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Which is better Median Filter or Linear Filter as a Smoother?

Sho Kikkawa, Takeshi Kohama, Hisashi Yoshida

Abstract
It is believed that median filtering outperforms traditional linear filtering in preserving signal edges while
reducing noise. However, this does not always mean that the median filter is superior to the linear filter as a
smoother. By comparing the bias-variance characteristics of median filtering and linear filtering, we demonstrate
that a linear filter (moving average filter) is a better smoother than the median filter for inputs that have Gaussian
or uniform distributions and relatively small signal-to-noise ratios, whereas the median filter outperforms the linear

filter for inputs with Laplace distributions.

Key words: median filter, linear filter, smoother, edge, Laplace distribution, Gaussian distribution, uniform

distribution, bias-variance characteristic.

1. Introduction

Linear filtering cannot preserve edges when smoothing noise in the presence of edges. By contrast, the median filtering
approach introduced by Tukey (1) is believed to be capable of eliminating noise without smearing edges(? 3: 4 5),
and it has been extensively used in the fields of image processing and signal processing. However, Arias-Castro &
Donoho have cast doubt on the abilities of median filtering (8. They reported that for an input signal consisting
of a unit step signal and random Gaussian noise, the bias of the output of the median filter is as large as that of
a linear filter (moving average filter) for an input signal-to-noise ratio (SNR) of order 1, whereas the bias becomes
considerably less and finally vanishes as the SNR — co. However, they didn’t mention whether the median filter can
be outperformed by the linear filter as a smoother or not. On the other hand, Justusson showed that for Gaussian
noise, the output mean square error (MSE) at the points in a region of filter-width around edges for the 3-points
linear filter is somewhat smaller than the MSE for the 3-points median filter for SNR < 2 and for SNR > 3, the MSE
of the median is considerably smaller than that of the linear filter (7). Although these results are important, they
are not enough, only by themselves, to properly use the filter, linear or median, according to a situation.

In this work, we evaluate the bias-variance characteristics of median filtering and linear filtering and demonstrate that
the linear filter is a better smoother than the median filter for inputs that have Gaussian or uniform distributions and

relatively small SNRs, although median filtering outperforms linear filtering for inputs with Laplace distributions.

2. Output bias and variance

Denote the window width of a filter by M = 2w+ 1, where w is a non-negative integer, and a discrete input signal by
z(t). Assume that z(t) for —(N 4+ w) <t < —1 is an i.i.d. random sequence that has a probability density function
(pdf) of g1(x) with mean \; and variance o? and that z(t) for 0 < ¢ < N 4+ w — 1 is another i.i.d. random sequence

that has a pdf of go(x) with mean Ay and variance o2. That is, the pdf g(z,t) of the input z(¢) is given by

IN

t<-1),

N IO CIUERY
<

g2(2) (0<t<N+w-1).
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The input z(t) is written as

(t) =s(t) +n(t), (2)

where s(t) = A1 (—(N4+w) <t < —1),=X (0<t < N+w-—1) and n(t) = 2(t) — s(t) have a pdf with a zero mean
and a variance of 02 for —(N +w) <t< —-land o2 for 0 <t< N +w— 1.

2.1. Linear filter

Here, we consider a moving average filter. The running filter window slides over the input signal from ¢ = —N to
t = N — 1, yielding the output signal y,(t) = (1/M) >} x(t + k). The output yr,(¢) is expressed as

k=—w

yr(t) = s(t) + nw(t), ®3)

where sp,(t) = (1/M)Y;__, st +k) and ny(¢t) = (1/M)>;__, n(t+ k). By defining the mean variance per

k=—w
unit time o7 and the mean square bias per unit time by as o7y = Ny [{yL( ) — E[yL(t)]}?]/2N and byL =

va:ilN E[{s(t) — Elyr(t)]}?]/2N, respectively, we obtain the relationship between o2, and b2, o1, as

Yy
—12NB2 + \/(12Nb2) )2 + AN

O',gL = A)\Z 0—7027 (4)

where AN = )y — A\, and 02 = (62 + 02)/2. The relationship (4) is independent of the distribution type.

2.2. Median filter
The output of the median filter is given by

ym(t) =med{z(t —w),...,x(t),...,z(t + w))}. (5)
The pdf of ym(t) is given by

W@ty CN<t<—@+1),

P, ) =4 (P @0+ A7 (@) (—w+1)<t <w), (6)
(@)= (w<t< N —1)),

where fls/[l)(m,t) and fﬁ)(x,t) are given by

(w—=1)g1(x) T,y (D
" GH(2)(1 = Gy (@)1 FGY R @) (1= Golx) T (—(w+ 1) <t<-1),

M (1) = (7)

(w—t)g1(x) XpZy (U ()
G () (1 = Gi(2) 1R Gy K@) - Ga(a) P (0< t< w),
and
(wt+1)g2(2) h_, (Y6 (450
) G (@) (1= G1(2) "R Gy H ) (1- G2 @)t (—(w+ 1) <t<-1),

(z,) = w—t (w—t\ (wtt (8)

(w+t+1)g2(z) Sy (V5 (F)
GY(2)(1 = Gi(2)" TGy * @) (1-Ga @)™t (0< t< w),
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where G;(z) (i = 1,2) are the cumulative distribution functions (cdfs) of g;(f). Eqs.(7) and (8) coincide with the
results by Justusson (7). While he also gives the proof (7), we will show more detail proof in Appendix A.

The average E[yn(t)] and the variance o7y (t) of the output of the median filter are obtained by

Bl () = [ " e, t)de, (0)
whlt) = [ " (@ - Elya(0)* fur(a, t)d. (10)

2.3. Bias-variance analysis

One of the simplest and most practically useful models of g(z,t) is that in which, for a zero-mean symmetrical pdf

go(z) with variance o2, the following assumption holds

g1(z) = go(z +A),
g2(x) = golz — N).

(11)

Under this assumption, we obtained the mean E[yy(t)] and the variance o7y (t) by numerically calculating (9) and
(10) for Ay = =A=—-1/2 0 =A=1/2, 0 =02 =0}, -N<t<N-1(N=0971) and w = 2"(n = 0,1,...,7).

The integrals were approximated by

K-1

Elym(t)] = > axfulert)A, (12)
[
K-1

oou(t) = Y (zx = Elym(1)])” fu(wr, 1) Az (13)
e

where x;, = kAx, Az = 10750y, K = [(1/2+ coo)/Ax] and ¢ was selected corresponding to the pdf go() as ¢ = 5 for
a uniform distribution, ¢ = 10 for a Gaussian distribution and ¢ = 30 for a Laplace distribution.
There is a trade-off between the variance and bias of the filters. Similar to the case of the linear filter, let us define

the mean square bias and the mean variance per unit time of the median filter output yy(t) by

Baw) = 3 {s(0) ~ Elma(0)]}, (14)
t=—N
Tl =gy 3 ()~ B0’ (15)

Fig.1 presents a comparison of the bias-variance characteristics ( %—075 characteristics) of median filtering with those
of linear filtering for three different types of distributions, go(z)s, i.e., uniform, Gaussian, and Laplace distributions.
The calculations of the bias-variance characteristics were performed for different o2s for each distribution. The
abscissa shows the mean square bias E and the ordinate shows the mean variance 075* standardized by the input
variance o2, where the symbol * refers to L and M corresponding to the linear filter and the median filter, respectively.
From the top panel to bottom, the results for a uniform distribution, Gaussian distribution and Laplace distribution
are presented. This figure shows that although median filtering is superior to linear filtering for Laplace inputs with
any input variance o3, the median filter is inferior to the linear filter for uniform inputs with variances greater than
0.32 and for Gaussian inputs with variances greater than approximately 0.42. In other words, the linear filter is
superior to the median filter as a smoother for Gaussian and uniform distributions when the input SNR is not very
large.

Additionally, we performed simulations to validate the results of the above theoretical study. For each distribution

go(z), input random sequences {z;(t)}i=1,... g of length 2N’ (=N’ <t < N’ —1) were generated using Matlab, where
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Figure 1: Comparison of the output characteristics (bias-variance characteristics, % — ?5 characteristics) of me-
dian filtering with those of linear filtering. The mean variance per unit time normalized by the input variance
02, (w)/o? is plotted on the y-axis versus the mean square bias b%j(w) on the z-axis for different input variances
O’%. The circle marks (o) on each dashed and solid line are the coordinate points that respectively correspond
to w = 2°,2',...,27 from the largest value of o2, (w)/of (the smallest b2, (w)) to the smallest of o2, (w)/o}
(the largest @(w)) The dashed lines and the solid line with marks in each panel refer to the median filter-
ing % - 075 characteristics and linear filtering @ — 075 characteristics, respectively. 2N = 1942, Az = 00/105,
K =[(1/2 + cog)/Az], ¢ = 5(uniform distribution), = 10(Gaussian distribution), = 30(Laplace distribution).
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R = 10* and N’ is sufficiently larger than N = 971. The output data {y.;(t)}i=1,. g were shortened from 2N’ to

2N = 1942 by removing some data points from both ends to avoid end effects. The mean E[y,(¢)] and the variance

oz (t) of output y.(t) were estimated by

1 R

Ely. ()] %55 D v-ilt), (16)
1 &

ay, (t) ) Z(y*z‘(t) — Ely.()])*. (17)

The simulation confirmed the validity of the numerical study; that is, the results obtained using (12) and (13) were

virtually identical to the results obtained using (16) and (17).

3. Conclusions

In order to use the right filter in real situations, we compared the performance of the median filter to that of the
linear filter as a smoother for input signals that contain an abrupt change buried in random noise. We found that
linear filtering is superior to median filtering for inputs with short-tailed distributions (uniform distributions and
Gaussian distributions) when the SNR of the input is not very high, whereas median filtering is superior to linear
filtering for inputs with long-tailed distributions (Laplace distributions) or for inputs with very high SNRs when
the distribution of the input is not long-tailed (Gaussian distribution or uniform distribution). This result indicates
that careful attention should be paid to the type of distribution and SNR of the input and is useful when judging in

practice which of the linear fiter or the median filter should be used.

A Derivations of (6), (7), and (8 )

The pdf fy(z,t) of the median filter output depends on only g;(x) ( g2(z) ) for —N <t < —(w+1) (w <t < N -—1)
and on both ¢; () and ga(z) for —w <t <w — 1.

A-1 —N<t<—(w+1) (w<t<N-1)
For —-N <t< —(w+1) (w<t<N-=1), 2(t —w),...,z(t),...,z(t + w) are i.i.d. random variables that have the
common pdf g;(z) (g2(x)). Then, the pdf fu(z,t) is given (5 4) by

fM('rvt) =

atwr91()GY (@)(1 = Gi(2)” (=N <t < —(w+1)), (18)
<

g5 (2)GY (2)(1 — Ga(2))”  (w

A2 —(w+1)<t<w

Divide the sample set S = {x(t — w),...,z(t), ...,z(t + w))} (—(w+ 1) < ¢ < w) into two subsets: S; = {x(t —
w),...,x(—=1)} of w — t samples and Sy = {x(0),...,2(t + w)} of w+ ¢+ 1 samples. For a sample z(t) € S, the
probability of the event {x < z(t) < x + Az} is given by

Priz < z(t) <z + Az] = (w —t)g1(z) Az + O(Az?) (z(t) € S1), 19)

(w+t+Dgo(z)Az + O(Az?)  (2(t) € Sa).

The w order statistics of S for which the orders are smaller than w + 1 must be less than or equal to ya(t) because
ym(t) is the (w + 1)th-order statistic. In the following, assume that the k order statistics of the w order statistics of
S belong to 57 and that the other w — k belong to Ss.

u)ftfl)

1. Assume yp(t) € S1. Because k order statistics in S; that are less than or equal to yy(t) can occur in ( &



14 Memoirs of The Faculty of B.O.S.T. of Kinki University No.36 (2015)

different ways, the probability of the event that these k samples are less than or equal to z is given by
w—t—1\ w—t—1—k
B T 0 TR A ) Gt (20)

w““) different ways, the probability of

Furthermore, because the w — k order statistics in Sy can occur in ( "

the event occurring in which they are less than or equal to x is given by

w+t+1
w—k

)6 @ = Gafa (21)
The inequalities 0 < k <w, 0<k<w—-t—land0<w—k<w+t+1 (ie, —t—1 <k <w) hold. Because

w<w—t—land 0 < —t—1for —(w+1)<t<-landw—t—1<wand —t—1<0for 0 <t <w, the

next inequalities hold,

—t—1<k<w (- t<—1),

w+1) <
- (22)
<

)
w).

(
0<k<w—t—1 (0<t

Overall, from Eqgs. (19), (20), (21) and (22), the probability of the two events {ynm(t) € S1} and {x < ym(t) <

x4+ Az} occurring simultaneously is expressed as

Pr)(z,t|Az) = Priym(t) € S1 Nz < yu(t) < x4 Axz]

(w—t)gi(a)Ae+O(Aa?) 3, (M)
_ GH(@)(1 = Gi(2))" T FGY (@) (1= Ga(@) P (—(wt1)<t<-1),
(- Do+ O S () (14)

Gl ()(1 = Gr(2) 1 7FGE (@) (1 = Ga(a))HHH (0<t<w).
Then, the pdf of yy(t) corresponding to Pr() [z, t|Az] is obtained as

(1)
1) _ PriV[z, t|Ax]
w(@,1) = lz}c—w Ax

(w—t)gr () >,y ("D
G (@) (1 = Gy ()" R GE @) (- Goa ) (—(wt 1) <t<-1),
(w—t)ga(x) Xpsg ' (V) ()

GY(@)(1 = Gi(2) 7RGy @)L= Ga (@) (0 <t < w).

2. Assume yn(t) € Sa. The k order statistics in S; less than or equal to yp(¢) can occur in (“’ t) different ways,
and furthermore, the w — k order statistics in Sy can occur in (;’j"'t) different ways. Then, the probabilities of
the event that these k samples in S7 are less than or equal to z and the event that the w — k ones in Sy are

less than or equal to x are respectively given by

(", et iy (23)
and
(151 )er @ - Gafa, (21)

The inequalities 0 < k <w, 0 <k<w—tand 0 <w—k <w+t (ie, -t <k < w) hold. Because w < w —t
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and 0 < —t for —(w+1) <t<—-land 0 <w—t<wand —t <0 for 0 < ¢ < w, the next inequalities hold,

(25)

Overall, from Eqgs. (19), (23), (24) and (25), the probability of the two events {ym(t) € Sa} and {x < ym(t) <

z + Az} occurring simultaneously is expressed as

Pr®(z,t|Az) = Priym(t) € So Nz < yu(t) < x4 Axz]

W+t+D)go(x) A+ 0(AZA)Y (o))

W+t+1)go(z)Ax+-O(Ax?) (“’ (et

)
Gh@)(1 = Gi(@)" Gy M) -Go@) T (—(w+1) <t < 1),
)

Gi(z)(1 - Gi(x ))”‘“’“G“z"*"(w)(lsz(r))’““ 0 <t <w).

Then, the pdf of yy(t) corresponding to Pr(®)[z,t|Az] is obtained as

(2)
@) _ Pri®[z, t|Ax]
(1) = Jim o

(w+t+1)ga(2) S, (Y (Y50

GY(@)(1 = Gi(2)) Gy @) (1-G2 @) (—(w +1)

(w+t+)ga(@) 5z (Y0 (WH)

<t<-1),

GY(@)(1 = Gi(2)) Gy @ (1-G2 @) (0 <t <w).

From 1) and 2), we obtain the pdf of y\(t) as
S, t) = (@, )+ 17 (@,1) (~wt1)<t <

Furthermore, from (7), (8) and (18), we can easily prove the relation

AP @) o) (N <t<—(w1)),
Ful@:0)=1 "0
U C <fQSan

Therefore, (6) is derived.
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