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■Abstract

	 The capacity of wavelength division multiplexing （WDM） based optical fiber transmission systems has been limited mainly by the noise 

power of optical signal and the degree of the distortion of optical signal pulse form. Specifically, nonlinear phase noise which is one of the 

noise power source has become the most important limiting factor of the WDM based coherent optical transmission systems.  And, it is 

well-known that the source of the nonlinear phase noise power is cross-phase modulation （XPM） interaction occurring amongst the optical 

signals divided in wavelength space. This paper provides an eigenvalue equation of optical transmission fibers including the the XPM-

induced interaction for the first time. This achievement paves the way to establish semi-analytical system design methodology and realize 

phase noise tolerant optical fiber transmission systems.

	 　波長分割多重光ファイバ伝送システムの容量は、主に光信号の雑音電力と光信号パルス波形の歪の度合いにより制限されて
おり、特に最新の波長分割多重光ファイバ伝送システムでは、光信号の雑音電力源の一種である非線形位相雑音が最も重要な
制限要因となっている。そして、この非線形位相雑音の起源は、波長空間において分割された複数の光信号間で発生する相互
作用の一つである相互位相変調効果にあることがよく知られている。本論文は、相互位相変調効果を考慮に入れた光伝送ファ
イバの固有方程式を初めて明らかにする。本論文の成果は、準解析的なシステム設計手法を確立し、位相雑音耐力の高い光
ファイバ伝送システムを実現する道筋を与えるものである。
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	 キーワード：光ファイバ、コヒーレント光ファイバ伝送、相互位相変調、固有方程式

1. Introduction
The capacity of wavelength division multiplexing （WDM） based optical fiber transmission systems has been limited 

mainly by the noise power of optical signal and the degree of the distortion of optical signal pulse form. Huge amount of 

research and development efforts related to this technological area have been devoted to combat with those two factors 

for more than several 30 years. The recent invention and commercialization of digital coherent detection technology[1] 

greatly reduced the limiting factor originating from the latter one. This technology opened new vista to compensate 

optical signal pulse form distortion caused in optical transmission fiber by applying digital matching filter at optical 

receiver.  As a result, the major limiting factor of the state-of-the art “coherent” optical fiber transmission systems 

has become the noise power of optical signals. The coherent optical fiber transmission systems employ optical phase 

modulation format. Therefore, the optical phase noise power is dominant factor to determine the system performance of 

those systems[2].

The optical phase noise originates from quantum nature of optical signals. It is well known that laser light source 

can generate almost ideal “coherent” state in the standard quantum limit and make the detector more high sensitive 

by employing appropriate local oscillator. On the other hand, it is also well-known that the existence of nonlinear 

refractive index in the optical transmission fiber induces number of nonlinear effects including the “nonlinear” phase 

noise. The nonlinear phase noise is the converted intensity noise components via the nonlinear refractive index in the 

optical transmission fiber and the phase noise power can be augmented exponentially in some conditions[3]. In addition, 
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the nonlinear phase noise power augmentation can be induced by the intensity noise of other optical signal channels in 

the WDM based optical fiber transmission systems. This is one of inter-channel nonlinear coupling within the optical 

transmission fiber and known as cross-phase modulation （XPM）[4]. Thus, the nonlinear refractive index of optical 

transmission fiber induces and augments the nonlinear phase noise power as the propagation of optical signals with the 

optical transmission fibers.

While number of methodologies have been proposed to mitigate the degradation of the system performance caused 

by the nonlinear phase noise[5]-[8], there is strong industrial demand developing analytical or semi- analytical model to 

understand characteristics of the nonlinear phase noise to help designers of the optical transmission systems both in 

telecom carriers and system vendors as well. Recently, Additive White Gaussian Noise （AWGN） model proposed and has 

been attracted much attention to estimate the nonlinear phase noise power considering the XPM effect[9]-[11]. Although the 

proposed methodology provides the way to clearly understand the relationship between the nonlinear phase noise power 

and optical signal intensity in the WDM based optical fiber transmission systems, the methodology does not cover the 

case of non-uniform noise spectra. The case might occurs, specifically if the nonlinear phase noise augmentation condition 

is satisfied and so-called modulation instability is triggered within the optical transmission fibers. It is well known that the 

modulation instability brings destructive impacts on the performance of the optical fiber transmission systems[12].

This paper proposes alternative methodology which allows the estimation of the nonlinear phase noise power even in 

the case that the modulation instability is triggered. Especially, this paper provides  the eigenvalue equation of the optical 

transmission fiber including the XPM-induced modulation instability for the first time. The formulation will be conducted 

by applying small signal analysis[13] which linearlizes the nonlinear differential equation of the optical transmission 

fibers. This approach provides a semi-analytical system design methodology in the process of the coherent optical fiber 

transmission system construction planning and design and expected to help realizing phase noise tolerant optical fiber 

transmission systems.

2. �Small signal analysis including the XPM-induced modulation instabil- ity
The propagation property of the optical signal electrical field Es in the optical transmission fibers is governed by the 

nonlinear Schrödinger equation （NLSE） as

� （2.1）

where z is the transmission distance, t is time, α is the fiber loss coefficient, vg is the group velocity of  the optical signals, 

β2 is the first-order group velocity dispersion （GVD）， β3  is the second-order GVD, γ is the   fiber nonlinear coefficient 

defined by 2πn2/λAeff, n2 is the nonlinear refractive index, Aeff is the effective core area of the fiber, and λ is the wavelength 

of the optical carrier. The fiber nonlinear coefficient gives rise to a number of nonlinear effects in the optical transmission 

fibers such as self-phase modulation （SPM）， XPM, and so on.

The XPM-induced modulation instability being focused in this paper can be analyzed by assuming two optical signal 

channels and the nonlinear interaction between them. In Eq. （2.1），the electrical field Es（z） is assumed as the summation 

of two optical signal channel components with the center optical frequencies of ω1 and ω2 as

� （2.2）

where c.c. denotes complex conjugate component of the electrical fields. Those two optical signal channel components 

are denoted as E1（z） and E2（z）， respectively. Figure 1 shows the relationship between the two optical signal channels in 

optical frequency domain. Those two optical signal channels are interacted each other via the fiber nonlinear coefficient, i.e. 
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the intensity of the optical signal channel 2 causes the optical phase rotation in the optical signal channel 1 and vice versa.

The strict solution of the NLSE for the two optical signal channels can only be solved by numerical calculation. The 

Split-Step Fourier Method is most commonly utilized methodology to understand the behavior of the solutions. It requires 

a number of time consuming studies to understand the tendency of solutions; nevertheless the numerical calculation 

does not always provide clear understanding of the tendency of solutions. Therefore, this paper tries to introduce the 

small signal approximation to under the effect of the XPM-induced modulation instability. In the small signal analysis, the 

optical signal is considered as the summation of the stationary components and the perturbative in-phase and quadrature-

phase noise components with the offset optical angular frequency of ωm as shown in Fig. 2. This model is considered to be 

applicable for the analysis of the digital coherent transmission systems, since the intensity of the optical signal is constant 

and the phase modulation format is employed in those systems.

Let small signal analysis be applied for each optical signal channel component and the electrical field amplitude of the 

signal light with noise at z be

　　　　　　　　 � （2.3）

　　　　　　　　 � （2.4）

Figure 1 

Figure 2 
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where i is optical signal channel number, Aci is the stationary amplitude of a carrier with the wavelength channel of i, ω 

is the off-set angular frequency of the noise components （treated as small signal components），  and ai″(z), bi″(z), ci″(z), di″(z) 

denote perturbative in-phase and quadrature-phase noise components with the offset optical angular frequency of ωm from 

the center frequency of the wavelength channels i.

The substitution of Eqs. （2.2）-（2.4） into Eq. （2.1） leads four frequency components, i.e. exp [−i (ω1+ωm)t], exp[−i (ω1
−ωm)t], exp[−i (ω2+ωm)t], and exp[−i (ω2−ωm)t]. The separation of real components and imaginary components leads eight 

simultaneous differential equations as follows:

　　　　　　　　

　　　　　　　　 � （2.5）

　　　　　　　　

　　　　　　　　 � （2.6）

　　　　　　　　

　　　　　　　　 � （2.7）

　　　　　　　　

　　　　　　　　 � （2.8）

　　　　　　　　

　　　　　　　　 � （2.9）

　　　　　　　　

　　　　　　　　 � （2.10）

　　　　　　　　

　　　　　　　　 � （2.11）

　　　　　　　　

　　　　　　　　 � （2.12）

where vgi is the group velocity of the optical signals in wavelength channel i, β2i is the first-order group velocity dispersion 

（GVD） in wavelength channel i, β3i is the second-order GVD in wavelength channel i. The fiber nonlinear coefficient γ is 

assumed as the constant value in each wavelength channel.

Now the modulation components in Eq. （2.4） are converted to

　　　　　　　　 � （2.13）

where ai′(z), bi′(z), ci′(z), and di′(z) are defined as

　　　　　　　　 � （2.14）

　　　　　　　　 � （2.15）
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　　　　　　　　 � （2.16）

　　　　　　　　 � （2.17）

The terms of ai′(z), ci′(z) are in-phase components and bi′ (z), di′(z) are quadrature-phase components. In the digital coherent 

optical fiber transmission systems, the phase noise power of the optical signals in wavelength channel i detected at an 

intra-dyne receiver is given as

　　　　　　　　 � （2.18）

where E2LO and B are the local oscillator power and receiver bandwidth at the intra-dyne receiver, respectively.

Therefore, the signal-to-noise power ratio （SNR） at the intra-dyne receiver is given as

　　　　　　　　 �（2.19）

Thus, the quadrature-phase noise components bi′(z), di′(z) should be calculated to obtain the phase noise power and the SNR 

at the intra-dyne receiver.

After the conversion of variables in Eqs. （2.14）-（2.17）， the eight simultaneous linear differential equations of Eqs.  （2.5）-

（2.12） can be greatly simplified as

　　　　　　　　

　　　　　　　　　　　          　 � （2.20）

　　　　　　　　

　　　　　　　　　　　　       � （2.21）

　　　　　　　　

　　　　　　　　　　　　       � （2.22）

　　　　　　　　

　　　　　　　　　　　　       � （2.23）

by introducing variables defined as :

　　　　　　　　 � （2.24）

　　　　　　　　 � （2.25）

Here, i and j denote wavelength channel number of the optical signals. The variable i takes the value of 1 or 2, while j 

takes the value of 2 or 1, respectively.

The eight simultaneous linear differential equation can be expressed in the form of a matrix
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　　　　 � （2.26）

where the differential operator D is introduced and the parameters are defined as:

　　　　 � （2.27）

　　　　 � （2.28）

　　　　 � （2.29）

　　　　 � （2.30）

　　　　 � （2.31）

　　　　 � （2.32）

The terms including ρi and/or σi indicates the coupling of wavelength channel i and j. The XPM  is incorporated in 

those terms.

 The further simplification can be achieved if the argument of Aci is considered as 0 [rad] and the average power of the 

optical signals in each wavelength  channel is the same, i.e. │A¯
c1│ = │A¯

c2│. Equations （2.28），（2.29），（2.31） and （2.32） become

　　　　 � （2.33）

　　　　 � （2.34）

　　　　 � （2.35）

　　　　 � （2.36）

Thus, Eq. （2.26） can be further simplified as

　　　　 � （2.37）
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The solution of a1(z), b1(z), c1(z), d1(z), a2(z), b2(z), c2(z), d2(z) includes linearly coupled eight terms respectively and each term 

is given in the form of

　　 � （2.38）

where λ and K are the eigenvalue of the eight simultaneous linear differential equation, cxi is the constant value determined by 

boundary conditions, and the value of cxi differs term-by-term basis in general.

Therefore, the differential operator D in Eq. （2.37） can be replaced by iK and the determinant of the matrix [M] is 

forced to satisfy

　　 � （2.39）

The further calculation of Eq. （2.39） leads

　　 � （2.40）

　　 � （2.41）

Those are the analytical eigenvalue equation of the optical transmission fiber taking into account the XPM-induced 

modulation instability. The first element of left-hand side term in Eq. （2.40） is the eigenvalue equation for wavelength 

channel i =1. The second element of left-hand side term in Eq. （2.40） is the eigenvalue equation for wavelength channel i 

=2. CXPM is the terms indicating the coupling of wavelength channel 1 and 2. K has eight solutions and those are considered 

as the eigenvalues of the optical transmission fiber taking into account the XPM-induced modulation instability. The 

analytical  solution of K provides the analytical noise component functions, a1(z), b1(z), c1(z), d1(z), a2(z), b2(z), c2(z), d2(z), which 

allows obtaining analytical transfer matrix of the optical transmission fiber including the XPM-induced modulation 

instability[14]. The implication of the obtained analytical eigenvalue equation will be evaluated and discussed in the next 

section.

3. �Implication of the eigenvalue equation including XPM-induced mod-ulation instability
The analytical eigenvalue equation of Eq. （2.40） obtained in former section is eighth order linear algebraic equation of K. 

Therefore, the eigenvalue equation not always provide analytical solution of K according to algebraic theory. However, the 

analytical solution can be obtained in some conditions and it is intuitive to evaluate the solution in the conditions.

3.1 �The case without XPM-induced modulation instability
As a first step, this paper addresses the case without the XPM-induced modulation instability. In this case, the value of 

ρ is 0 and the analytical eigenvalue equation of （2.40） becomes
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　　 � （3.1）

Thus, it is obvious that the eigenvalue equation can be decoupled into two components. The solution of K for the optical 

signal in wavelength channel i is given as

　　 � （3.2）

Therefore, the noise component functions, a1(z), b1(z), c1(z), d1(z), a2(z), b2(z), c2(z), d2(z) are also decou-pled per channel basis 

as well. Thus, the noise component functions are given as :

　　

　　　　　　　　　　　 � （3.3）

where the boundary conditions of the noise components in wavelength channel i at z = 0 are assumed as ai(0),  bi(0), ci(0), 
di(0) and i takes the value of 1 or 2. The  solution of the eigenvalue equation provides analytical transfer function of the 

noise components for the optical transmission fiber.

3.2 The case with zero GVD
This case makes β21 = β22 = 0 and greatly simplifies  the the analytical eigenvalue equation of  Eq. （2.40）． The further 

calculation leads

　　　 � （3.4）

The solution of K for the optical signals in wavelength channel i is given as doubly degenerated value with

　　　 � （3.5）

3.3 �The case without the group-velocity mismatch and second-order GVD
The analytical eigenvalue equation of Eq. （2.40） can be greatly simplified in the case that the group- velocity mismatch 

between wavelength channels can be ignored and the second-order GVD, β3i is 0.

In this condition, time t can be replaced by relative time T which has relationship of

　　　 � （3.6）

Let the electrical field amplitude of the signal light with noise at z be

　　　 � （3.7）

This case derives the condition of δ1 = δ2 =0 in the eigenvalue equation of （2.40）． Thus, the eigenvalue equation of Eq. （2.40） 

becomes
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　　　 � （3.8）

The solution of the eigenvalue equation can be analytically derived as

　　　 � （3.9）

This solution becomes unstable if the variable K becomes imaginary part for some values of ωm. The noise component 

functions of a1(z), b1(z), c1(z), d1(z), a2(z), b2(z), c2(z), d2(z) experience an exponential growth along the fiber.

In the presence of the XPM coupling, Eq. （3.9） can be unstable, if the condition

　　　 � （3.10）

is satisfied. In the case of

　　　 � （3.11）

Eq. （3.10） is expressed as

　　　 � （3.12）

　　　 � （3.13）

The most important conclusion from Eq. （3.12） is that the XPM-induced modulation instability can occur irrespective of 

the signs of β2i. Now, let the values of │β2i│, γ, and P be 10 [ps2/km], 2.0 [1/km/W] , and 2.0 [mW]. The value of fci becomes

　　　 � （3.14）

Thus, the frequency condition satisfying Eq. （3.12） is in the order of <10 [GHz], if the optical signals are transmitted 

in the dispersion shifted single mode optical fibers （DSFs）． The phase noise bandwidth of the XPM-induced modulation 

instability cannot be negligible in the case of DSFs. Although the condition is mitigated by half if the WDM-based 

coherent optical fiber transmission system employs standard single ode fibers （SMFs）， the XMP-induced modulation 

instability can be destructive factor to limit the system performance. Thus, the XPM-induced modulation instability is 

one of non-negligible factor in the fibers  widely utilized globally. The XPM-induced modulation instability need to be 

addressed in the process of the system design.

4. �Conclusion
This paper addressed the nonlinear phase noise including XPM-based modulation instability in the WDM-based 

coherent optical fiber transmission systems theoretically. Different from conventional approach based on numerical 

calculation of the NLSE, the small signal analysis successfully provided the set of eight simultaneous linear differential 

equations. The set of equations forms the eigenvalue equations of the NLSE. The XPM-induced modulation instability was 

clearly explained by using the obtained eigenvalue equations. The solution of the eigenvalue equation provided intuitive 

results that the XPM-induced modulation insta bility is the phenomena need to be addressed in the process of the systems 

design. The instable condition might occur in the frequency range of <10 [GHz] irrespective to the sign of the GVD β2 of 

the WDM-based coherent optical fiber transmission systems with the DSFs. The frequency range can be reduced by half 

in that with the SMFs.

Simultaneously, the results indicate that the importance of developing the methodology to reduce the non- linear phase 
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noise as the author proposed previously in Ref. 8. The author believe the proposed methodology employing Periodically 

Poled Lithium Niobate （PPLN） waveguides[6],[15] applicable even in the condition that the XPM-based modulation instability 

is dominant. It is preferable to conduct theoretical study to estimate the impact of the proposed methodology in the 

case that the XPM-induced modulation instability is dominant. To reach this goal, the noise component functions for the 

eigenvalues obtained, which was missing portion in this paper, should be addressed.
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