アルマイト従事者のためのやさしい化学（XV）
－初めて電解液を分析する人のために－

野口 駿雄

一連載講座－

I. はじめに

本号では、標準 EDTA 溶液の標準法について述べ、硫酸電解液の分析法、即ち、遊離硫酸の定量法、全硫酸の定量法及び溶存アルミニウムの定量法について述べる。また、溶液の採取、測定器具の取扱い方、メニスカス（液面・渦曲部）の合わせ方又は目盛りの読み取り方など分析を行う上での諸操作で注意しなければならない点については既に述べて来たので詳細は省略するが、図解の中では分析操作に誤りがないように、また手際よく行えるように、前号を見直さなくても良いように前回と同様に注意事項を記入した。

II. 試料及び試薬の準備

1）分析用試料

硫酸電解槽より電解液約 50 ml を 100 ml ビーカに汲み取る（試料溶液を保管しない場合）。

【注意】一般に試料溶液は、上記のように必要量をビーカに採取すれば良いが、分析操作中に他の試薬を入れたビーカと混同したり、他の試薬を入れてしまったり、ビーカを倒してこぼしたりした場合、既に同じ試料溶液について 3 回ほど滴定を行ったのちであれば良いが、そうでなければ試料溶液を再度採取しなければならない。分析したときの時間が、試料溶液を採取した時から経過していると、同じ条件の試料溶液を採取できなくなる。従って、通常は、余分に試料溶液を採取して、試薬びん（アルカリ溶液であればボリビン）に保管し、採取した槽、年月日、時間、採取者名等を明記したラベルを貼付しておく。

2）標準溶液及び試薬類

（1）標準水酸化ナトリウム溶液（1 M-NaOH 溶液）

既に調製し、標準した標準溶液を用いる。

（2）標準亜鉛溶液（0.05 M-Zn 標準溶液、 f = 1000）

（3）標準 EDTA-2Na 溶液（0.05 M-EDTA-2Na 標準溶液）

【標準 EDTA-2Na 溶液の標準法】

『0.05M-EDTA-2Na (0.05 M エチレンジアミン四酢酸二ナトリウム) 標準溶液及び標準亜鉛溶液の調製法は、本原稿（XIII）初めて電解液を分析する人のために① 262 号会誌で述べたのでここでは省略する。0.05M-EDTA-2Na の標準法は次の方法で行う。

① 0.05M-EDTA-2Na 溶液を 10 ml のホールビペットで採取し、300 ml コニカルビーカに移す。

② 10 ％ 酢酸アンモニウム溶液 10 ml をメスシリンダーで採り、これに加える。

③ 純水約 80 ml をメスシリンダーを用いて加える。 (コニカルビーカの目盛 100 ml まで洗
連載講座

びんを用いて純水を加えても良い。）
④ メチルレッド指示薬を 1 滴加える。硫酸を
⑤ (1 + 1) 硫酸をスポイドで、溶液が赤くなるまで滴下する。
⑥ (1 + 2) アンモニア水をスポイドで、溶液が橙黄色になるまで滴下する。
⑦ キシレノールオレンジ指示薬を 4 ～ 5 滴加える。
⑧ 標準亜鉛溶液をビュレットに、ロートを用いてこぼさないように、0 目盛りより上まで入れる。
⑨ ビュレットのコック（活栓）の下に気泡がないか確認して、無ければ次の操作に移る。あ
れば、コックを素早く開閉し、空気溜りを流出させる。メニスカスが 0 目盛りより上ない
ときは溶液を追加し、上にあるときは次の操作に移る。
⑩ ロートを外し、ビュレットの 0 目盛りにメニスカスを合わせ。
⑪ 標準亜鉛溶液をビュレットより滴下し、橙黄色から赤色に変わったとき終点とする。
この場合も、1/2 滴や 1/3 滴で変色するので終点近くでは注意して滴定を行うこと。

(4) 10 % ふっ化カリウム溶液
(5) (1 + 1) 硫酸
(6) 10 % 酢酸ナトリウム溶液
(7) (1 + 2) アンモニア水
(8) 1 % フェノールフタレイン指示薬
(9) 0.1 % チモールブルー指示薬
(10) 0.1 % メチルレッド指示薬
(11) 0.1 % キシレノールオレンジ指示薬

Ⅲ 硫酸電解液の分析
1）遊離硫酸の定量
1. 試料及び試薬類
　1）試料溶液：硫酸電解液を約 200 ml（通常は 50 ml ～ 60 ml 程度）を汲み取り、室温であ
ることを確認して試薬びんに保存する。この中より約 50 ml をビーカに移し（ビーカ、
ホールビペット、ビュレットなどが洗って満れている場合は共洗いをする）、試料採取に
供する。
　2）1M-NaOH 標準溶液
　3）10 % ふっ化カリウム溶液
　4）フェノールフタレイン指示薬

2. 器具類
　ホールビペット（及びビペット台） 5 ml
　ビュレット　（及びビュレット台） 25 ml
　ビーカ 100 ml
　ビーカ（試料採取用として） 300 ml
1. 講座

ビーカ

1 L （必要であれば廃液用に準備）

コニカルビーカ

300 ml

ロート（であればロート台）

洗びん

500 ml

3． 定量手順

（1）100 ml ビーカに入れた試料溶液（電解液）を、5 ml のホールビペットで標線より上まで
吸い上げる。

（2）メニスカスを標線にあわせる。

（3）300 ml のコニカルビーカに移す。ホールビペット内の試料溶液が约 1/3 程度になったと
き、コニカルビーカ内の溶液に触れないように、先端をコニカルビーカの底近くの内壁に
軽く触れ、ホールビペット内の溶液が、内壁を伝って流れ出るようにして排出する。

（4）先端に残った溶液は、ホールビペットの球部を握り排出する。

注意】このときビペットの①～③を押さえない。また、A の球部と②を押さえて強制
排出をしないこと。口で吸い上げた場合は、親指と中指で上部口付近を軽く持ち、人差し
指で口を押さえて球部を握る。この方法は、ホールビペットの上下の入り口が塞がれた状
態（上部は指で、また、ビペットを使用したときはビペットで塞がれ、下部は溶液で
塞がれている）で球部を握ると、中空気が手で温められて膨張するので、溶液が先端より
押し出される。呼気で吹き出せばならない。

（5）純水 70 ml をメスリンダーではかり採って加える。

（6）10 % ぶっ化カリウム溶液 30 ml をメスリンダーではかり採って加え、良く振り混ぜる。

（7）1 % フェノールフタレイン指示薬を 2 ～ 3 滴加え、良く振り混ぜる。溶液の色は無色

（8）標準水酸化ナトリウム溶液で滴定し、うすい红色を帯びたとき終点。

4． 反応式

1 モルの水酸化ナトリウムと 2 モルの硫酸が反応し、1 モルの硫酸ナトリウムと 2 モルの水を

生成する。

反応式： 2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O

2] 全硫酸の定量

1． 試料及び試薬類

1）試料溶液：前記 1] 1．で準備した試料溶液を用いる。

2）1M-NaOH 標準溶液

3）1 % フェノールフタレイン指示薬

2． 器具類

ホールビペット（及びビペット台） 5 ml

ビュレット （及びビュレット台） 25 ml
3. 定量手順

(1) 100 ml ビーカに入れた試料溶液（硫酸電解液）を、5 ml のホールビペットで標線より上まで吸い上げる。
(2) メニスカスを標線にあわせる。
(3) 300 ml のコニカルビーカに移す。ホールビペット内の試料溶液が約 1/3 程度になったとき、コニカルビーカ内の溶液に触れないように、先端をコニカルビーカの底近くの内壁に軽く触れ、ホールビペット内の溶液が、内壁を伝って流れ出るようにして排出する。
(4) 先端に残った溶液は、ホールビペットの球部を握り排出する。
(5) 純水をメスシリンダーで 70 ml 加え、よく振り混ぜる。
(6) フェノールフタレイン指示薬を 2 ～ 3 滴加えてよく振り混ぜる。溶液は無色。
(7) 1 モル標準水酸化ナトリウム溶液をビュレットに、ロートを用いて (ロートを少し持ち上げる) こぼさないように入れる。
(8) ビュレットのコックの下部に気泡が無いかを確認し、なければ滴定する。あれば、素早くコックを開閉して気泡を排出しメニスカスを 0 に合わせる。
(9) よくかくはんしながら、0.5 ml / 秒以下の速度で滴定を開始し、終点近くでは、1滴づつ滴下する。
(10) さらに、終点近くでは 1/2 滴又は 1/3 滴などの極少量をビュレットの先端に出し、コニカルビーカの底近くの内壁に軽く接触させ、滴を内壁に移す。
(11) 滴を洗びんで洗い流し、よくかくはんする。この操作を終点になるまで繰り返す。
(12) 僅かに紅色になったとき終点。

4. 反応式に関連注意事項

この場合は、水酸化ナトリウムと硫酸の反応で、次式のように 2 モルと 1 モルで反応する。

反応式 : \(2\text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O} \)

水酸化ナトリウムも硫酸も過不足なく完全に中和された溶液では、pH7 になる。従って、標準水酸化ナトリウム溶液が極わずかでも多くこの溶液中に入るとアルカリ性溶液になり、pH は大きく上昇（アルカリ性側に移行）する。故に、標準水酸化ナトリウム溶液で滴定した場合、終点で水酸化ナトリウム溶液が 1/2 滴又は 1/3 滴又はそれら以下の極微量の過剰が入った場合でも、pH はアルカリ性側に大きく変化し指示薬を変色させる（指示薬がフェノールフタレインの場合、無色から紅色になる）。特に、1 モルの高濃度溶液を使用しているためその影響は大きく、入り過ぎないように特に注意する必要がある。
31溶存アルミニウムの定量

1. 試料及び試薬類
 1）試料溶液：全硫酸の定量用に準備した試料溶液を用いる。
 2）0.05M-Zn 標準溶液
 3）0.05M-EDTA・2Na 標準溶液
 【以上、0.05M-Zn 標準溶液及び 0.05M-EDTA・2Na 標準溶液の調整法は、（XIII）初めにて電解液を分析する人のために⑦、本会会誌 262 号会誌を参照】
 4）(1 + 1) 硫酸溶液
 体積比で水 1（例えば 50 ml）に対して硫酸 1（例えば 50 ml）の割合で混合する。混合する場合は、純水 50 ml を 200 ml ピーカに入れ、冷却し、ガラス棒でかくはんしながら極少量づつ 50 ml の硫酸を加えて調製する。
 5）(1 + 2) アンモニア溶液
 体積比で水 1（例えば 50 ml）に対してアンモニア水 2（例えば 100 ml）の割合で混合する。
 6）10w/v % 酪酸アミノニウム溶液
 100 g の酪酸アミノニウムを純水で溶解して全量を 1 L にする。
 7）0.1 w/v % チモールブルー溶液（指示薬）
 0.1 g（100 mg）のチモールブルーを 20 ml のエチルアルコールに溶解した後、純水で 100 ml にする。
 8）0.2 w/v % メチルレッド溶液（指示薬）
 0.2 g（200 mg）のメチルレッドを 90 ml のエチルアルコールに溶解した後、純水で 100 ml にする。
 9）0.1 w/v % キシレノールオレンジ溶液（指示薬）
 0.1 g（100 mg）のキシレノールオレンジを純水で溶解して、全量を 100 ml にする。

2. 器具類
 ホールピペット（及びピペット台） 5 ml 及び 10 ml
 メスフラスコ 100 ml
 ピュレット（及びピュレット台） 25 ml
 ピーカ 100 ml
 ピーカ（試料採取用として） 300 ml
 コニカルピーカ 1 L（必要であれば廃液用に準備）
 ロート（あればロート台） 300 ml
 洗びん 500 ml

3. 定量手順
 (1) 100 ml ピーカに入れた試料溶液（硫酸電解液）を、5 ml のホールピペットで標線より上

-11-
一連載講座——

まで吸い上げる。
(2) メニスカスを標線にあわせる。
(3) これを100 mlメスフラスコに移し、純水を用いて正しく100 mlの標線に正しく合わせる。
(4) 洗って乾燥した（又は少量の溶液で共洗いたい）ビーカーに移し、
① 硫酸電解液中の溶存アルミニウムの濃度が18 g/L以下のときは、10 ml
② 硫酸電解液中の溶存アルミニウムの濃度が18 g/Lを超えるときは、5 mlをホールビペットで採取する。
【硫酸電解液中の溶存アルミニウムの濃度は、各社で範囲を決めて管理されているので、それを参考にして採取すればよい。ここでは、溶存アルミニウムの濃度が18 g/L以下と仮定し、10 mlをホールビペットで採取した場合について以下の説明をする。】
(5) 300 mlのコニカルビーカに移す。ホールビペット内の試料溶液を約1/3程度になったとき、コニカルビーカ内の溶液に触れないように、先端をコニカルビーカの底近くの内壁に軽く触れ、ホールビペット内の溶液が、内壁を伝って流れ出るようにして排出する。
(6) 先端に残った溶液は、ホールビペットの球部を振り排出する。
(7) 0.05M-EDTA・2Na標準溶液約30 ml〜40 mlを100 mlビーカーに移し、その10 mlをホールビペットで分取し、コニカルビーカに加える。
(8) (1+1)硫酸約1 mlをスポイトで用いて加える。
(9) チモールブルー指示薬1〜2滴を加える。
(10) 10％酢酸アンモニウム溶液を、溶液の色が赤色から黄色に変わるまで、かくはんしながらスポイトで注意して加える。
(11) 直ちに加熱して煮沸した後、流し又は水槽を用いて、ゆっくり混ぜながら室温まで冷却する。
(12) 水を加えて全量を約100 mlにする。（コニカルビーカの目盛りを利用して）
(13) メチルレッド指示薬1滴を加えてよく振り混ぜる。うす赤く着色する。
(14) (1+2)アンモニア水をスポイトで用いて、よく振り混ぜながら溶液が橙黄色になるまで加える。
(15) キシレノールオレンジ指示薬を3〜4滴加えて再びよく振り混ぜる。溶液は黄色になる。
(16) 0.05M-Zn標準溶液を、ロートを用いてピュレットに入れる。（ピュレットが洗って濡れていない場合は、共洗いをする）
(17) ピュレットのコック（活栓）の下部に空気溜りが出来ていないか、確認をして空気溜りがあれば素早くコックを開閉して空気を排出する。
(18) 液面（メニスカス）が0目盛りより下であれば標準溶液を追加する。
(19) ロートを外し、メニスカスを0目盛りに合わせる。
(20) よくかくはんしながら0.5 ml/秒以下の速度で滴定を開始する。
(21) 終点近くでは1/2滴又は1/3滴などの極少量をピュレットの先端に出し、コニカルビーカの底近くの内壁に軽く接触させ、滴を内壁に移す。
(22) 滴を洗びんで洗い流し、よくかくはんする。この操作を終点になるまで繰り返す。
(23) 僅かに赤紫色になったとき終点。
4. 反応式
EDTA・2Na と 二価 ～ 四価金属イオン（亜鉛は二価金属イオン、アルミニウムは三価金属イオン）とは 1 モルと 1 モルで反応し、キレート化合物を生成する。【本誌 254 号、p9 ～ p10 参照】

V. 図解による硫酸電解液の分析手順
1. 試薬類の準備
硫酸電解液 標準水酸化ナトリウム溶液 (1M-NaOH) 標準 EDTA・2Na 溶液 標準亜鉛溶液 (0.05M-EDTA・2Na) [0.05M-Zn(II)]

① 試料溶液
10%亜化カリウム溶液 (1+1)硝酸 フェノールフタレイン指示薬 チタールブルー指示薬

② 各種標準溶液
10%硝酸アンモニウム メチルレッド指示薬 キシレールオレンジ指示薬

③ 各種試薬溶液
1+2 アンモニア水 10%硝酸アンモニウム

④ 各種指示薬溶液
連載講座

2. 器具類

① ビペット

② ビュレット

① ビペット及びビペット台
ビュレット及びビュレット台

② ビペットとビペット台
ビペット台

③ 準定の方法
及びビュレットの
活栓の持ち方

④ メスフラスコ

⑤ ビペット
1] 遊離硫酸の定量
手順① 硫酸電解液をピーカより5mlのホールビペットに吸い上げる。

手順② 5mlホールビペットに吸い上げた試料溶液を300mlコニカルビーカに移す。

手順③ 100mlメスリンダーで純水70mlを加える。

手順④ ふっ化カリウム溶液30mlをメスリンダーで加えてよく混ぜる。

手順⑤ フェノールフタレイン指示液を2〜3滴加え、よく混ぜる。

注意）ホールビペットの先端を、コニカルビーカの底近くの内壁に軽く触れながら流下させる。
手順⑥ ロートを使ってビュレットに標準水酸化ナトリウム溶液を0目盛りより少し上まで入れる。手順⑦ カックの下に気泡が無いかを確かめ、あればカックを素早く開閉して空気を出す。

手順⑧ 0の目盛りより少ない場合は、標準溶液を追加した後、①ロートをはずしてから、②メニスカスを0目盛りに合わせる。

手順⑨ 滴定を始める。
[注意] 滴定速度を0.5ml/秒程度で滴下する。終点が近くなると無色から一時的に赤味を帯び、摺拌するとまた無色に戻るようになる。このように終点が近付くと色の変化で判るので、1滴ごとによく摺拌しながら操作を繰返す。

摺拌しながら
着色に注意
手順① 1滴を滴下して赤色が消え難くなってくると、ビュレットの先端を少し膨らませ、1/2滴又は1/3滴を出し、コニカルビーカの内壁に滴を付けて、洗びんで洗い流す。

(1) ビュレットの先端の滴をコニカルビーカの内壁に付けて移す。

(2) 洗びんで洗い流す。

手順③ 計算
1) 一般式

遊離硫酸 (g/L) = V × f × 9.8

V：滴定量 (ml)
f：1M-NaOH のファクター

V：13.55ml、f：1.004
と仮定して数値を一般式に代入して計算すると、

遊離硫酸 (g/L) = 13.55 × 1.004 × 9.8
= 133.32 ≈ 133.3

遊離硫酸 = 133.3g/L
2）全硫酸の定量
手順① 硫酸電解液をピーカより5mlのホールビペットに吸い上げる。

手順② コニカルピーカに移す。

手順③ 純水約70mlをメスリンダーで加え、よく振り混ぜる。

手順④ フェノールフタレイン指示薬3〜4滴を加え、よく振り混ぜる。

手順⑤ ロートを使ってビュレットに標準水酸化ナトリウム溶液を0目盛りより少し上まで入れる。
手順⑥ コックの下に気泡が無いかを確かめ、あればコックを素早く開閉して空気を出す。

手順⑧ 滴定を始める。
[注意] 滴定速度を 0.5ml/秒程度で滴下する。終点が近くなると無色が一時的に赤味を帯び、振拌するとまた無色に戻るようになる。このように終点が近付くと色の変化で判るので、1滴ごとによく振拌しながら操作を繰返す。

手順⑦ 0の目盛りより少ない場合は追加して、ロートをはずしてからメニスカスを0目盛に合わせる。

手順⑨ ビュレットの先端を少し膨らませ、1/2滴又は1/3滴を出し、コニカルビーカの内壁に滴を付けて、洗びんで洗い流す。

1) ビュレットの先端の滴をコニカルビーカの内壁に付けて移す。

2) 洗びんで洗い流す。
--- 連載講座 ---

手順① 溶液の色が無色から微紅色に変わった時終点。

手順② 計算

1) 一般式

全硫酸 (g/L) = V \times f \times 9.8

V：滴定量 (ml)
f : 1M-NaOH のファクター

V : 17.19ml, f : 1.004
と仮定して数値を一般式に代入して計算すると、

全硫酸 (g/L) = 17.19 \times 1.004 \times 9.8
= 169.13 = 169.1

全硫酸 = 169.1 g/L

手順③ ピュレットの目盛を読む。0.01ml（
目測）まで読み取る。
3] 溶存アルミニウムの定量
手順① 硫酸電解液を、ピーカより
5mlのホールビペットに吸
い上げる。

手順② 100mlメスフラスコに移す。

手順③ 洗びんを用いて純水を標線まで加える。

注意【吸い上げるときはビペットの
先端を人差し指でピーカの
内壁に軽く押し付け、固定する】

手順④ 稀釈液からの分取
注意【手順③で稀釈した試料溶液を、5ml（溶存
Al: 18g/L 以上）又は10ml（溶存 Al: 18g/
L 未満）のホールビペットで吸い上げ（手
順の図解は省略）、次の操作を行う。】

溶存アルミニウムの量が,
(A)18g/L 未満の場合
(B)18g/L 以上の場合
10ml 分取
5ml 分取

ここでは、溶存アルミニウムの量が18g/L 未満と仮定し、10
ml 分取した場合(もと水銀(A))について以下説明する
手順⑤ 上記手順④(A)の場合について述べる。
1. 0.05M-EDTA・2Na 標準溶液 10ml をホールピペットで取り、2. 試料溶液を入れたコニカルピーカに加える。

① EDTA・2Na 標準溶液
② コニカルピーカに
10ml を採る。

手順⑥ (1 + 1) 硫酸 1ml を、1ml のスプイトで加えてよく混ぜる。

手順⑦ チモールブルー指示薬を 2 ～ 3 滴加えてよく振り混ぜる。赤色になる。

手順⑧ 10% 酰酸アンモニウム溶液を、5ml 又は 10ml スプイトで溶液が黄変するまで滴下する。

手順⑨ 氷水にするまで加熱した後、室温まで冷却する。

1. 氷水にするまで → 2. 水槽、流水中で加熱 → 室温まで冷却
一連載講座一

手順① 水を加えて全量を約100mlにする。

手順② メチルレッド指示薬を1滴加える。

手順③ キシレノールオレンジ指示薬3〜4滴を滴下する。

手順④ (1 + 2) アンモニア水を橙黄色になるまで、5ml又は10mlのスポイトで滴下する。

手順⑤ 標準亜鉛溶液をビュレットに、ロートを用いて0目盛りよりも上まで入れる。
手順⑥ ローをはずして滴定を始める。
[注意] 滴定速度は0.5ml/秒程度にする。終点が
近くになると赤く着色して消え難くなり、攪
拌するとまた黄色に戻る。このように終
点が近付くと色の変化で判るので、1滴ご
とよく攪拌しながら操作を繰返す。但し、
フェノールフタレインの場合
のように、滴定当初より着色
するのでは無く、終点の間際
になってから急に変色するの
で注意。

手順⑦ 溶液の色が黄色から赤色に変わった時
終点。

手順⑧ ビュレットの目盛りを読む。0.01ml
（目測）まで読み取る。

手順⑨ ビュレットの先端を少し膨らませ、1/2
滴又は1/3滴を出し、コニカルピーカ
の内壁に滴を付けて、洗びんで洗い流す。

(1) ビュレットの先端の滴
をコニカルピーカの
内壁に付けて移す。

(2) 洗びんで洗い流す。
手順② 計算

希釈溶液 10ml を分取した場合の計算式①
\[\text{Al}(g/L) = (10 \times f - V) \times 2.70 \]

希釈溶液 10ml を分取した場合の計算式②
\[\text{Al}(g/L) = (10 \times f - V) \times 5.40 \]

計算例

今回は、希釈溶液 10ml を分取したので計算式①を用いる。
但し、ファクター (f) 及び滴定量を次のように仮定する。

0.05M-EDTA・2Na 標準溶液の f = 1.009
0.05M-EDTA・2Na 標準溶液の滴定量：7.64ml

\[\text{Al}(g/L) = (10 \times f - V) \times 2.70 \]

\[\text{Al}(g/L) = (10 \times 1.009 - 7.64) \times 2.70 \]

\[= 2.45 \times 2.70 = 6.615 \]

\[\text{Al} = 6.6(g/L) \]

4.1.1 調整計算について

1) 遊離硫酸濃度の求め方

前記滴定結果を用いて遊離硫酸の濃度を求める。

遊離硫酸 (g/L) = V \times F \times 9.8

\[V: \text{滴定量} \quad f: \text{ファクター} \]

1M-NaOH (f = 1.004)

1M-NaOH 滴定量 (V) 13.55ml

として上記一般式に代入すると、次式になる。

\[\text{遊離硫酸 (g/L)} = \frac{13.55 \times 1.004 \times 9.8}{133.32116} \approx 133.3 \]

2) 調整計算

遊離硫酸の濃度を 150g/L に調製するためには、次の計算式を用いる。但し、分析結果から、硫酸濃度が 150g/L よりも濃い場合は水を加えて希釈し、希い場合は 50W/V% 硫酸を加える。加えた水又は硫酸による增量は考えず、1000L(1m³) に対する添加量で計算する。

(1) 水を加える場合、溶液の増量を考えない

上記 1) で求めた濃度では、遊離硫酸の濃度が 150g/L より希いため計算例を示せないので、次のように遊離硫酸の濃度を仮定して計算例を示す。

遊離硫酸の濃度 : \[\text{A(g/L)} = 160.5g/L \]

加える水の量 : \[X(L) \]

一般式

\[[\text{A}(g/L) \times 1000(L)] + [1000(L) + X(L)] = 150 \]

\[[160.5 \times 1000] + [1000 + X] = 150 \]

\[[160500] = 150X \]

\[160500 - 150000 = 150X \]

\[X = 10500/150 = 70.0 \]

\[X = 70.0L/1000L = 0.070L \]

(2) 硫酸を加える場合、溶液の増量を考えない。

加える硫酸の濃度を 50% とする

遊離硫酸の濃度 : \[\text{Ag/L} = 133.3g/L \]

加える硫酸の量 : \[X(L) \]

一般式

\[[\text{A}(g/L) \times 1000(L) + 500X] + [1000(L) + X(L)] = 150 \]

\[[133.3 \times 1000 + 500X] + [1000 + X] = 150 \]

\[[133300 + 500X] + [1000 + X] = 150 \]

\[150000 - 133300 = 500X - 150X \]

\[X = \frac{16700}{350} = 47.714 \approx 47.7 \]

\[X = 47.7L/1000L = 0.0477L \]