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Abstract

  Use of Melnikov method enables us to prove the existence of transverse homoclinic points 
and homoclinic bifurcations occurring in a number of dynamical systems. Energy plays a crucial 
role in the description of the evolutionary behaviour of nonlinear dynamical systems. If the 
energy behaves like a variable; it leads us to an interesting way to understand results obtained 
in investigation of various systems. Melnikov function, that measures the distance between the 
stable and unstable manifolds of the saddle equilibrium of the  Poincare map of sections near 
the separatrix, has been associated with the energy variable of the Hamiltonian. The system 
used here is the Ueda oscillator, [3, 5, 12, 13], which displays very interesting results during 

 evolution shown through these works. We have again investigated the Ueda oscillator and 
studied its chaotic and transient chaotic evolutions taking into account the concept of energy 
variability. With the adjustment of certain parameter, we have observed, the chaotic, transient 
chaotic and regular behaviour through phase plots and  Poincare surface of sections. Numerical 
results are obtained to support the analytical calculations which  are discussed through various 
graphics.
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1 Introduction

  During the past few decades, chaotic be-

haviour has been observed in a wide range of 

dynamical systems governed by simple determin-

istic equations [6,  10]. With the extensive studies 
of typical nonlinear systems, it has been revealed 
that the chaotic motion emerging in various non-

linear systems can be suppressed or synchronized. 
In the chaotic regime two nearby trajectories di-

verge exponentially until they become completely 

uncorrelated and future prediction becomes inac-
curate. There are some recent attempts where

chaos has been used profitably by synchronizing 

chaotic orbits  [11]. But at most of the places, 
chaos is an undesirable phenomenon which leads 

to unpredictable and violent vibrations. Practi-

cally, one would like to control the system dy-

namics with minimum efforts so that whenever 

chaos seems to be harmful, it can be changed 

to a desired periodic or fixed point attractor  [2]. 
The concept of energy variability in nonlinear dy-
namical systems has been introduced by  Ali [4] 
and he has applied this concept to DVP 
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tor. Later it has been used for BVP oscillator 

and double well oscillator [1, 7,  8]. For a long 
time, we have been taking the nonlinear dynam-

ical systems with constant energy. But, it seems, 
in studying the real phenomenon; the assumption 

of energy like a variable may provide significant 

explanation of the system behaviour. Thus, the 
exhibition of irregular and chaotic motions in a 
number of nonlinear systems strongly linked to 

the energy variability of the systems. Therefore, 
for the enhancement of investigation of the non-

linear dynamical systems, one may proceed with 
variable energy. This may provide interesting re-

sults. 

  Objective of this paper is to investigate the 
chaotic and regular behaviour in Ueda oscillator 
with variable energy. Also, our aim is to find the 

emergence of transient chaos in this oscillator as 
well as the duration of transient chaos. The ana-
lytical approach has been supported with numer-

ical results displayed through graphics like phase 

plots and  Poincare surface section. Energy vari-
able for a perturbed Hamiltonian system be de-
fined in association with the Melnikov function 

which may decide in more interesting way the 
regular and chaotic behaviour. We define the en-
ergy variable for a perturbed Hamiltonian system 

as;

           dx  
=  

 dt F  (x) + f  (x  ,t), (1) 

wherex =  [xl,  x2]T E  R,2,  F.  R2  --47Z2 and 
F = {az_for some function H(x). The 
perturbed term, (the second term) on the right 
hand side is small, i.e., 0 <  E << 1, and 
periodic with respect to the time variable, i.e. 

 f  (x,  t + =  f  (x, for any x E  7Z2 and t  > 0. 
When  E = 0, we obtain the original unperturbed 
Hamiltonian system which is assumed to have a 
hyperbolic saddle equilibrium at the origin (0, 0), 
and to possess a first integral, namely 

 H  (x) = C. (2) 

The curves given by above equation specify all 
possible trajectories  'y(C)  =  {x  ER2;  H(x)  = C} 
of system 

        dx =  F(x) (3) 
            dt

in the phase-plane for different values of the en-
ergy constant C relative to different initial con-
ditions. One and only one trajectory (the sep-
aratrix) among those can pass through the ori-
gin as (2). We may choose the Hamiltonian H 
so that the separatrix is given by the equation 

 H(x) = 0. This  separatrix divides the phase 
plane of system (3) into two main regions, namely 
7+  =  {7(C);  C  > 0} and  7_  -=  (C); C < 0} [1, 
4]. 
  Melnikov function provide the measure of the 

distance between the stable and unstable man-

ifolds of the saddle equilibrium of the  Poincare 

map of sections near the separatrix. A first order 

approximation of  e, of the  Melnikov function can 

be given by [9],

 M(to)  =
 +co

00

 F  (q0(t —  to)) A  f  (q0(t —  t0), t)dt, 

              (4)

where  q0 (t —  to) is the separatrix of the Hamilto-
nian system (3). A simple zero of this function 
guarantee the existence of homoclinic points and 
hence, the transversal intersection of the stable 

 and unstable manifolds. Smale-Birkhoff theorem 

asserts that when such transversal intersection 

occurs then some iterate of the  Poincare map has 

an invariant hyperbolic set. 

  As the system (1) is in perturbed form, it 
would be justified if we think of equation (2) as 
an integral of system (1), but with an exception 
that the energy level C for this system becomes 

a variable throughout the course of motion (i.e. 
C C(x,  t)). Hence, a point in the phase plane 
of system (1) will be considered as moving from 
one energy level of system (3) to another level. 
Thus, we can predict the process of gaining or 
loosing energy, in the course of time, to be very 
slow (small) and proportional to the perturbation 
term in system  (1). 

  Accordingly, considering equation (2) to be 
an integral of system (1) and by differentiating 
(2) with respect to time and substituting from 
(1), we obtain 

     dC 
      dt(xt) =  efF(x) A f (x,(5) 

This leads us to obtain the final form of the  Mel-

- 2 —



nikov function,

 M  (to) = +°° —dC (q0(t –  to) t). 
         dt

      Results obtained by the application of Mel-
   nikov function enable us to decide the integrabil-

(6) ity and non-integrability of the equation of mo-
   tion  (1.1).

2 Ueda oscillator

2.1 Origin:

  The origin of the Ueda oscillator can be ex-

plained in the following way: 
Driven pendulums display some of the most sig-

nificant examples of chaos and regularity. A pen-

dulum can be mounted on a cart that oscillates 

periodically back and forth, driven by a variable-
speed motor. These examples can be understood 

by assuming the motion results from a restoring 

force F proportional to – sin  x, a friction term 

proportional to – dxt, and a periodic driven force 
 A  sin  wt, which when substituted into Newton's 

second law (F = mSf-) leads to the equation: 

          2 

      dx
+ b—dx+ sin x = A sin wt. (7) 

       dt2dt 

Ueda[13] studied a variant of this system with the 
sin x restoring force replaced by  x3 . The  modi-

fied equation of oscillator, called Ueda oscillator, 

which is named after Y. Ueda, with the periodic 

current c sin wt along with a bias c be written as:

dx 

dt Y 
dy  –  ax3  -  by  +  c  sin  Lai 
dt

(8)

(9)

The Ueda system can be considered as a special 

case of  Duffing  ' s  oscillator[14] that has both a 
linear and cubic restoring force, usually of oppo-

site signs. Ueda oscillator can be assumed as a 

biologically and physically important dynamical 

model exhibiting chaotic motion. It can be used 

to explore much physical behaviour in biological 

systems.

2.2 Energy Variability Approach:

  The Ueda oscillator defined in equations 

(8)and(9) is an oscillator with constant energy. 
With the use of certain results of energy variabil-

ity, this oscillator can be transformed to a new 

form, where energy behaves as a variable and can 

be written as: 

     dx 
   y (10) 

     dt 
 dy =  –  ax3  +  e(–by  +  c  sin  wt),  (11) 

     dt 

where b is the friction coefficient, and c is the 

strength of the driving force which oscillates at a 

frequency w. The presence of E indicates that we 

are dealing with variable energy. We will see that 

a transition to chaos now occurs as the strength 

of the driving force and variable energy. 

We proceed now to investigate Ueda oscillator

with 

and

variable energy as given in equations (10) 
 (11). For this we follow the following steps:

  To perform numerical studies, we  fix the  pa-

rameter values as a  = 1; b  = 0.06; w = 1; and the 

initial values of x and y as  xo = 2.5 and  yo = 0. 

Then, we perform the numerical simulation to 

obtain the chaotic, regular and transient chaotic 

behaviour of the oscillator by varying the param-

eters c, which represent the strength of the driven 

force, and  E, which is due to the variation of en-

ergy. First we take the value of  e = 0.01, (i.e. 
energy part is contributing very little), and take 
any value of c, for example here we have taken 

c = 2; c = 15; c =  –20. The phase plots of Ueda 

oscillator for these parameter values are given in 

Figure 1:
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c  =  15.  E  =0.01 

     V

 c=  —20.  e  0.01

 Figure(1): Phase plots of Ueda oscillator for 
a=  1;  b  =  0.06;  w  =  1;  E  =  0.01 and  c  =  2,15,  —20

  Above phase plots of Figure (1) show the reg-
ular motion of the oscillator for initial and later 

orbits, in general for any orbits. Therefore if the 

energy tends to zero in the system, the motion 

will tend to be regular and not chaotic. Hence, 

the energy part plays a very significant role in the 

immergence of chaos. 

   Now, we take an another value of  f = 0.5, i.e.

energy part is contributing significantly but as a 
variable and not as a constant. Then, we observe 
that the motion of the oscillator is not completely 
regular for any value of c. For example, if we take 
c = 5; c = —12; c = 11, the time series graphs of 
x and y for the time duration t = 0 to t = 100 
are given as in Figure (2):
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Figure(2): Time series for t = 0 to t  = 100 of x and y of Ueda oscillator for 

 a = 1; b =  0.06;u) =  1;  E = 0.5 and c  = 5, —12,11

  The 

display

time series graphs shown in 

chaotic motion of the system

Figure (2) 
for all the

three values of c for the duration t = 0 to t  =  100. 

Above three values of c are taken randomly for
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giving analytic justification of our result. In gen-
eral, one would observe, for any value of c and 
other fixed set of parameter values, the system 

behaves chaotically for some certain range of time 
t.

  However, when we increase the time duration 
e.g. t = 1900 to t = 2000, the behaviour of time 
series, as given in Figure (3), shows the regular 
motion for c = 5 and c = —12 , but chaos for 

 c = 11.

 =5,e  =0_5  c  =  —12,e  =0.5  =11,f  =0.5

Figure(3): Time series for t = 1900 to t  = 2000 of x and y of Ueda oscillator for 

 a  =  1;  b  =  0.06;  w  =  1;  f  =  0.5  and  c  =  5,  —12,  11

  We have also observed the phase plots of the 

oscillator between t = 0 to t = 100 and the  pa-

rameter values as a = 1; b  = 0.06; w = 1;  e  = 0.5

and c = 5,  —12,  11, which 

in Figure(4) below.
display chaos as shown

 c  =  —1  2.  e  =  c  =11,e=05 

 y

1PC

Figure(4): Phase plots for t = 0 to t = 100 of Ueda oscillator for 
 a=  1;  b  =  0.06;w =  1;  E  =  0.5 and  c=  5,  —12,  11
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  If we draw the phase plots for exactly the 

same parameter values as in case of Figure(4) but 
for time between t = 1900 to t = 2000, then the

motion reflected regular for the first two param-
eter values i.e. c = 5, —12 and chaotic for c = 11 
as shown in Figure(5).
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Figure(5): Phase plots for t = 1900 to t = 2000 of  Ueda oscillator for 

 a  =  1;  b  =  0.06;  w  =  1;  =  0.5  and  c  =  5,  —12,  11

  From these graphs we have observed that the 

Ueda oscillator displays transient chaos for c  = 5 

as well as c  = —12 and other fix parameter val-

ues. But for c  = 11, it displays chaotic mo-

tion. Thus we conclude that the evolutionary be-

haviour of Ueda oscillator may be chaotic or tran-
sient chaotic depending on the parameter value 
of the driving force. Also, the energy variabil-
ity has an important role in displaying transient 
chaos and chaos in Ueda oscillator.

 2.3 Sensitybity of Driven Force and Transient Chaos:

  It has been observed that the driving force of 

Ueda oscillator is very sensitive for displaying the 

evolutionary behaviour. A minute change in the 

parameter c transforms the motion from chaos to 
transient chaos which in long term displays reg-

ularity. To show this, let us take the parameter 

 values  as  a  =  1;  b  =  0.06;  w  =  1;  =  0.5  ; and two 

 values  of  c  as  c  =  —12.4  as  well  as  c  =  —12.5.

These two values of c are very close to each other 

but they show a great change in the behaviour 

of motion of the oscillator. In Figure (6), we 
have shown the phase plots of Ueda oscillator for 

 t=0tot=  100  has  been  shown  for  c  =  —12.4 
and c = —12.5. Both plots are showing chaotic 
structure of system but with a change in orbital 
structure.
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li

Figure(6): Phase plots for t = 0 to t = 100 of  Ueda oscillator for 
 a  =  1;  b  =  0.06;  w  =  1;  e  =  0.5  and  c  =  —12.4  andc  =  —12.5

  For the exactly same parametric values, if we 

take the phase plots for t = 100 to t = 200 as 

given in Figure(7), we can see  hilly regular be-
haviour of the system for c = —12.4 but chaotic 

 c  =  —12.4 

 3r

for c  = —12.5. Thus, from  Figure(6) and Fig-
ure(7) we may conclude that the system is tran-
sient chaotic for c = —12.4. This shows the sen-
sitivity nature of parameter c. 

                  — -12-5

Figure(7): Phase plots for t = 100 to t  = 200 of Ueda oscillator for 
 a  =  1;  b  =  0.06;  cid  =  1;  =  0.5;  c  =  —12.4  and  c  =  —12.5

  Continuing the above process of calculation, 

for the parameter value c = —12.5, if we draw 

phase plot for t = 250 to t = 350, we see

again a regular behaviour of the system as shown 
in Figure(8). Therefore this parameter value, 
c = —12.5 again displays the transient chaos.
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             Figure(8): Phase plots for t = 250 to t = 350 of  Ueda oscillator for 
 a  =  1;  b  =  0.06;  =  1;  e  =  0.5  and  c  —  12.5 

  Figures(6, 7, 8), clearly show the sensitivity case appears at t = 70 onwards (approx.) and 
of parameter c and immergence of transient chaos that in the second case appears at t = 250 on-

in the Ueda oscillator. The regularity in the first wards(approx.). 

2.4 Poincare Section for Chaos and Transient Chaos: 

  The chaos is best exhibited in a Poincare sec- c  = —12.93. For the first we get the transient 
 Lion, in which x and the angular velocity  at are chaotic system and for the second we get fully 

plotted at a constant phase of the drive where chaotic system. For this, let us take in the Ueda 
 Lot is an integral multiple of  27r. Earlier we oscillator, parameter values a = 1; b = 0.06;  w = 

have seen the transient property of the system 1;  e  = 0.5; together with values c = —12.92 and 

for two nearby parameter values of driving force c = —12.93. In Figure(9), we have shown the 
 c displaying with the sensitivity in the orbits  Poincare surface section for these cases for the 

through phase plots. Here, we deal again with orbits between t = 200 to t  = 300. 

two very near parameter values c = —12.92 and
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Figure(9): Poincare Surface Section for t = 200 to t  = 300 of Ueda oscillator for 

 a=  1;  b  =  0.06,w =  1;F =0.5;c= —12.92 and  c— 12.93

  Figure(9) shows the chaotic motion for both 
the cases. However, as given in Figure(10), the 

 Poincare surface section for the same parameter 
values but between, t = 1900 to t = 2000. From 
this figure, it is clear that the system is regular

for c = —12.92 and chaotic for c = —12.93. Fig-

ure(9) and Figure(10) jointly show the transient 
chaotic motion of the system for c = —12.92 and 
fully chaotic motion for c = —12.93.
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Figure(10): Poincare Surface Section for t = 1900 to t = 2000 of Ueda oscillator for 

 a  =  1;  b  =  0.06;  w  =  1;  E  =  0.5;  c  =  —12.92  and  c  —  12.93

  Since, these two parameters are very close to 

each other, we observed very significant change in 

the  Poincare surface sections of the system. For a 

very little change in the parameter c transforms

a fully chaotic system to transient chaotic sys-

tem. This result for Ueda oscillator provides us 

a method of controlling chaos by using the sensi-

tivity characteristic of the driven parameter.

3 Conclusion:

  This paper gives a specific emphasise over 

variable energy and its relation with chaos and 

transient chaos emerging in the Ueda oscillator. 

Since the natural system in this world are mostly

nonlinear and enormous in number, the results 

obtained for Ueda oscillator may also be observe 

in some other oscillator. It is a small effort in 

the direction of research dealing with  variabil-
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ity of the energy. Control of chaos with a very ing through some driven force, which are associ-

small change in a particular parameter attracts ated to our day to day life and this type of study 

our interest of research towards chaos control. may give interesting revelation. 

Since the behaviour of nonlinear systems is un- As we have seen from graphical representation 

predictable, these results may not be generalized and numerical analysis of Ueda oscillator with 
to all other nonlinear oscillators. But certainly different strength of driven force, the system is 

this type of investigation to many other systems very sensitive to energy and driving force. This 

may definitely produce very interesting results. kind of discussion for other useful nonlinear sys-

In nature one can find numerous systems evolv- tems will be presented in our later papers. 
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