
Numerical Arts in the Simulation of Star Formation

         Masayoshi Kiguchi 
 RIST Kinki University 

3-4-1 Kowakae, Higashi-Osaka, Osaka, Japan 

      (Received January 20, 2010)

Abstract

  We summarize the numerical technique used in the simulation of the gravitational collapse of the 

interstellar gas. The dynamical range of 1018 in density can be treated using personal computer. 
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1 Introduction

We have long time continued the pursuit of the prob-
lem of star formation by simulating the gravitational 
collapse in the interstellar gas[?]. The problem is 
the following: The isothermal interstellar gas of 
10 K with small angular momentum, with the mass 

1 M. is in gravitational equilibrium in the radius 
_̂J 104 AU. When the small density perturbation is 

given, the gas begins the gravitational collapse. In 
the final stage of the collapse, what core is formed? 

  Using personal computer, we have succeeded to 
calculate the evolution process, which begins the col-
lapse at the density p 10-19 g cm-s, makes the first 
core and brings about the second collapse and finally 
bounces at p ^J 10_i g cm-3. 

  In this paper, we summarize the calculation tech-
niques used in this simulation.

2 Numerical method

2.1 Basic Equation 

The equations which describe the collapse of inter-
stellar gas are the equation of continuity, 

         ap _—a(pvk) 
         ataxk 

the Euler equation 

a pvi aacb 
     at=—ax(pvivk + Pik)—paxi

and the energy equation 

 a(
pv2a(pvi(+ pc) _—1vZ+ w)) — pvi at 2 ax
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where 
p  

p(y — 1) 
is the internal energy density per volume, 'y is the adi-
abatic exponent, and 

               w=E+p 
p 

is the enthalpy density. As the boundary condition, 
we adopt the solid wall condition. 

The gravitational potential 0 is given by the Pois-
son equation 

= 47rGp. 

The boundary value of the gravitational potential is 
the value of the spherical potential for which total 
mass in the simulation box is concentrated to the cen-
ter point.

2.2 Nested grids method 

In order to attain sufficient resolutions, we use the 
nested grids system. The i-th level grids system con-
sists of 2' x 2' x 2' — 2n-1 x 2n-1 x 2n-1 grid cells. 
The minus term shows that the central part of the 

grids system is removed and replaced finer grids sys-
tem. The (i + 1)-th level grids system is implanted in 
the central 2n-' x 2n_ 1 x 2n-' grids of i-th level grids 

cells and consists of 2n x 2n x 2n — 2n-1 x 2n-1 x 2n-1
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grids cell. The finest level grids system consists 
 2'  x 2'  x 2n grid cells. 

  As we use the explicit method for the time evo-
lution, the time step widths are restricted by the 
Courant condition. The reason that we can trace the 
time evolution in spite of the extreme fine resolutions 
is that the step width for each nested level is different. 
If we let the finest nested level f-th level, calculation 

proceeds as follows: First, in the f-th level grids sys-
tem, we follow the time evolution with the time step 
width dt1 and dt2. The step width is chosen suffi-
ciently small that the Courant condition is satisfied 
and the density variation in one step is sufficiently 
small. Next, we follow the time evolution in (f — 1)-
level grids system with the step width dt1 +dt2. Next, 
we follow the evolution for f -level grids system with 
the step width dt3+dt4, and next we follow the evo-
lution for (f — 1)-level grids system with time step 
dt3 + dt4. Then, we proceed to the time evolution 

for the (f — 2)-level grids system with time step 
dt1 + dt2 + dt3 + dt4, - .. 

  If the Courant condition is violated in the inter-

mediate level, we must repeat the calculation, so that 

we must make dt's sufficiently small. 

  In order to calculate the flux through the surface 

of the grids cell which touches the outermost surface 

of the i-th level, we have to estimate the quantities 

in the neighbouring cell which lies in the (i — 1)-
th grids system. We estimate this quantities by the 

interpolation on the line which pass through the ver-

tex of the cell. The scheme of the interpolation is 

shown in Figure 1. The flux through the surface of 

i-th level cell which touches the innermost surface of 

the i-level grids system is determined from the flux 

through the surface of (i + *level gird cell to keep 
the conservation law.

Figure 1: The quantity at • in a virtual cell is 

interpolated from the quantity at * in the fine celI

and the quantity at ® in the coarse cell.

2.3 Gravity 

We calculate gravitational potential from the coarsest 

grids system to the finest grids. We calculate the i-
th level potential, then find the boundary value of the 

potential for (i + 1)-th level, and using this boundary 
condition we calculate the (i + 1)-th level gravitation 
potential. The density distribution in the inner part of 
coarser grids system is obtained from the finer grids 
using the reduction procedure which is adjoint to the 
interpolation procedure. 

  As the Poisson equation is a linear equation, the 
superposition principle holds. We solve the Pois-
son equation as a Dirichlet problem with zero bound-
ary and also solve the Laplace equation with given 
boundary values. The solution of the Poisson equa-
tion with given boundary values is the sum of these 
two solutions. 

  The discrete Laplace operator 
fi .fi,j,k — .fi,j,k",fi-1,j,k  

hh  
h 

+  hh  h 

fi,j,k-1-fi,j,k _ fi,j,k-fi,j,k-1  
  +  hh  h 

is transferred to a simple product operator using 
trigonometric addition theorem in Fourier transferred 
space, the solution of the Dirichlet problem in dis-
crete space is fast and stably obtained by the FFT 
method. 
  The bothersome point is there in solving the 
Laplace equation. The solution in two dimensional 
Laplace equation can be expressed in terms of bound-
ary values in Fourier space. In this case, however, nu-
merical error is large. In the three dimensional case, 
numerical error exceeds a tolerance level. Therefore, 
we use the linear multigrid method[?], which makes 
the numerical solution converge using the prolonga-
tion and the reduction procedure. The prolongation 
is carried out by 8-points linear interpolation, and the 
reduction operator is selected to be adjoint to the pro-
longation operator. As the numerical values of the 
solution for the Laplace equation is between the vari-
ation in the boundary values, convergence to the so-
lution is secure and fast. 

  When we once have used the multigrid method 
for Poisson equation with given boundary values, we
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have faced experience that there are cases conver-

gence was not sufficient and it made the calculation 
unstable.

2.4 Flux 

To solve the conservation equation 

          at            t+ div (g") = 0, 

we have to calculate the flux through the surface of 

 each grid cell. we assume that the physical quantity 

is constant in each grid cell and is discontinuous at 

the surface of the cell. We solve approximately the 

time evolution of the discontinuity, that is, solve the 

Riemann problem, and estimate the Godunov flux. 

  In the Riemann problem, the region between non-

linear wave is called star region. The solution proce-

dure to solve the Riemann problem is splitted into 

three sub-problems:

1. To find star values

P., u* 3 P*L, P*R,

where p is the pressure, u is the normal com-

ponent of the velocity, p is the density, and L is 
left, R is right.

2. To find the solution for tangential velocity v, w 

  throughout the wave structure.

3. To find the solution for p and p inside sonic rar-

  efaction.

  In solving Riemann problem, we make a large ap-

proximation. For the approximate Riemann solver, 
We use the P(physical)-ordering Osher scheme[?] 
with the numerical stability in view. In P-ordering 
Osher scheme, one assumes a-prior that the type of 
solution for the Riemann problem has a nonlinear 
two rarefaction wave type. In O(original)-ordering 
scheme, the type was assumed a-priory to be a two 
shock type. 

  P-ordering scheme can treat exactly rarefaction 
case and gives the correct condition to appear the 
vacuum region. P-ordering is robust for the case of 
strong shock and gives good approximate Godunov 
flux. O-ordering scheme is broken for strong shock 
but P-ordering withstand for this case.

u1 - u0 >> 0 means strong rarefaction, and 

u1 - u0 << O means strong shock. When 

              2 
         ui—u0 > ------~(Cs0+cs1) 

where c8 is the sound velocity and 'y is the adiabatic 

exponent, vacuum appears and the calculation breaks 

down. In this case, we have used the complete up-

wind scheme.

2.5 Heat 

We do not solve the radiative transfer yet. Instead, 
we have used the barotropic equation of state which 
is obtained from the simulation of spherical collapse: 

• For the case p < pi = 10416 g cm-3, p = 
kpT 

,T = 10 K, where mu is the atomic mass 
Amu 
units, k the Boltzmann constant, it the mean 

    molecular weight. 

• For the case pi < p < P2 = 10-11 g cm-3, 
                   to                               2 

   P = Pi exp[(1+P)) log Li ], where                 (log22)2
) P1 

kpiT  
P1 = Am

u 

• For the case P2 < p < p3 = 8.5 x 

10' g cm-3, p = P2(—Y1' where p2 = 
P2 
        'y+ 2P2P27+2 

   p1exp[3log
P1]= pi(p1)3 , 

• For the case p3 < p < p4 = 10-2g cm-3, 

    p = 733(p)1.18, where p3 = p2(P3 ) ry 
  P3P2 

• For the case p4 < p, p = p4( 12-r/3,  where 
P4 
             P41.1s 

    p4p3(—}. 
          P3 

When p3 < p < p4, the gas consists of molecular 

hydrogen, atomic hydrogen and Helium atom. The 

adiabatic exponent in this range is given by 

                          ((k * X + Y/4.) * 5./2. + (1 - k)/2. * X * 7./2.) 

 - 

   ((k * X + Y/4.) * 3./2. + (1 - k)/2. * X * 5./2.) 

where 

           =(log p - log p33)           k
(log p4 - log p3)
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X, Y is the mass fraction of hydrogen and helium. 

 We use the value X  = 0.73, Y  = 0.25. When ev-

ery time the time steps are proceeded, the result of 

calculation for the heat energy is discarded and is re-

placed the pressure which are determined from the 
calculated value of the density. This part is the weak 

point of our calculation and we are now carrying out 
improvements.

3 Result of Calculation

In the following, we show a numerical result of our 

calculation for a typical model. In a simulation box 

with the edge length of 2 AU, we put T = 10 K 

isothermal spherical gas in gravitational equilibrium,

and multiply the density by the factor 1.1. As a re-

sult, the mass of 1.17 M. is contained in this simula-

tion box. We give the gas solid rotation of the angular 

velocity Q = 2 x 102/y. 
  The grids system is such that 26 x 26 x 26 grid 

cells are 20 times nested. We use the CPU Xeon on 

E5450 motherboard at 3.0 GHz. We have continued 

this calculation 3 days. 

  The Figure 2 show the evolution of the density at 

center after the time t = 1.0155 x 105 y. When the 

core density reaches 0.01 g cm-3, the core begins to 

bounce. 

  In Figure 3, we show the density distribution be-

fore and after the bounce. 

  In Figure 4, we show the angular momentum dis-

tribution before the time of bounce.

Evolution of center density

Figure 2. The density at center vs duration from t =

Density distribution

1.0155 x 105y

Density distribution

0.01
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 Figure 3. Density vs distance from center at t = 

(right). + denote the density in the x direction, x

                 ICLV 
100000.0001 0.001 0.01 0.1 1 10 100 1000 10000 

r(AU) 

1.01547546 x 105 y ( left) and t = 1.01547558 x 105 y 
denote ones in the z direction parallel to the rotation axis.



Angular momentum distribution

                                  r(AU) 

 Figure 4. Angular momentum distribution at t == 1.01547546 x 105 y.

4 Summary 

We have constructed a code which simulates the star 

formation process on our personal computer. This 

open the possibility to study the star formation pro-

cess in detail easily. We have explained the detail of 

the nested grids method. The point which we succeed 

the simulation is in the usage of the FFT to solve the 

Poisson equation.
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