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Abstract

In this paper, we propose a deterministic off-line identification method [1] that obtains a state-space
model by using input and output data with steady state values. The method is composed of the method
[2] zeroing the 0 ~ N-tuple integral values of output error of single-input single-output transfer function
model and Ho-Kalman’s method [3]. The method has an assumption that plant system matrix A satisfies
|A| < 1 because the method utilizes the Taylor series expansion of the plant. We prove that the method can
be applied to plants without the assumption |A| < 1. The feature is that the method can identify by using
step responses, the derived state-space model is emphasized in low frequency range and, consequently, this
is suitable for a mechanical system identification in which noise and vibration are undesirable. Numerical
simulations of multi-input multi-output system identification are illustrated.

Key words: identification, state-space model, step response, multi-input multi-output, mechanical system

1 Introduction

The deterministic off-line identification method [1]
that obtains a state-space model by using input and
output data with steady state values has an assump-
tion that plant system matrix A satisfies |A| < 1
because the method utilizes the Taylor series expan-
sion of the plant. In this paper, we prove that the
method can be applied to plants without the assump-
tion [A| < 1.

Properties that an useful identification method
should have are as follows:

1. Small noise or vibration in identification ex-
periment, that is, a step signal is better than a
pseudo white signal.

2. The derived model is suitable for servo design,
that is, the model is emphasized in low fre-
quency range [4].

3. A reduced order model can be directly obtained
from input and output data.

4. State-space model can be obtained.
5. Robustness against unmodelled dynamics.

6. Robustness against disturbance.

As for 4, in multi-input multi-output (MIMO) iden-
tification, single-input single-output (SISO) type of
identification method requires the orders of the nu-
merators and denominators of all the elements in a
transfer function matrix. Consequently, this often
causes over-parameterization. On the other hand,
methods that derive state space model do not cause
this problem.

As for the above mentioned properties 1 ~
6, evaluations of some representative identification
methods are shown in Table | that includes our sub-
jective views. A least squares, a step response and
a frequency response methods are representative as
a deterministic off-line identification method. Since
an input signal, such as M series signal, used in a
least squares method is required to satisfy P. E. condi-
tion, it often causes resonance in a mechanical plant
which consequently results in large noise or vibra-
tion. And so is sine wave used in a frequency re-
sponse method. Although a step signal causes noise
or vibration at the moment when it is supplied, they
are attenuated asymptotically. Therefore a step signal
is practical for identification, because it causes noise
or vibration only at the beginning during a long time
interval of measuring, it can be generated easily by
switching on and off, and it omits the adjustment of



Table 1: Evaluations of representative identification methods

| 1[2[3]4]5]6
Least squares method[5],[6] | X | x | x | x | x | A
Frequency response method | x | x | x [ x | x [ A
Sub-space method[7], [8] Ol x OO A L
Kosaka's method[2] Ol1010 | x|0O]| x
Proposed method Olal0lOolA] x

sampling period required in using an M series sig-
nal. A conventional least squares method employ-
ing a step response restricts the order of an identi-
fied model [5]. In the case of servo system, it is de-
sirable that the modelling error is small in low fre-
quency range [4], but least squares methods have a
tendency to reduce the error in high frequency range
[6]. Sub-space based methods [7, 8] need to obtain a
sufficiently large size of, for example, Hankel matrix
before deriving its reduced order model, and also use
a least squares method in obtaining some system pa-
rameters. The method [2] zeroing the 0 ~ N-tuple
integral values of output error of single-input single-
output model has the properties 1, 2, 3, 5 but derives
transfer function model.

In this paper, we propose a deterministic off-line
identification method [1] that obtains a state-space
model by using input and output data with steady
state values. The method is composed of the method
[2] zeroing the 0 ~ N-tuple integral values of output
error of single-input single-output transfer function
mode] and Ho-Kalman’s method [3]. The method
has an assumption that plant system matrix A satisfies
|A| < 1 because the method utilizes the Taylor series
expansion of the plant. We prove that the method can
be applied to plants without the assumption [A| < 1.
The feature is that the derived state-space model is
emphasized in low frequency range.

The paper is organized as follows. In section 2,
assumptions are made for a plant, and the identifica-
tion method is stated. In section 3, the properties of
the identified model are stated. In section 4, numer-
ical simulations are illustrated to indicate the effec-
tiveness of the proposed method.

2 Identification algorithm

In this section, assumptions are made for a plant, and
the identification algorithm [1] is stated.

2.1 Plant to be identified

The plant to be identified is represented by the
following linear continuous-time n,-input n,-output
state-space system:

{ & (t) = Az (t) + Bu (t)
y(t) =Cuzx(t)+ Du(t)

where ¢t is time and z(t) € R", y(t) € R™ and
u(t) € R™ are the state, input and output vector, re-
spectively.

(M

2.2 Assumptions
We make the following assumptions for the system:
Al: det (A)#0
A2: C and A satisfy
—CA™!
rank _C.AQ =

__CA;(%—IJ

(2)

nA

where det (A) denotes the determinant of A and
«v, is the integer that satisfies

A
—»+1<n <D4 9
Ny Ty

(3)

2.3 Ildentification algorithm

The number of acquired input and output data with
steady state is n, where those data are denoted as
u;(t) and y;(t)(2 = 1,2,--- ,n,), respectively, and
u;(t)’s satisfy

Uny (00)]) # 0. (4

From input and output data, U(t) and py(t) are de-
fined as

det ([Ul (OC) Us {oc) v 5

U(t) = [ui(t) uz(t) - uny (t)]

[1 (00) uz (00) - - + Uny (00)] ! ; 3)
po(t) = [y (t) ya(t)- vnu( )]

11 (00) 12 (00) ++ -ty (00)] *. (6)



The integer «,, and n, are defined so as to satisfy

n T
— < ay,<—+1 (7
Ty Ty
ﬂp = Ofy + Ofu - 1 (8)

where n means the order of the system matrix Ain
the model. pg is derived as

po = po(0). 9)
pi’s (i = 1,2,--- ,n,) are derived as the following
equations:

t
pt) = [ @ -pUEdr 0
0
p = pi(o0) (11)
1
po) = [G@-pUe a2
0
p2 = p2(o0) (13)
’ t
pi(t) = / (e 1 () = piaU (7)) dr - (14)
0
pi = pi(o0). (15)
(ayny x ay,n,) matrix I is defined as
1 o2 Pay
H=|” P . . (16)
rorly p'np

By using the singular value decomposition, f is de-
composed as

H = UZVT (17)

where ¥ is the diagonal matrix of which elements are
the singular values of H. (a,n, x n) matrix O and
(n x ayn,) matrix C, are defined as

O = U(l:am,1:n)S2(1:n,1:n) (18)

(s = D (1:n,1:n)V(1:aun,,l: n.)T(l9_)
where MATLAB notation[8] is used. According to
this notation, A(a, : as,b; : by) means the matrix of
which elements are those in the a; ~ as columns and
the b; ~ b, rows in A. o

The estimated system parameter (A, B,C, D) is
obtained by the following calculations:

Oy O(1: (ayny —my),1:n) (20)
Oy = O((ny+1):ayny,1:m) (21)
A = 0,0, (22)
B = AC,(1:n,1:n,) (23)
¢ = —0(1:n,1:n)A (24)
D = py+CA'B (25)

where T denotes pseudo inverse matrix.

2.4 Another identification algorithm

Another algorithm to identify A by using C, instead
of O is stated here.,

A2’ is assumed instead of A2.

A2': A and B satisfies

rank [A'B, A?B,.--, A UB] =ny (26)
where a, 1s the integer that satisfies

n n
L < oy < Ay
Ty, My,

(27)

Instead of (3), (20), (21) and (22), we respectively use

L gy—pl (28)
'le ny

C, = C,0:m1: (oyny, —ny)) (29)
Cqo = Co(lin,(ny,+1):a,ny,) (30)
A = ¢4t (31)

By using this algorithm, the same results are derived
through the same procedure as the next section.

3 Properties of the model

In this section, it is shown that the model corresponds
with the plant if n = n 4 without assumption |A| < 1.

As U(t) has steady state from (4) and (5), by us-
ing the final value theorem, it follows that

det (tlﬂ U (t)) = da (m s (s)) £0(32)

where s is a complex variable and 7(s) means the
Laplace transformation of x(t). Therefore, using a
matrix U,(s) (det (U,(0)) # 0) of which elements
are rational functions of s, {/(s) can be expressed as

(33)



From (5), (32) and (33), we obtain

where 0 denotes a differential operator. p;;(t) is

_ _ yielded as
0.(0) = lim0.(s)
= lmsU (s) pis1 (1)
= lm U () - [ -pvenar )09
= lim [uq (£) wo (t) -+ tUny ()] t/ rt
t—oo — — )
141 (00) 13 (00) - - - Uy (00)] 7 ](; (/0 o ) Loy +é1 T
= fur (00) 1 (00) -y (o0)] pi a8 U () (dn)' — p(rs) ) dry - )(37)
[1 (00) Uz (00) - - -y, (00)] t .
= Inluxnu' ’ (34) = /{; ((Po (r) — (PO +pd 4+ ,01'—151_1) U (T))
By using the final-value theorem, we obtain :p’?éiU (1)) (dr)'™
po = po(oo) . )(9) = ]0 (Po () = (po + 18 + -+ + pica 6 + i)
= Jim [y (2) g2 (8) -~y (2)] U (7)) (dr)*! (39)
Ty ; - 6 § 3
_ 11E;((o;)+ué([31) At; Fg):)] )6) and then p; 4 is yielded as
[tU1 (5) U2 (8) """ Thn, (5)] Pi+1
[u1 (00) w2 (00) - -ty (00)] =7 )(1) = Ef&?iﬂ () -)s)
. - Ua (s -
= lﬁ%S(D+C( ~A)"' B) 9() = lims :1—1 (Do (s) = (po+ prs+ -+ + pis’) U (s))
= )(5), (33) *.)(39)
= (P-C4 Bl . ((D+C(sI - A)" B)
— D—CA'B. " )(34) (35) =0 51 !
o Uy (s
p1 1s obtained in the same way as - (PU st *Pisz)) 3( )
o = mloo) 1 )IL) 1 A 1
t = lim — D (sl —A)  B) —
— Jim [ n() = U ()dr -)00) e N .y
ey (D—CA™'B) - CA™®Bs— - — CA"""VBg"))
" iiirés%((D-i—C(sI A)1B) 0., (s) )(35), (36), (38)
U (s) = pol () -)(1), (5), (6) = lim = (C(sT-A) " B
= Im((D+C(sI=A)"B) = (D=CA'B))  CA'B+CA?Bs+ -+ CA B T,(s )
7 . 1 E
Las(s) 7 )(33), (35) = lim 5 (C (T -4)7
T —-1 -2, .. —{i+1) 2 7
= lim (C((sI—A)"'+AY)B) Ua () 4 ]+A ‘H JilA )B)a(s )
&0 _ (S) = 11:13«3—#(6'(31*14) (I+ (s - A)
. e
= ll_l,%(c(ﬂ A) (A ) )—fs (A Ly A 254 ... 4 Al 1)) B) 7 (s)
= —CA7B. )(34) (36) lim — (C (sI — A)~ (SA 1
0 g
Assume that p;(t) (i > 1) satisfies (SL} —A) (A2 4o AT )) B) U, (s)
) = [ —rporo = B OG- A7 (47
+pi 167U (7)) (dr)! (37) (sI—A) (A3 +--+ A V) B) T, (s)
p; = —CAG+UR (38)



lim —-1—

(S‘I A) (A0 s 5')) B) U, (s)

= llI%—(C(SI A7 (A BY O, ()
- 115%(0(51 A)TPATEHDB) T, (s)
= —CA 2B, --)(34) (40)

Therefore, (37) and (38) follow inductively. By sub-
stituting (38) for (16), we get

From (25), (35), (47), (48) and (49), we obtain

D = p+CA'B
= D-CA'B+CA'B
= D-CA'B+CA'B
D = D. (50)

From the above,
plant.

Next we consider that the mothod emphasizes low
frequencies. By using the Taylor series expansion

the model corresponds with the

H = around s = 0, the plant (1) is expressed as
CA2B CA B CA~1B

| ca*B catB af® = (O+C (sI —A)" B)a(s)

: : ; ' = (D+C(-A)"'B)—C(-A)*Bs+---

—ay—1 Y A—np—1 — (7 — | .
oA B cA B +C——-———( (Et S?}' (—A) "' Bs ! 4 .. ) w{s)
Ifn = na, from (3), (7), (8), (17), (18), (19), Al, A2 P 2
and [3], it follows that - ((gA_iC;Aé]B) - ()?j )BS - 15
- s —w- (s ).

H = 0G, (42)
—~CA™!
(A2

& = C.A (43)
—CA™ %

Gs = [A‘lB, A7?B, ..., A"“"B}. (44)

From (20), (21) and (43), we get

O4 = 0,A7. (45)

From (45), the pseudo inverse matrix O, is defined
as

Od = (4) (47 (4)7) " (070.) 0T e6)

From Al, A2, (22) and (46), we derive

A = oo,
_ T BT e B O
= (ANT((a") @
A = A (47)
From Al, (7), (23), (44) and (47), we obtain
B AC,(1:n,1:ny)
= AA'B
. B B. (48)
From (3), (24), (43) and (47), we derive
¢ = ~O(1:ny,1:n)A
= —(-cA A
& = G (49)

The coefficients in (51) are derived from low to high
order (0 ~ n,) in turn, from which A, B,C and D
are obtained. That is, the coefficeients higher than n,,
are ignored. This leads to emphasize low frequencies
because low order coefficients represent the charac-
teristics in low frequency range.

4 Numerical simulations

In this section, the proposed method is applied to
identify 2-input and 2-output system by using step re-
sponses of the system. The model is compared with
conventional sub-space method [8].

4.1 System and simulation setting

The plant to be identified is as follows:

G(s)=
10200 S+IU) 2+52) 1
250 (5+2)(s2+2-0.1-105+ 102) Ttz (52)
1 102 (—s+50)
50 (8242:0.2-55+52)

The order of this system n4 = 5 and max|A| > 1.
The simulator is set up as follows:

Sampling time: 0.01
Data length : 60[s]

Input signal for identification :
step signal

the following



w(t) = (s@) 0)
w(t) = (0s(1)

where s(t) is a step function.

In the case of the sub-space method, both step sig-
nal (54) and M series signal (55) are used for identi-
fication

(33)

(s(t) 0)" ,0<t<60[s]
u(®) { 0 s()" ,60<< 120 OF
u(t) = (mi(t) my(t)" ,0<t<120[H55)

where m(t) is a M series function with amplitude 1
and the minimum period 11 samples.

4.2 Results

The plant is identified for each n(=1,2,--- ,3). The
model identified by the proposed method becomes
stable with n = 1,3,5. The step responses of the
(1 x 1) elements of these models are shown in Fig.
1. From Fig. 1, the proposed method emphasizes low
frequencies.

In the case of the sub-space method, the model
becomes stable only with n = 5 when step input

1s used for identification. The step response of this
(1 x 1) element of the model is shown in Fig. 2. From
Fig. 2, the model is not good even if n = n 4. When
M series input is used, the models become stable with
n = 4, 5. The step responses of these (1 x 1) element
of the models are shown in Fig. 3. From Fig. 3, the
sub-space method does not emphasize low frequen-
cies.

5 Conclusion

The assumption as plant system matrix A satisfies
|A| < 1 of the deterministic off-line state-space
model identification method [1] has been taken off.
The method can obtain the model from input and
output data with constant steady state. [t has been
verified by numerical simulations that the proposed
method emphasizes low frequencies.

This method is suitable to identify mechanical
systems without genarating noise or vibration be-
cause the method can identify MIMO system by us-
ing step responce.
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Figure 1: Step responses (proposed meth.)
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