
 Reproduction  of  Dynamical  Systems  with  the  Method  of 

         Principal Component Analysis

Manabu YUASA

Research Institute for Science & Technology, Kinki 
Kowakae 3-4-1, Higashi-Osaka, Osaka 577-8502,

University, 

Japan

E-mail: yuasaOrist. kindai. ac. jp 

(Received 22 December, 2003)

                               Abstract 

Differential equations for Henon-Heiles' non-linear dynamical system are reproduced by using 

the principal component analysis (PCA) in twice. The adopted method is concretely proved to 
be capable of the empirical construction of dynamical systems from observed data sets. In this 

paper data sets are given by numerical integration of Henon-Heiles' original differential equations. 
In the case of the non-chaotic motion, the accuracy of three figures is obtained concerning the 
reproduced coefficients for the resulting differential equations. Then the reproduction is performed 
using various data sets including the case of chaotic motion. The accuracy of the reproduction 
seems to be strongly correlative with the energy of chaotic motion. Also, the influence of the 
overlapped white noise upon the data is investigated. The accuracy of the reproduction is rapidly 
lost under the condition of the overlapped white noise of the magnitude of 10-3 (= 1% relative 
noise). The observational data should desirably have at least 3 significant figures(= 0.1% relative 
observational errors) for the rigorous reproduction of the differential equations. 

Key words: Dynamical system, Principal component analysis, Henon-Heiles' system, Chaos, 

Noise

1 Introduction

The construction of the dynamical system from 

observed data sets is an important procedure for 

developing empirical sciences. If the differential 

equations for describing given data sets are de-

termined, we can find the driving agencies in the 

dynamical system and our understandings for the 

system will be much advanced.

  The new method for this procedure was pro-

posed by Unno (1995), in which the principal 
component analysis(PCA) is employed repeat-
edly. Since then this method has been applied to 
the data sets in mathematical economics (Unno 
et al. 1996; Yuasa,Unno 1996; Yuasa et al. 

1997), bio-science (Unno et al. 1997) and astron-
omy(Yuasa et al. 1999). The complete formula-
tion of the method has been described as a gen-

eral method for the analysis of observations(Unno, 
Yuasa 2000). In this paper we first intend to repro-

duce Henon-Heiles' system (Henon, Heiles 1964) 
in the case of non-chaotic motion by using this 

method, in order to check the feasibility of the 

method. Then the reproduction is examined for 

the various values of Hamiltonian to see the influ-

ence of chaotic motion on our method. Finally, the 

effects of noise on the accuracy of our method are 

studied. Our purpose is to investigate the practi-

cability of the reproduction method and how chaos 

or noise affects the accuracy of the reproduced dif-

ferential equations, using rather simple data sets. 

Further study to treat several data sets altogether 

of which each set is constructed from different ini-

tial conditions, is of interest and a next purpose 

to us. The procedure in each section can be sum-

marized as follows.

In section 2, we perform the numerical inte-

gration of Henon-Heiles' original differential equa-



tions to obtain data sets composed of the variables 

 of Henon-Heiles' dynamical system, q1, Pi, q2, and 

P2• 
In section 3, we exectite the descrip-

tive(preliminary) PCA. The arranged data sets 
are embedded in m-dimensional space, and m 

principal components are extracted from this 
space. 

  In section 4, we carry out the dynami-

cal(extended) PCA. In addition to the m princi-
pal components which are calculated by descrip-
tive PCA, the difference of one focused variable 

(say pi) of which time dependence should be 
searched for, are embedded in m+1-dimensional 
space. Then we extract m + 1 principal compo-
nents from this extended space. 

  In section 5, we reproduce the differential 
equations of Henon Heiles' dynamical system. If 
the given data sets can represent the whole dy-

2 Arrangements of data sets 

The differential equations of Henon-Heiles' system 

are written as follows;

namical system in sufficient accuracy, the average 
value of the minimum principal component of the 
dynamical PCA nearly equals to zero. By putting 
the value to zero, we should obtain the differential 
equation concerning the focused variable: With 
this procedure, we have been able to obtain the 
differential equation system which coincides with 
the original Henon-Heiles' equation up to three 
figures. 

  Furthermore, in section 6, the reproduction 
method is applied to various data sets including 
the case of the chaotic motion to search for the 

effect of the chaotic motion on our method.

  Also, in section 7, the influence of the white 

noise overlapped upon the data is investigated to 

clarify the limitation of applying our method to 

observed data sets which inevitably include obser-

vational errors.

region — 2 < q2 < + 1, because our initial 
condition gives H = 0.0940 <6. If the value of H 
exceeds6, the orbit can not be limited within the 
finite space.

where Hamiltonian H is given by

1 
H = 2 (Pi+p

   1 
2)+2(qi +q

2 
2 + 2qiq2 —2q2)• (5) 
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  We have performed the numerical integration 

of this system by Runge-Kutta method, adopt-

ing the initial condition q1(0) = 0.1, pi (0) = 
—0.3, q2(0) = 0.3, p2(0) = 0.1 and the step 
width 0.01 . 

  Fig.1 shows the orbit between t=0 and t=40 
in the qi — q2 plane. The horizontal axis is qi and 
the vertial axis is q2. We have selected the initial 
condition to give the non-chaotic obedient trajec-
tory. The orbit is limited within the triangular

Fig.l. The orbit of Henon-Heiles' system between 

t = 0 and t = 40 in qi - Q2 plane. The initial con-

ditions are qi (0) = 0.1, /31 (0) = -0.3, q2(0) = 0.3 
and p2(0) = 0.1. The step width of the numerical 
integration is 0.01.

Fig.2. The error of the numerical integration. The 

initial conditions are the same as the case of Figure 

1. The horizontal axis is time and the vertical axis is 

the relative error of Hamiltonian in the unit of 10-th



  Fig.2 shows the error of the numerical integra-

tion. The horizontal axis is time and the vertical 

axis is the relative error of Hamiltonian in the unit 

 of 10-10. If the dimension of the dynamical sys-

tem is d and the each data set has address number 

n, then the dimension m of the embedding space 

should satisfy the following inequality: 

2d + 1 < m < log2 n.(6) 

Henon-Heiles' system has two degrees of free-

dom consisting of second order differential equa-

tions, then the system can be written by four si-

multaneous first order differential equations. On 

the other side the system has an -integral H = 

const. Therefore, the dynamical system dimen-

sion of Henon-Heiles' equations must be d = 3. 

By the substitution of d = 3 to the condition (6), 
we have adopted m = 7 and n = 1332. In the 

7-dimensional space we have embedded the value 

of the seven quantities q1, pi, q2, p2, qi, q2, qlq2 at 
every t = 0.03 between t=0 and t=40.

3 Descriptive (Preliminary) PCA

Before proceeding to the PCA, we have standard-
zed the each data set so as to have mean value 0 
Ind standard deviation 1. 

Namely, the standardized variables Xi a 

Oven as follows:

Xi = (xi - xi)/(Sx, (i = 1, 2, ... , 7),

where xi = q1, x2 = Pi, X3 = (12, x4 = P2, 

      X5 =qi, x6 = q2, x7=q1 q2 (8)

and xi, bxi represent the mean values and standard 

deviations of xi's, respectively concerning 1332 ad-

    dresses. 

The results of descriptive PCA in the embed-

   ded space (ql, pi, q2, p2, ql, q2, 
(7) ql q2 ) are as follows:

eigen value 

1.980 

1.926 

1.705 

1.013 

0.236 

0.072 

0.068

eigen vector 

a1 = ( 0.093, 0.591, -0.647, 0.045, -0.322, 0.342, 0.025 ) 
ci2 = ( 0.701, -0.086, 0.046, 0.699, 0.055, -0.015, 0.088 ) 
a3 = ( 0.010, 0.389, -0.279, -0.013, 0.624, -0.616, 0.043 .) 
a4 = ( 0.024, -0.032, 0.020, -0.147, -0.096, -0.055, 0.982 ) 
a5 = ( -0.047, 0.007, 0.029, -0.007, 0.698, 0.706, 0.107 ) 
a6 = ( 0.384, 0.589, 0.620, -0.337, -0.051, 0.050, -0.056 ) 
a7 = ( -0.591, 0.379, 0.342, 0.612, -0.068, 0.000, 0.105 )

With ai3 , the j - th component of the i - th 
eigen vectoraibelonging to the i - th eigen value 
Ai , the value of the i - th principal component yi 
is given by the following equations (i = 1 corre-
sponds to the first (maximum) principal compo-
nent) at every address. 

7 yi = E aijXj (i = 1, 2, ... , 7). (9) 
j=1

Each Xi and therefore each yi have 1332 addresses 

respectively. If the suffix i increases, the stan-

dard deviation of the principal components de-

creases. The square of the standard deviation of 

each principal component yi is the corresponding 

eigen value ( Ai=2 ) .             a=yi

4 Dynamical(Extended) PCA

In the dynamical PCA, we embed the seven prin- the descriptive PCA. 
cipal components yi (i = 1, 2, •••, 7) of the de-
scriptive PCA and the one additional quantity y8 Y=(yi --97)/5yi (i = 1, 2, •••, 8), 
in the extended eight dimensional space. Then we 

standardize the variables in the same manner as whereyiand (Sy, represent the mean values 
standard deviations of yi concerning 1332 

-3-

(10)

and 

ad-



dresses, respectively. Excepty8which is gener- 
ally non-zero, y2 (i = 1, 2,•••, 7) are zero because 
they are the principal components of the descrip-
tive PCA. 

  Since we want to reproduce the equations 
 (1),(2),(3) and (4), we adopt y8 as the additional 
variable in the dynamical PCA, to be y8 = Oq1 

in case 1, y8 = Am _ in case 2, y8 = Oq2 in case

3, and y8 = 0p2 in case 4, respectively. The dif-

ference Oq1 , etc. of the address k is created by 

the subtraction of the value of the adopted vari-

able at the address k — 1 from that of the address 

k (k = 1, 2, • • • , 1332). For the first address, the 
difference y8 is approximatedly taken to be the 

same as the second . address. The results are given 

by the following four cases.

case]. 

Ai 

2.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.000

Y8=0q1 

b1 = ( 0.590, —0.074, 0.359, —0.019, 0.002, 0.113, 0.068, 0.707 ) 
62 = ( 0.202, —0.096, —0.061, —0.008, 0.516, —0.591, —0.575, 0.000 ) C
3= ( 0.204, 0.738, —0.285, 0.190, 0.428, 0.336, 0.015, —0.000 ) 

C4 = ( —0.074, 0.533, 0.380, 0.111, —0.542, —0.153, —0.486, —0.000 ) C
5= ( 0.173, —0.270, —0.284, 0.868, —0.219, 0.042, —0.115, —0.000 ) 

b6 = ( 0.254, —0.156, —0.499, —0.420, —0.291, 0.396, —0.495, —0.000 ) 
b7 = ( 0.350, 0.232, —0.428, —0.145, -0.351, —0.575, 0.407, —0.000 ) 
bs = ( -0.590, 0.074, —0.359, 0.019., —0.002, —0.113, —0.068, 0.707 )

case2 

Ai 

2.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.000

Y8=0p1 

b1 = ( 0.086, 0.659, 0.009, 0.214, -0.004, 0.061, —0.096, —0.707 ) 
b2 = ( 0.330, -0.008, 0.348, —0.026, —0.314, 0.567, 0.591, —0.000 ) 
C3= ( 0.359, —0.146, _0.210, 0.346, 0.787, 0.200, 0.162, —0.000 ) 
C4= ( 0.124, —0.192, 0.634, 0.606, —0.073, —0.413, —0.061, —0.000 ) 
C5 = ( 0.107, 0.141, 0.616, —0.589, 0.444, —0.000, —0.211, 0.000 ) 
b6 = ( 0.820, 0.002, —0.232, —0.236, —0.217, —0.409, —0.056, 0.000 ) 
b7 = ( —0.217, 0.232, —0.019, -0.134, 0.180, -0 .542, 0.745, 0.000 ) 
b8 = ( 0.086, 0.659, 0.009, 0.214, —0.004, 0.061, —0.096, 0.707 )

case3 

Ai 

2.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.000

Y8=0q2 

b1 = ( 0.034, 0.686, —0.013, —0.104, —0.002, —0.062, 0.113, 0.707 ) 
C2 = ( —0.783, 0.067, —0.029, —0.103, 0.152, —0.361, —0.466, —0.000 ) 
C3 = ( 0.336, 0.028, —0.115, 0.240, 0.864, —0.208, —0.163, —0.000 ) 
b4 = ( 0.012, 0.068, 0.666, 0.624, —0.173, —0.362, 0.032, 0.000 ) 
b5 = ( 0.203, —0.108, 0.628, —0.707, 0.154, —0.155, —0.069, 0.000 ) 
b; = ( —0.340, 0.106, 0.382, 0.126, 0.339, 0.771, 0.048, —0.000 ) 
b7 = ( —0.339, —0.158, —0.031, —0.071, 0.249, —0.264, 0.850, 0.000 ) 

H b8= ( 0.034, 0.686, —0.013, —0.104, —0.002, —0.062, 0.113, —0.707 )



 case4 

Ai 

2.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.000

Y8 = 0p2

b1 = 

C2 = 
b3 = 
b4 = 

C5 = 
C6 = 
b7 = 

b8 =

( 0.693, —0.037, 0.058, —0.015, —0.010, —0.107, —0.053, 0.707 ) 
( —0.104, —0.034, 0.327, 0.003, —0.376, 0.591, 0.625, —0.000 ) 
( 0.141, 0.492, —0.291, 0.278, 0.617, 0.425, 0.124, —0.000 ) 
( -0.001, 0.827, 0.082, —0.051, —0.499, —0.077, —0.226, 0.000 ) 
( —0.081, 0.054, 0.818, 0.468, 0.260, —0.117, —0.147, —0.000 ) 
( 0.019, —0.109, —0.353, 0.827, —0.356, —0.186, 0.134, 0.000 ) 
( —0.033, 0.235, 0.034, —0.129, 0.184, —0.627, 0.706, 0.000 ) 
( 0.693, —0.037, 0.058, —0.015, —0.010, —0.107, —0.053, —0.707 )

  In the similar manner as the descriptive PCA, 

the principal components z2 of the dynamical PCA 

can be given by the following equations. 

s zi = E bzjYi (i = 1, 2, ... , 8), (11) 
J=1

where bZ3 indicates the j— th component of the i — 

th eigen vector bZ corresponding to the i — th eigen 
value of the dynamical PCA. We have not seven 
but eight principal components becuase we have 
embedded the quatities in 8-dimenional space in 
the dynamical PCA.

5 Reproduction of Differential Equations

The eighth (minimum) eigen values of the dynam-
ical PCA are nearly zero (< 10-5) in each case. 
Then the eighth principal components in each case 

can be put equal to zero. These relations give the 

following equation in each case.

casel case4 Ox represents Oq1, Am, Oq2 and 

42 respectively. With the help of the equation 
(7),(8),(9),(10), we can solve the equation (12) 
with respect to the difference of the focused vari-
able as follows:

s 

z8=Eb8jYj=0 (12) 
J=1 

We have calculated the value of eighth eigen vector 
b8 of dynamical PCA in section 4. On the other 
hand the standardized variables Yj ( j = 1, • • • , 7) 
of dynamical PCA can be transformed to the orig-

inal variables xi and Y8 can be transformed to 

the difference Ax of the focused variable x. In

7 

Ox=c0+Ecjxj 
j=1

(13)

The difference Ax has been created by the sub-

traction of successive x values. The interval of 

time At of successive values of x is 0.03 in our 

arranged data, so we have to divide both sides 

of the equation (13) by At to get the differential 
equations concerning q1, pi, q2 and p2.

The results are as follows:

casel

case2

case3

dq1 

dt

dp1 _ 
dt

dq2 

dt

1.000p1 

+0.015q1 — 0.000q2 — 0.000p2 — 0.000qi 
—0.0000 + 0.030qlq2 — 0.000

—1 .000q1 — 1.999m2 

+0.021p1 + 0.005q2 — 0.000p2 + 0.024qi 
—0.024q2 — 0.000

1.000p2 

+0.000q1 — 0.000p1 + 0.015q2 + 0.015q1 
—0.0150 + 0.000q1q2 + 0.000 

— 5 —

(14)

(15)

(16)



case4
dp2 

dt
 —1.000q2 — 1.000qi + 0.999q2 — 0.048m2 

—0 .005q1 + 0.000p1 + 0.021p2 
—0 .000

Above results show Henon-Heiles' original dif-

ferential equations (1)-(4) are successfully repro-
duced by our method almost up to three signifi-

cant figures concerning the coefficients in the 

of adopted data(H = 0.0940; non-chaotic).
case

6 Accuracy of the Reproduction and Chaos

To see the influence of chaotic motion on the 

accuracy of the reproduction of the differential 

equations, we have examined the reproduction 

of Henon-Heiles' system using the data arranged 

from the various values of Hamiltonian. The nu-

merical value of Hamiltonian can be physically re-

garded as the total energy of the system, so we 
hereafter use total energy E to represent the nu-

merical value of Hamiltonian H.
-U .4 -0,3 -0.2-0.I 0 U.I 0.2 U.3 0.4 U.3 0.5 q2

Using the method of Poincare mapping, Henon 

and Heiles(1964) analyzed the dynamical system 
given by the equations (1)-(5). Along each tra-
jectory, they investigated the successive mapping 
of the point satisfying the conditions Q1 = 0 and 
pi > 0 on the Q2 — p2 plane. 

  As an important result, they found the qual-
itative difference concerning the behavior of the 
successive points between the trajectories having 
the total energy E < 9 and9< E <6. In the 
case of E < 9, each trajectory gives the succesive 
points lying on the smooth curve like fig.3(a). On 
the contrary, in the case of 9< E< s, some tra-
jectories still produce the smooth curve but some 
other initial conditions give the random successive 

points without any regularity. In fig.3(b) the ran-
dom dispersed points indicate the Poincare map-

ping produced from a unique trajectory.

Fig.3(b). Poincare mapping(E=0.125), 
Heiles 1964.

Henon &

Fig.3(a). Poincare 
Heiles 1964.

mapping(E= 0.083), Henon

If the total energy E is given, the area which the 

successive points can move in q2—p2 plane is given 

by the inequality — 2/3q < 2E. The 
outer most curve in fig.3(a) and 3(b) indicates the 
boundary of this movable area, of which the inside 

is covered by the smooth curves and/or the ran-
dom points. The relative area covered by smooth 

curves in the movable area increases with the in-

crease of total energy (fig 4). The trajectory which 

produces the dispersed points corresponds to the 
chaotic motion. The chaotic motion comes into 

appearance at the critical total energy E =9and 
the area of the chaotic motion dominates with the 
increase of the total energy excess over the critical 
value. 

  The chaotic motion is to have a higher com-

plexity than the non-chaotic motion. Namely, in 
the chaotic motion, two very similar initial condi-
tions give the quite different trajectories as time 

goes by. Anticipating some effects of chaos on 
our reproduction method, we intend to search 
for the influence of the chaotic motion on our 
method by comparing various total energy cases. 
In this analysis we adopt the same reproduc-
tion method as the preceding sections, embedding 
the variables q1, Pi, q2, P2, qi , q2 and q1 q2 in the 
7-dimensional space. The adopted total energy

6—



 values for data1—datal0 are 0.094, 0.103, 0.110, 

0.119, 0.128, 0.144, 0.152, 0.159, 0.165, and 0.167 

respectively.

dtcorresponding to the 10 data sets respectively. 
The result is shown in fig.5(a), where the horizon-
tal axis is energy and the vertical axis is minimum 

eigen value Amin. In fig.5(a), we can see the mini-
mum eigen value begins to increase at the vicinity 

of the critical energy E = 9= 0.111 for the ap-
peareance of the chaotic motion, and continues to 
increase with the increase of total energy except 

for the largest 2 energy case in the equation d1.

Fig.4. Relative area covered by the smooth curves 

as a function of energy, Henon & Heiles 1964.

In each data the number of the address is fixed 

as 332, then the total energy is considered to be 

a single parameter. The dependence of the ac-

curacy of the reproduction on the total energy is 

investigated by using the minimum eigen value, 

Amin, in the dynamical PCA. The errors of the 

constructed dynamical system, A, is given by the 

following equation(Unno, Yuasa 2000):
Fig.5(a). Minimum eigen value 
equation, as a function of energy.

of each reproduced

where c is the sum of the correlation between each 

principal component in the descriptive PCA and 
the additional quantity y8. On the other side, 

the relation of c and Amin is given by the equa-

tion(Unno, Yuasa 2000):

By the substitution of the equation (18) into the 
equation (19), the error is expressed with Amin as

If the minimum 

small(Amin « 1), 
mately written as

eigen value, 

the equation

Amin, 

(20) is

is very 

approxi-

Fig.5(b). Sum of the minimum eigen value of the 
reproduced 4 equations, as a function of energy.

  Then 

Amin, for

we 

4

compute the minimum eigen value, 

reproduced equationsddldtdc2and
As the sum of the minimum eigen values corre-



sponding to the 4 equationsdqldpldit anddp2re- 

produced from the unique datashould give the 
accuracy of the whole system, we have calculated 

the sum of the minimum eigen values and the re-

sult is shown in fig.5(b) whose horizontal axis is 
the energy. 

  Fig.5(b) shows that the sum of the minimum 
eigen value begins to increase at the vicinity of 

the critical energy and continues to increase with

the increase of the total energy. This fact can 

be interpreted as the reflection of fig.4. Namely, 

the accuracy of our reproduction method based 

on the principal component analysis has a clear 

inverse correlation with the relative area covered 

by the smooth curves in fig.4. The appearance of 

the chaotic motion reflects on the accuracy of our 

reproduction method for dynamical systems.

7 Effects of Noise for Reproduction

The observed data inevitably contain the obser-

vational errors. On the other hand, the adopted 

data in this analysis so far, are arranged from the 

numerical integration under the condition to con-

serve the total energy up to 10 figures which prob-

ably brings the accuracy of the adopted 7 variables 

 q1, pi, q2, p2, qi, q2 and q1q2 almost up to the simi-
lar figures.

0.1

0.1

e 0.

0.0 

m

0.0

a.a

  For the purpose of clarifying the limitation of 

applying our method to the observed data sets 

with observational errors, we have investigated the 

effects of white noise overlapped on the arranged 

data from the numerical integration. The results 

are shown in fig.6(a),6(b) (E=0.110; non-chaotic) 
and 6(c),6(d) (E=0.144; chaotic). In the four fig-
ures, the vertical axis is the minimum eigen value, 
and the horizontal axis is the relative magnitude 
of the overlapped white noise. The typical abso-
lute value of the variables q1, pi, q2, p2 is roughly 
regarded as 10_i and the overlapped white noise is 
examined in the magnitude of 10-5, 10-4 and 10-3 
respectively, or, the examined relative magnitude 
of the overlapped white noise is 0.01%, 0.1%, and 
1%, respectively. Fig. 6(a), 6(b), 6(c), and 6(d) 
show clearly that reproduced differential equa-

tions lose rapidly their accuracy under the con-

dition of the overlapped white noise of the mag-

nitude of 10-3(= 1% relative noise). The errors 
mainly originate from non-linear terms in the dif-

ferential equations. If the overlapped white noise 

becomes 10-2(= 10% relative noise) the repro-
duced differential equations have no resemblance 

to the original equations at all. Then we conclude 

that observational data are required to have at 

least 3 significant figures(= 0.1% relative observa-
tional errors) for the rigorous reproduction of the 
differential equations.

0.001 

Relative

0.01 0.1 1 10 

magnitude of the overlapped noise (%)

Fig.6 (a) . Minimum eigen value of the reproduced 2 
equations, as a function of the relative magnitude of 

the overlapped noise(E=0.110). 

F::.p. tin

U ~

0.001 

RviaIvv

 0.01 

rma snit ode

0.1 

of the overlap ped noise

• • 

• •

10

Fig.6(b). Minimum eigen value of the reproduced 2 
equations, as a function of the relative magnitude of 

the overlapped noise(E=0.110).



0.001 0.01 0.1110 

 Relative magnitude or the overlapped noise CO

0.001 0.01 0.1 

Relative magnitude of the

1 10 

overlapped noise CS)

Fig.6(c). Minimum eigen value of the reproduced 2 
equations, as a function of the relative magnitude of 
the overlapped noise(E=0.144).

Fig.6(d). Minimum eigen value of the reproduced 2 
equations, as a function of the relative magnitude of 
the overlapped noise(E=0.144).

8 Discussion 

The final results (14),(15),(16),(17) in section 5 
show that the coefficients coincide with those of 

the original equations (1),(2),(3),(4) almost up to 
the three figures. The accuracy results mainly 

from the time interval of the arranged data sets. 

  In the preceeding sections, the dimension m 

of the embedded space has been chosen as 7. If 

we choose m = 10 and the number of arranged 

  The final results are as follows:

data as 1332 at every t = 0.03 between t = 0 and 

t = 40, we obtain the differential equations similar 

to the equations (14),(15),(16),(17). 

In the case of m = 10, the variables of embed-

ded space are chosen as x1 = ql, x2 = pi, x3 = 

q2, x4 = P2, x5 =q,x6 =q2,x7=(h q2, x8 = 
P11X9 = P)xlo = P1P2 •

 = 1 .000p1 

+0.015q1 - 0.000q2 - 0.000p2 - 0.000q - 0.000q2 
+0.030q1q2 - 0.00074 - 0.000p2 + 0.000p1p2 + 0.000 

= -1 .000q1 - 2.000m2 

+0.015p1 + 0.001q2 + 0.000p2 + 0.017qi - 0.014q2 
-0 .012/4 + 0.015p2 - 0.002p02 - 0.000 

= 1 .000p2 

+0.000q1 + 0.000p1 + 0.015q2 + 0.015q1 - 0.0160 
+0.000q1q2 - 0.000pi - 0.001p2 + 0.000p1p2 + 0.000 

= -1.000q2 - 0.999qi + 1.0000 
-0 .001q1 - 0.032Q1q2 - 0.000p1 + 0.015P2 

+0.00114 + 0.002p2 + 0.028p1p2 - 0.000 
-4-



  The method which we have adopted is proved 

concretely capable of the empirical construction of 

dynamical systems from observational data sets. 

This method is applicable to many research fields 

and we expect the method will be a strong tool 

for analyzing data of complex systems. 

  We have found a strong correlation between 

the accuracy of the reproduction and the chaotic 

motion. Since the orbit in the chaotic motion is 

considered to shift more easily to the neighbouring 

orbit than in the non-chaotic motion, this process 

may probably bring the lowering of the accuracy 

in the reproduction of the chaotic case. To obtain 

more detailed circumstances, further study includ-

ing some other chaotic system, for example Lorenz

system, will be useful and our future task. 

  On the effects of noise, we have obtained a 

 conclusion that the reproduction of the differen-

tial equations requires the data of at least 3 sig-

nificant figures(= 0.1% relative observational er-
rors). This conclusion however is for the rigorous 
reproduction of the coefficient of the differential 

equations and in the case of a qualitative rough 

analysis for the observed data somewhat smaller 

significant figures may actually be available.

  The author is grateful to Emeritus Prof. W. 

Unno of the University of Tokyo for valuable dis-

cussions and the constant encouragements.
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