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Anstract

1 Introduction

In this paper, we propose a deterministic off-line identification method [1]  that obtains a state-space 
model by using input and output data with steady state values. The method is composed of the method 
[2] zeroing the 0 N-tuple integral values of output error of single-input single-output transfer function 
model and Ho-Kalman's method [3]. The method has an assumption that plant system matrix A satisfies 
IA I < 1 because the method utilizes the Taylor series expansion of the plant. We prove that the method can 
be applied to plants without the assumption < 1. The feature is that the method can identify by using 
step responses, the derived state-space model is emphasized in low frequency range and, consequently, this 
is suitable for a mechanical system identification in which noise and vibration are undesirable. Numerical 
simulations of multi-input multi-output system identification are illustrated. 
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The deterministic off-line identification method [1] 
                                    that obtains a state-space model by using input and 

output data with steady state values has an assump-
tion that plant system matrix A satisfies < 1 
because the method utilizes the Taylor series expan-
sion of the plant. In this paper, we prove that the 
method can be applied to plants without the assump-
tion I A < 1. 

  Properties that an useful identification method 

should have are as follows:

1. Small noise or vibration in identification ex-

  periment, that is, a step signal is better than a 

  pseudo white signal.

2. The derived model is suitable for servo design, 
that is, the model is emphasized in low fre-

  quency range [4].

3. A reduced order model can be directly obtained

from input and output data.

4. State-space model can be obtained.

5. Robustness against unmodelled dynamics.

6. Robustness against disturbance.

As for 4, in multi-input multi-output (MIMO) iden-
tification, single-input single-output (SISO) type of 
identification method requires the orders of the nu-
merators and denominators of all the elements in a 
transfer function matrix. Consequently, this often 
causes over-parameterization. On the other hand, 
methods that derive state space model do not cause 
this problem.

As for the above mentioned properties 1 
6, evaluations of some representative identification 
methods are shown in Table 1 that includes our sub-

jective views. A least squares, a step response and 
a frequency response methods are representative as 
a deterministic off-line identification method. Since 
an input signal, such as M series signal, used in a 
least squares method is required to satisfy P. E. condi-
tion, it often causes resonance in a mechanical plant 
which consequently results in large noise or vibra-
tion. And so is sine wave used in a frequency re-
sponse method. Although a step signal causes noise 
or vibration at the moment when it is supplied, they 
are attenuated asymptotically. Therefore a step signal 
is practical for identification, because it causes noise 
or vibration only at the beginning during a long time 
interval of measuring, it can be generated easily by 
switching on and off, and it omits the adjustment of
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Table 1: Evaluations of representative identification methods

 1 2 3 4 5 6 

Least squares method[5], [6] x x x x x 0

Frequency response method x x x x x 0

Sub-space method[7], [8] 0 x 0 0 A A

Kosaka's method[2] 0 0 0 x 0 x

Proposed method 0 A 0 0 A x

sampling period required in using an M series sig-
nal. A conventional least squares method employ-
ing a step response restricts the order of an identi-
fied model [5]. In the case of servo system, it is de-
sirable that the modelling error is small in low fre-

quency range [4], but least squares methods have a 
tendency to reduce the error in high frequency range 

[6]. Sub-space based methods [7, 8] need to obtain a 
sufficiently large size of, for example, Hankel matrix 
before deriving its reduced order model, and also use 
a least squares method in obtaining some system pa-
rameters. The method [2] zeroing the 0 N-tuple 
integral values of output error of single-input single-
output model has the properties 1, 2, 3, 5 but derives 
transfer function model.

  In this paper, we propose a deterministic off-line 
identification method [1]  that obtains a state-space 
model by using input and output data with steady 
state values. The method is composed of the methoc 
[2] zeroing the 0 N-tuple integral values of outpul 
error of single-input single-output transfer function 
model and Ho-Kalman's method [3]. The methoc 
has an assumption that plant system matrix A satisfies 

~ A < 1 because the method utilizes the Taylor series 
expansion of the plant. We prove that the method car 

be applied to plants without the assumption 1A1 < 1 
The feature is that the derived state-space model is 

emphasized in low frequency range. 

  The paper is organized as follows. In section 2 

assumptions are made for a plant, and the identifica-

tion method is stated. In section 3, the properties oi 

the identified model are stated. In section 4, numer-

ical simulations are illustrated to indicate the effec-

tiveness of the proposed method.

2 Identification algorithm

2.1 Plant to be identified 

The plant to be identified is represented by the 

following linear continuous-time nu-input nu-output 

state-space system: 

x (t) = Ax (t) + Bu (t) (1) 
y (t) = C (t) + Du (t) 

where t is time and x(t) E RnA, y(t) E RnY and 
u(t) E Rnu are the state, input and output vector, re-
spectively. 

2.2 Assumptions 

We make the following assumptions for the system: 

Al: det (A) 0 

A2: C and A satisfy

  where det (A) denotes the determinant of A and 
ay is the integer that satisfies 

nA+1<a y<nA+2. (3) 
ny— ny 

2.3 Identification algorithm 

The number of acquired input and output data with 

steady state is nu where those data are denoted as 

ui (t) and yi (t) (i = 1, 2, • • • , nu), respectively, and 
ui (t)'s satisfy 

det qui (00) u2 (oo) ... unu (oo)]) 0- (4) 

From input and output data, U(t) and po(t) are de-
fined as

In this section, assumptions are made for a plant, ant 
the identification algorithm [1]  is stated.



 The integer an and np are defined so as to satisfy 

       n<au < n + 1,(7) 
    nunu 

        np= ay+au— 1(8) 

where n means the order of the system matrix A in 
the model. po is derived as 

Po = Po (x) •(9) 

pi's (i = 1, 2, • • • , np) are derived as the following 
equations: 

_4

2.4 Another identification algorithm 

Another algorithm to identify A by using C0 instead 

of 0 is stated here. 

  A2' is assumed instead of A2. 

A2':A and B satisfies

where au is the integer that satisfies 

n dn A

Instead of (3), (20), (21) and (22), we respectively use

By using the singular value decomposition, H is de-
composed as 

H = UEVT(17) 

where E is the diagonal matrix of which elements are 
the singular values of H. (ayny x n) matrix 0 and 

(n x aunu) matrix Co are defined as

By using this algorithm, the same results are derived 

through the same procedure as the next section.

3 Properties of the model

,, 

where MATLAB notation[8] is used. According to 
this notation, A(ai : a2, b1 : b2) means the matrix of 
which elements are those in the a1 N a2 columns and 

the b1 b2 rows in A. 

The estimated system parameter (A, B, C, D) is 
obtained by the following calculations:

In this section, it is shown that the model corresponds 

with the plant if n = nA without assumption I Al< 1. 

  As U(t) has steady state from (4) and (5), by us-
ing the final value theorem, it follows that

det(lirn U (t)) 
t—oc

= det limsU( 
s—o

s)) 0 (32)

where s is a complex variable and x(s) means the 
Laplace transformation of x(t). Therefore, using a 
matrix Ua (s) (det (U,(0)) 0) of which elements 
are rational functions of s, U(s) can be expressed as

where t denotes pseudo inverse matrix.



From (5), (32) and (33), we obtain  where 6 denotes a 

yielded as

differential operator. pi+i(t) is

m. if)

- 1 \J 

 By using the final-value theorem, we obtain 

— ,., 1,_.,1 • • 1 /nl

and then pi+i is yield ed as

P1 is obtained in the same way as 

= m,( )(111

_ —CA `B. ••• )(34) 

Assume that pi(t) (i > 1) satisfies



From (25), (35), (47), (48) and (49), we obtain

 vliL.,• 

Therefore, (37) and (38) follow in 
stituting (38) for (16), we get 

u—

ductively. By sub-

0) 
 From the above, the model corresponds with the 

 plant. 
    Next we consider that the mothod emphasizes low 

 frequencies. By using the Taylor series expansion 
around s = 0, the plant (1) is expressed as

If n = nA, from (3), (7), (8), (17), (18), (19), Al , A2 
and [3], it follows that

The coefficients in (51) are derived from low to high 
order (0 np) in turn, from which A, B, C and D 
are obtained. That is, the coefficeients higher than n, 

are ignored. This leads to emphasize low frequencies 

because low order coefficients represent the charac-

teristics in low frequency range.

From (20), (21) and (43), we get 

Od = O„,A-'. 

From (45), the pseudo inverse matrix Odt 
ae

From Al , A2, (22) and (46), we derive

  (45) 

is defined

4 Numerical simulations

In this section, the proposed method is applied to 
identify 2-input and 2-output system by using step re-
sponses of the system. The model is compared with 
conventional sub-space method [8].

4.1 System and simulation setting 

The plant to be identified is as follows:

From  Al , (7), (23), (44) and (47), we obtain

From (3), (24), (43) and (47), we derive

;48)

49)

The order of this system nA = 5 and max j A f > 1. 
The simulator is set up as follows:

Sampling time:

Data length :

Input signal 

step signal

0.01

60[s]

for identification : the following
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 ul (t) _ (s (t) 0)T (53) 

212 (t) = (0 s (t) )T 

where s(t) is a step function. 
  In the case of the sub-space method, both step sig-

nal (54) and M series signal (55) are used for identi-
fication 

 u (t) _(s (t) 0)T,0 < t <60[s](54)          (0 
s (t))T, 60 < t < 120[s] 

u (t) = (ml (t) m2 (t))T , 0 < t < 120[455) 

where m(t) is a M series function with amplitude 1 
and the minimum period 11 samples. 

4.2 Results 

The plant is identified for each n(= 1, 2, • - • , 5). The 
model identified by the proposed method becomes 

stable with n = 1, 3, 5. The step responses of the 

(1 x 1) elements of these models are shown in Fig. 
1. From Fig. 1, the proposed method emphasizes low 
frequencies. 

  In the case of the sub-space method, the model 
becomes stable only with n = 5 when step input

is used for identification. The step response of this 

(1 x 1) element of the model is shown in Fig. 2. From 
Fig. 2, the model is not good even if n = nA. When 

M series input is used, the models become stable with 

Ti = 4, 5. The step responses of these (1 x 1) element 
of the models are shown in Fig. 3. From Fig. 3, the 

sub-space method does not emphasize low frequen-

cies. 

5 Conclusion 

The assumption as plant system matrix A satisfies 

~ A < 1 of the deterministic off-line state-space 
model identification method [1]  has been taken off. 
The method can obtain the model from input and 
output data with constant steady state. It has been 
verified by numerical simulations that the proposed 
method emphasizes low frequencies. 

  This method is suitable to identify mechanical 
systems without genarating noise or vibration be-
cause the method can identify MIMO system by us-
ing step responce.

Figure 1: Step responses (proposed meth.)



Figure 2

 t  [sJ 

: Step responses (sub-space meth. with step input)
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Figure 3: Step responses (sub-space meth. with M series input)
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