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■Abstract

 The capacity of wavelength division multiplexing （WDM） based optical fiber transmission systems has been limited mainly by the noise 

power of optical signal and the degree of the distortion of optical signal pulse form. Specifically, nonlinear phase noise which is one of the 

noise power source has become the most important limiting factor of the WDM based coherent optical transmission systems.  And, it is 

well-known that the source of the nonlinear phase noise power is cross-phase modulation （XPM） interaction occurring amongst the optical 

signals divided in wavelength space. This paper provides an eigenvalue equation of optical transmission fibers including the the XPM-

induced interaction for the first time. This achievement paves the way to establish semi-analytical system design methodology and realize 

phase noise tolerant optical fiber transmission systems.

	 　波長分割多重光ファイバ伝送システムの容量は、主に光信号の雑音電力と光信号パルス波形の歪の度合いにより制限されて
おり、特に最新の波長分割多重光ファイバ伝送システムでは、光信号の雑音電力源の一種である非線形位相雑音が最も重要な
制限要因となっている。そして、この非線形位相雑音の起源は、波長空間において分割された複数の光信号間で発生する相互
作用の一つである相互位相変調効果にあることがよく知られている。本論文は、相互位相変調効果を考慮に入れた光伝送ファ
イバの固有方程式を初めて明らかにする。本論文の成果は、準解析的なシステム設計手法を確立し、位相雑音耐力の高い光
ファイバ伝送システムを実現する道筋を与えるものである。
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1.	Introduction
The	capacity	of	wavelength	division	multiplexing	（WDM）	based	optical	fiber	transmission	systems	has	been	 limited	

mainly	by	the	noise	power	of	optical	signal	and	the	degree	of	the	distortion	of	optical	signal	pulse	form.	Huge	amount	of	

research	and	development	efforts	related	to	this	technological	area	have	been	devoted	to	combat	with	those	two	factors	

for	more	than	several	30	years.	The	recent	 invention	and	commercialization	of	digital	coherent	detection	technology[1]	

greatly	reduced	the	 limiting	 factor	originating	 from	the	 latter	one.	This	 technology	opened	new	vista	 to	compensate	

optical	 signal	pulse	 form	distortion	caused	 in	optical	 transmission	 fiber	by	applying	digital	matching	 filter	at	optical	

receiver.	 	As	a	result,	 the	major	 limiting	 factor	of	 the	state-of-the	art	“coherent”	optical	 fiber	 transmission	systems	

has	become	the	noise	power	of	optical	signals.	The	coherent	optical	fiber	 transmission	systems	employ	optical	phase	

modulation	format.	Therefore,	the	optical	phase	noise	power	is	dominant	factor	to	determine	the	system	performance	of	

those	systems[2].

The	optical	phase	noise	originates	 from	quantum	nature	of	optical	signals.	 It	 is	well	known	that	 laser	 light	source	

can	generate	almost	 ideal	“coherent”	state	 in	the	standard	quantum	limit	and	make	the	detector	more	high	sensitive	

by	employing	appropriate	 local	 oscillator.	On	 the	other	hand,	 it	 is	 also	well-known	 that	 the	existence	of	nonlinear	

refractive	 index	 in	 the	optical	 transmission	fiber	 induces	number	of	nonlinear	effects	 including	the	“nonlinear”	phase	

noise.	The	nonlinear	phase	noise	 is	 the	converted	 intensity	noise	components	via	the	nonlinear	refractive	 index	 in	the	

optical	 transmission	 fiber	and	the	phase	noise	power	can	be	augmented	exponentially	 in	some	conditions[3].	 In	addition,	
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the	nonlinear	phase	noise	power	augmentation	can	be	induced	by	the	intensity	noise	of	other	optical	signal	channels	in	

the	WDM	based	optical	fiber	 transmission	systems.	This	 is	one	of	 inter-channel	nonlinear	coupling	within	 the	optical	

transmission	 fiber	and	known	as	 cross-phase	modulation	（XPM）[4].	Thus,	 the	nonlinear	 refractive	 index	of	 optical	

transmission	fiber	induces	and	augments	the	nonlinear	phase	noise	power	as	the	propagation	of	optical	signals	with	the	

optical	transmission	fibers.

While	number	of	methodologies	have	been	proposed	to	mitigate	the	degradation	of	 the	system	performance	caused	

by	the	nonlinear	phase	noise[5]-[8],	 there	 is	strong	 industrial	demand	developing	analytical	or	semi-	analytical	model	 to	

understand	characteristics	of	 the	nonlinear	phase	noise	 to	help	designers	of	 the	optical	 transmission	systems	both	 in	

telecom	carriers	and	system	vendors	as	well.	Recently,	Additive	White	Gaussian	Noise	（AWGN）	model	proposed	and	has	

been	attracted	much	attention	to	estimate	the	nonlinear	phase	noise	power	considering	the	XPM	effect[9]-[11].	Although	the	

proposed	methodology	provides	the	way	to	clearly	understand	the	relationship	between	the	nonlinear	phase	noise	power	

and	optical	signal	 intensity	 in	the	WDM	based	optical	fiber	transmission	systems,	 the	methodology	does	not	cover	the	

case	of	non-uniform	noise	spectra.	The	case	might	occurs,	specifically	if	the	nonlinear	phase	noise	augmentation	condition	

is	satisfied	and	so-called	modulation	instability	is	triggered	within	the	optical	transmission	fibers.	It	is	well	known	that	the	

modulation	instability	brings	destructive	impacts	on	the	performance	of	the	optical	fiber	transmission	systems[12].

This	paper	proposes	alternative	methodology	which	allows	the	estimation	of	the	nonlinear	phase	noise	power	even	in	

the	case	that	the	modulation	instability	is	triggered.	Especially,	this	paper	provides		the	eigenvalue	equation	of	the	optical	

transmission	fiber	including	the	XPM-induced	modulation	instability	for	the	first	time.	The	formulation	will	be	conducted	

by	applying	small	 signal	 analysis[13]	which	 linearlizes	 the	nonlinear	differential	 equation	of	 the	optical	 transmission	

fibers.	This	approach	provides	a	semi-analytical	system	design	methodology	in	the	process	of	the	coherent	optical	fiber	

transmission	system	construction	planning	and	design	and	expected	to	help	realizing	phase	noise	tolerant	optical	fiber	

transmission	systems.

2.  Small signal analysis including the XPM-induced modulation instabil- ity
The	propagation	property	of	the	optical	signal	electrical	field	Es	 in	the	optical	transmission	fibers	is	governed	by	the	

nonlinear	Schrödinger	equation	（NLSE）	as

	 （2.1）

where	z	is	the	transmission	distance,	t	is	time,	α	is	the	fiber	loss	coefficient,	vg	is	the	group	velocity	of		the	optical	signals,	

β2	is	the	first-order	group	velocity	dispersion	（GVD），	β3		is	the	second-order	GVD,	γ	is	the			fiber	nonlinear	coefficient	

defined	by	2πn2/λAeff,	n2	is	the	nonlinear	refractive	index,	Aeff	is	the	effective	core	area	of	the	fiber,	and	λ	is	the	wavelength	

of	the	optical	carrier.	The	fiber	nonlinear	coefficient	gives	rise	to	a	number	of	nonlinear	effects	in	the	optical	transmission	

fibers	such	as	self-phase	modulation	（SPM），	XPM,	and	so	on.

The	XPM-induced	modulation	 instability	being	focused	 in	this	paper	can	be	analyzed	by	assuming	two	optical	signal	

channels	and	the	nonlinear	interaction	between	them.	In	Eq.	（2.1），the	electrical	field	Es（z）	is	assumed	as	the	summation	

of	two	optical	signal	channel	components	with	the	center	optical	frequencies	of	ω1	and	ω2	as

	 （2.2）

where	c.c.	denotes	complex	conjugate	component	of	 the	electrical	fields.	Those	two	optical	signal	channel	components	

are	denoted	as	E1（z）	and	E2（z），	respectively.	Figure	1	shows	the	relationship	between	the	two	optical	signal	channels	in	

optical	frequency	domain.	Those	two	optical	signal	channels	are	interacted	each	other	via	the	fiber	nonlinear	coefficient,	i.e.	
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the	intensity	of	the	optical	signal	channel	2	causes	the	optical	phase	rotation	in	the	optical	signal	channel	1	and	vice	versa.

The	strict	solution	of	the	NLSE	for	the	two	optical	signal	channels	can	only	be	solved	by	numerical	calculation.	The	

Split-Step	Fourier	Method	is	most	commonly	utilized	methodology	to	understand	the	behavior	of	the	solutions.	It	requires	

a	number	of	 time	consuming	studies	 to	understand	 the	 tendency	of	solutions;	nevertheless	 the	numerical	calculation	

does	not	always	provide	clear	understanding	of	 the	tendency	of	solutions.	Therefore,	 this	paper	tries	 to	 introduce	the	

small	signal	approximation	to	under	the	effect	of	the	XPM-induced	modulation	instability.	In	the	small	signal	analysis,	the	

optical	signal	is	considered	as	the	summation	of	the	stationary	components	and	the	perturbative	in-phase	and	quadrature-

phase	noise	components	with	the	offset	optical	angular	frequency	of	ωm	as	shown	in	Fig.	2.	This	model	is	considered	to	be	

applicable	for	the	analysis	of	the	digital	coherent	transmission	systems,	since	the	intensity	of	the	optical	signal	is	constant	

and	the	phase	modulation	format	is	employed	in	those	systems.

Let	small	signal	analysis	be	applied	for	each	optical	signal	channel	component	and	the	electrical	field	amplitude	of	the	

signal	light	with	noise	at	z	be

　　　　　　　　 	 （2.3）

　　　　　　　　 	 （2.4）

Figure 1 

Figure 2 
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where	i	is	optical	signal	channel	number,	Aci	is	the	stationary	amplitude	of	a	carrier	with	the	wavelength	channel	of	i,	ω	

is	the	off-set	angular	frequency	of	the	noise	components	（treated	as	small	signal	components），		and	ai″(z),	bi″(z),	ci″(z),	di″(z)	

denote	perturbative	in-phase	and	quadrature-phase	noise	components	with	the	offset	optical	angular	frequency	of	ωm	from	

the	center	frequency	of	the	wavelength	channels	i.

The	substitution	of	Eqs.	（2.2）-（2.4）	into	Eq.	（2.1）	leads	 four	 frequency	components,	 i.e.	exp	 [−i	 (ω1+ωm)t],	exp[−i	 (ω1
−ωm)t],	exp[−i	 (ω2+ωm)t],	and	exp[−i	 (ω2−ωm)t].	The	separation	of	real	components	and	 imaginary	components	 leads	eight	

simultaneous	differential	equations	as	follows:

　　　　　　　　

　　　　　　　　 	 （2.5）

　　　　　　　　

　　　　　　　　 	 （2.6）

　　　　　　　　

　　　　　　　　 	 （2.7）

　　　　　　　　

　　　　　　　　 	 （2.8）

　　　　　　　　

　　　　　　　　 	 （2.9）

　　　　　　　　

　　　　　　　　 	 （2.10）

　　　　　　　　

　　　　　　　　 	 （2.11）

　　　　　　　　

　　　　　　　　 	 （2.12）

where	vgi	is	the	group	velocity	of	the	optical	signals	in	wavelength	channel	i,	β2i	is	the	first-order	group	velocity	dispersion	

（GVD）	in	wavelength	channel	i,	β3i	is	the	second-order	GVD	in	wavelength	channel	i.	The	fiber	nonlinear	coefficient	γ	is	

assumed	as	the	constant	value	in	each	wavelength	channel.

Now	the	modulation	components	in	Eq.	（2.4）	are	converted	to

　　　　　　　　 	 （2.13）

where	ai′(z),	bi′(z),	ci′(z),	and	di′(z)	are	defined	as

　　　　　　　　 	 （2.14）

　　　　　　　　 	 （2.15）
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　　　　　　　　 	 （2.16）

　　　　　　　　 	 （2.17）

The	terms	of	ai′(z),	ci′(z)	are	in-phase	components	and	bi′	(z),	di′(z)	are	quadrature-phase	components.	In	the	digital	coherent	

optical	fiber	transmission	systems,	 the	phase	noise	power	of	 the	optical	signals	 in	wavelength	channel	 i detected	at	an	

intra-dyne	receiver	is	given	as

　　　　　　　　 	 （2.18）

where	E2LO and	B	are	the	local	oscillator	power	and	receiver	bandwidth	at	the	intra-dyne	receiver,	respectively.

Therefore,	the	signal-to-noise	power	ratio	（SNR）	at	the	intra-dyne	receiver	is	given	as

　　　　　　　　 	（2.19）

Thus,	the	quadrature-phase	noise	components	bi′(z),	di′(z)	should	be	calculated	to	obtain	the	phase	noise	power	and	the	SNR	

at	the	intra-dyne	receiver.

After	the	conversion	of	variables	in	Eqs.	（2.14）-（2.17），	the	eight	simultaneous	linear	differential	equations	of	Eqs.		（2.5）-

（2.12）	can	be	greatly	simplified	as

　　　　　　　　

　　　　　　　　　　　          　 	 （2.20）

　　　　　　　　

　　　　　　　　　　　　       	 （2.21）

　　　　　　　　

　　　　　　　　　　　　       	 （2.22）

　　　　　　　　

　　　　　　　　　　　　       	 （2.23）

by	introducing	variables	defined	as	:

　　　　　　　　 	 （2.24）

　　　　　　　　 	 （2.25）

Here,	 i	and	 j	denote	wavelength	channel	number	of	the	optical	signals.	The	variable	 i	takes	the	value	of	1	or	2,	while	 j	

takes	the	value	of	2	or	1,	respectively.

The	eight	simultaneous	linear	differential	equation	can	be	expressed	in	the	form	of	a	matrix
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　　　　 	 （2.26）

where	the	differential	operator	D	is	introduced	and	the	parameters	are	defined	as:

　　　　 	 （2.27）

　　　　  （2.28）

　　　　 	 （2.29）

　　　　 	 （2.30）

　　　　 	 （2.31）

　　　　 	 （2.32）

The	terms	including	ρi	and/or	σi	 indicates	the	coupling	of	wavelength	channel	 i	and	 j.	The	XPM		is	 incorporated	 in	

those	terms.

	The	further	simplification	can	be	achieved	if	the	argument	of	Aci	is	considered	as	0	[rad]	and	the	average	power	of	the	

optical	signals	in	each	wavelength		channel	is	the	same,	i.e.	│A¯
c1│	=	│A¯

c2│.	Equations	（2.28），（2.29），（2.31）	and	（2.32）	become

　　　　 	 （2.33）

　　　　 	 （2.34）

　　　　 	 （2.35）

　　　　 	 （2.36）

Thus,	Eq.	（2.26）	can	be	further	simplified	as

　　　　 	 （2.37）
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The	solution	of	a1(z),	b1(z),	c1(z),	d1(z),	a2(z),	b2(z),	c2(z),	d2(z)	includes	linearly	coupled	eight	terms	respectively	and	each	term	

is	given	in	the	form	of

　　 	 （2.38）

where	λ	and	K are	the	eigenvalue	of	the	eight	simultaneous	linear	differential	equation,	cxi	is	the	constant	value	determined	by	

boundary	conditions,	and	the	value	of	cxi	differs	term-by-term	basis	in	general.

Therefore,	 the	differential	operator	D	 in	Eq.	（2.37）	can	be	replaced	by	 iK	and	the	determinant	of	 the	matrix	 [M]	 is	

forced	to	satisfy

　　 	 （2.39）

The	further	calculation	of	Eq.	（2.39）	leads

　　 	 （2.40）

　　 	 （2.41）

Those	are	the	analytical	eigenvalue	equation	of	 the	optical	 transmission	fiber	taking	 into	account	 the	XPM-induced	

modulation	 instability.	The	first	element	of	 left-hand	side	term	in	Eq.	（2.40）	is	the	eigenvalue	equation	 for	wavelength	

channel	i	=1.	The	second	element	of	left-hand	side	term	in	Eq.	（2.40）	is	the	eigenvalue	equation	for	wavelength	channel	i	

=2.	CXPM	is	the	terms	indicating	the	coupling	of	wavelength	channel	1	and	2.	K	has	eight	solutions	and	those	are	considered	

as	 the	eigenvalues	of	 the	optical	 transmission	 fiber	 taking	 into	account	 the	XPM-induced	modulation	 instability.	The	

analytical		solution	of	K	provides	the	analytical	noise	component	functions,	a1(z),	b1(z),	c1(z),	d1(z),	a2(z),	b2(z),	c2(z),	d2(z),	which	

allows	obtaining	analytical	 transfer	matrix	of	 the	optical	 transmission	 fiber	 including	 the	XPM-induced	modulation	

instability[14].	The	 implication	of	the	obtained	analytical	eigenvalue	equation	will	be	evaluated	and	discussed	 in	the	next	

section.

3.  Implication of the eigenvalue equation including XPM-induced mod-ulation instability
The	analytical	eigenvalue	equation	of	Eq.	（2.40）	obtained	in	former	section	is	eighth	order	linear	algebraic	equation	of	K.	

Therefore,	the	eigenvalue	equation	not	always	provide	analytical	solution	of	K	according	to	algebraic	theory.	However,	the	

analytical	solution	can	be	obtained	in	some	conditions	and	it	is	intuitive	to	evaluate	the	solution	in	the	conditions.

3.1  The case without XPM-induced modulation instability
As	a	first	step,	this	paper	addresses	the	case	without	the	XPM-induced	modulation	instability.	In	this	case,	the	value	of	

ρ	is	0	and	the	analytical	eigenvalue	equation	of	（2.40）	becomes
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　　 	 （3.1）

Thus,	it	is	obvious	that	the	eigenvalue	equation	can	be	decoupled	into	two	components.	The	solution	of	K	for	the	optical	

signal	in	wavelength	channel	i	is	given	as

　　 	 （3.2）

Therefore,	the	noise	component	functions,	a1(z),	b1(z),	c1(z),	d1(z),	a2(z),	b2(z),	c2(z),	d2(z)	are	also	decou-pled	per	channel	basis	

as	well.	Thus,	the	noise	component	functions	are	given	as	:

　　

　　　　　　　　　　　 	 （3.3）

where	the	boundary	conditions	of	the	noise	components	in	wavelength	channel	i	at	z	=	0	are	assumed	as	ai(0),		bi(0),	ci(0),	
di(0)	and	i	takes	the	value	of	1	or	2.	The		solution	of	the	eigenvalue	equation	provides	analytical	transfer	function	of	the	

noise	components	for	the	optical	transmission	fiber.

3.2 The case with zero GVD
This	case	makes	β21	=	β22	=	0	and	greatly	simplifies		the	the	analytical	eigenvalue	equation	of		Eq.	（2.40）．	The	further	

calculation	leads

　　　 	 （3.4）

The	solution	of	K	for	the	optical	signals	in	wavelength	channel	i	is	given	as	doubly	degenerated	value	with

　　　  （3.5）

3.3  The case without the group-velocity mismatch and second-order GVD
The	analytical	eigenvalue	equation	of	Eq.	（2.40）	can	be	greatly	simplified	in	the	case	that	the	group-	velocity	mismatch	

between	wavelength	channels	can	be	ignored	and	the	second-order	GVD,	β3i	is	0.

In	this	condition,	time	t	can	be	replaced	by	relative	time	T	which	has	relationship	of

　　　 	 （3.6）

Let	the	electrical	field	amplitude	of	the	signal	light	with	noise	at	z	be

　　　 	 （3.7）

This	case	derives	the	condition	of	δ1	=	δ2	=0	in	the	eigenvalue	equation	of	（2.40）．	Thus,	the	eigenvalue	equation	of	Eq.	（2.40）	

becomes
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　　　 	 （3.8）

The	solution	of	the	eigenvalue	equation	can	be	analytically	derived	as

　　　 	 （3.9）

This	solution	becomes	unstable	 if	 the	variable	K	becomes	 imaginary	part	 for	some	values	of	ωm.	The	noise	component	

functions	of	a1(z),	b1(z),	c1(z),	d1(z),	a2(z),	b2(z),	c2(z),	d2(z)	experience	an	exponential	growth	along	the	fiber.

In	the	presence	of	the	XPM	coupling,	Eq.	（3.9）	can	be	unstable,	if	the	condition

　　　 	 （3.10）

is	satisfied.	In	the	case	of

　　　 	 （3.11）

Eq.	（3.10）	is	expressed	as

　　　 	 （3.12）

　　　 	 （3.13）

The	most	important	conclusion	from	Eq.	（3.12）	is	that	the	XPM-induced	modulation	instability	can	occur	irrespective	of	

the	signs	of	β2i.	Now,	let	the	values	of	│β2i│,	γ,	and	P	be	10	[ps2/km],	2.0	[1/km/W]	,	and	2.0	[mW].	The	value	of	fci	becomes

　　　 	 （3.14）

Thus,	the	frequency	condition	satisfying	Eq.	（3.12）	is	 in	the	order	of	<10	[GHz],	 if	the	optical	signals	are	transmitted	

in	the	dispersion	shifted	single	mode	optical	fibers	（DSFs）．	The	phase	noise	bandwidth	of	the	XPM-induced	modulation	

instability	cannot	be	negligible	 in	 the	case	of	DSFs.	Although	 the	condition	 is	mitigated	by	half	 if	 the	WDM-based	

coherent	optical	fiber	transmission	system	employs	standard	single	ode	fibers	（SMFs），	the	XMP-induced	modulation	

instability	can	be	destructive	 factor	to	 limit	 the	system	performance.	Thus,	 the	XPM-induced	modulation	 instability	 is	

one	of	non-negligible	 factor	 in	 the	fibers	 	widely	utilized	globally.	The	XPM-induced	modulation	 instability	need	to	be	

addressed	in	the	process	of	the	system	design.

4.  Conclusion
This	paper	addressed	 the	nonlinear	phase	noise	 including	XPM-based	modulation	 instability	 in	 the	WDM-based	

coherent	optical	 fiber	 transmission	 systems	 theoretically.	Different	 from	conventional	 approach	based	on	numerical	

calculation	of	 the	NLSE,	 the	small	signal	analysis	successfully	provided	the	set	of	eight	simultaneous	 linear	differential	

equations.	The	set	of	equations	forms	the	eigenvalue	equations	of	the	NLSE.	The	XPM-induced	modulation	instability	was	

clearly	explained	by	using	the	obtained	eigenvalue	equations.	The	solution	of	the	eigenvalue	equation	provided	intuitive	

results	that	the	XPM-induced	modulation	insta	bility	is	the	phenomena	need	to	be	addressed	in	the	process	of	the	systems	

design.	The	instable	condition	might	occur	in	the	frequency	range	of	<10	[GHz]	irrespective	to	the	sign	of	the	GVD	β2	of	

the	WDM-based	coherent	optical	fiber	transmission	systems	with	the	DSFs.	The	frequency	range	can	be	reduced	by	half	

in	that	with	the	SMFs.

Simultaneously,	the	results	indicate	that	the	importance	of	developing	the	methodology	to	reduce	the	non-	linear	phase	
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noise	as	the	author	proposed	previously	in	Ref.	8.	The	author	believe	the	proposed	methodology	employing	Periodically	

Poled	Lithium	Niobate	（PPLN）	waveguides[6],[15]	applicable	even	in	the	condition	that	the	XPM-based	modulation	instability	

is	dominant.	 It	 is	preferable	 to	conduct	 theoretical	 study	to	estimate	 the	 impact	of	 the	proposed	methodology	 in	 the	

case	that	the	XPM-induced	modulation	instability	is	dominant.	To	reach	this	goal,	the	noise	component	functions	for	the	

eigenvalues	obtained,	which	was	missing	portion	in	this	paper,	should	be	addressed.
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