 

               M9 N1 No  M1N1N2 _26  +e1 1+ J., J. ,.,e262)                                  cos m + e62 1 ± e  cos  772    4 4 

 +-1e61+62  {N1  cos(ni  +  772) + N2  COS(771 —  772)}  ) (14) 

 2

 –  12  –



 9(6  e2  7)1  7721  01  02) =  uoe'<".f( 1+  i0 1.  i(12  7  7717  772)1 (15)

where

 =  aix  —  Qit  +  e39,  raj =bjy—ryjt+77°, 

       2 sin2O.3 —a3+ 3   2  2
rug. 

 2 03  Qj =  2kai  +2i16i —  (oe.7 —  8) cot2- 
 —452 

 M= 
4a2 —  2ru6  sin` (b 

 (al — a2)2 + — 82)2 — 2ruF, sin 2  01  —  02

(16)

(17)

(18)

 N1  = 2

 (al + a2)2 + +  62)2 —  2ru 

 (al — a2)2 +  (81 +  82)2 — 2ru

02•2  sm 

02sine

201 + 02
 2 

01 — 02

(19)

 N2  = 2

 (al + a2)2 +  (81 —  82)2 —  2ru 2 
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2

as

If we express  ai an

 M .;  ,

 d8 in terms of  Oi and  0j

   a3 =1/2ruo2sinicos 0i 

              2 

    63=.V2ru2osin—LC5sin 0i 
             2 and N2 are rewritten as 

 1  —  cos  20i  M •=-   3 cos  O
j — cos  203 

     cos— 02 cos(Oi — 02) 
 Nl 2  

 = 

         01 + 02 nn— cos(01 —02) 

—  cos(Oi + 02)

(21) 

(22)

(23)

 COS

 COS

  2 
01 — 02

 2

(24)

 N2  =   , (25)  0
1  +  02             cos2 cos(01 + 92) 

respectively. The existence conditions for the 

non-singular solution are given by 

            cos  (bj > cos  20i, (26) 

which is obtained by  M .; > 1. 
  We consider the phase shift after the collision 

by using equation  (14). Now, we assume that

 al > 0, a2 > 0 and  5-21/al > Q2/a2. From  equa-
tion (14), the two separated solitons long before 
and after the interaction are given by 

 =  1  +  eel  cos  ni  +  e2-1,Ml  
                   4 

      f2 =  Ml  e2e1  1 +  Nl  N2ee2  cos  7/2          4 

 M2N?1V.  
e22 

                    4 and 

      fl =M24e2  1 +  N1N2eei  cos  ni 

 miN?./v 2   e6) 

                    4 

      f2 = 1 + ee2 cos m + M2 e26                   4 

respectively, where subscript  1 and 2 of f denote 
the each y-periodic soliton. Taking into account 
that u and v are unchanged even if f and g mul-
tiplied by exp(ax + b) with a and b independent 
of x, we find that the interaction is the form 

 [fl(  )7  gi  (6  7  00]  , 
 [f2(2 +  0,  7)2)7  g2(.2 +  a,  n2,  02)] 

  -->  [f]. +  0,  ill  ),  91  (6 + A,1, 01)] 
 [f2  (4-2,  n2)192(61  772,  02)]  7 (27)
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where  A = log  I  N1 N21.  It is revealed that the  in-
teraction between two y-periodic solitons yields 

the after interaction solitons with  a. phase shift 

 A. It is noted that the interaction is attractive

or repulsive in th 

 (I/V1N21 > 1) or 
tively.

e  x- direction in the case  A > 0 
< 0  (}Ari  N2I < 1), respec-

3 Periodic soliton resonances 

 In this section, we consider the two singular 

interactions, one is the resonant interaction, the 

other is the long-range interaction. And we show

the sequence of the snapshots of each singular 

interactions between two y-periodic solitons.

3.1 The resonant interaction 

  At first, we consider the condition  N1 N21 
oo. The phase shift  A in the propagation di-

rection becomes oo. In the case  al  a2 > 0, 

this means that the two periodic solitons collide, 

propagate together and the period of the interme-
diate state persist infinity. This is thought as a 

resonant interaction between two y-periodic soli-

tons. This conditions are obtained by setting the 

denominator of N1 or N2  to 0; 

            ±        cos:02= COS(81 — 92), (28) 
            2 or 

  cos202A= COS+ 92). (29)

  The sequence of snapshots of figure 1 shows 

the resonant interaction between two y-periodic 

solitons with parameters near the condition (28). 
Initially, two y-periodic solitons separated well 

enough to look like two independent solitons (fig-
ure  1(a)). When they collide each other, the 
interaction yields intermediate y-periodic soliton 

(figure 1(d)) and this quasi-resonant state per-
sists over comparatively long period. It is noted 

that these resonant conditions correspond to the 

dispersion relations of the resonant periodic soli-

ton.

3.2 The long-range interaction 

  Next, we consider the condition  IN1N21 0. 
Two y-periodic solitons can interact infinitely 
apart each other, because the phase shift  A —) 

 —oo. This is thought as the long-range interac-
tion between two y-periodic solitons. This con-
ditions are obtained by setting the numerator of 
N1 or  N2  tO  0; 

             01 —  02   cos=  COS(e1 —  192), (30) 

            2 or 

             1 —  02           cos= cos(9i  4-  612). (31) 

            2 

  Graphical representations of interactions be-

tween two y-periodic solitons having parameter 

near the condition (30) are shown in figure 2. 
The solitons in figure 2(a) are the two y-periodic

solitons before interaction. When the y-periodic 

soliton 1 (the left y-periodic soliton) approaches 
to the y-periodic soliton 2 (the right y-periodic 
soliton), the y-periodic soliton 1 receives a small 
transverse disturbance of the same wave num-

ber  (52. The disturbance grows as two solitons 

approach. The y-periodic soliton 1 emits the y-

periodic soliton forward (which is called a mes-
senger soliton), and then changes into the pe-
riodic soliton 2 (figure 2(b) and 2(c)). When 
the messenger soliton collides with the y-periodic 

soliton 2, they interact resonantly to yield the 

new periodic soliton which structure is the same 

as the y-periodic soliton 1 before emitting the 

messenger soliton. It is noted that the messen-

ger soliton and the y-periodic soliton 2 satisfy the 
condition of a resonant interaction.
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Figure 1: The sequence of snapshots of the resonant 

The parameters are  q51 =  r/6, 01 =  57r/12 and  02 = 
times for the snapshots are (a) t = —60, (b) t = —48, 
x, y, and  lul are all dimensionless.

interaction between two 

 7r/8, 01 =  13r/48.  N1  N2 
(c) t = —42 and (d) t

y-periodic solitons. 
 =  3.2  x  1014. The 

—30 . In this figure,
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Figure 2: The sequence of snapshots of the long-range interaction between two y-periodic solitons. 
The parameters are  01 = 7r/3,  B1 =  7r/3 and  02 =  7r/6, 02 = 7r/4.  N1N2 = 3.0 x  10-16. The times 
for the snapshots are (a) t = -12, (b) t = 4, (c) t = 20 and (d) t = 44. In this figure, x, y, and lui 
are all dimensionless.
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4 Conclusion 

  We have investigated the interaction between tion between two inclined periodic solitons. Re-

two y-periodic solitons and shown that there are cently, it has been demonstrated the existence of 

two types of singular interactions. One is the the long-range interaction between two periodic 

resonant interaction where two y-periodic soli- solitons through the growing-and decaying mode 

ton interact so as to make a new y-periodic soli- [10]. 
ton, the other is the long-range interaction where Finally, it is pointed out that the periodic soli-
two y-periodic soliton interact each other in- ton resonance is not peculiar to the DS I equa-
finitely apart through the periodic soliton (which tion. The existences of periodic soliton resonance 
is called a messenger soliton). If a and  6 are taken are shown to the Kadomtsev-Petviashvili equa-
as complex number, we can examine the interac- tion with positive dispersion and DS II equation. 
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