めっき膜のヌレ性と塗膜の密着と関連性

株式会社太洋工作所
辻隆之、西村省一、中原裕司
Relation between Abhesion of Paint Film and Coatings in Plating
Taiyo Mfg. Works Co., Ltd.
Takayuki TUJI, Shoichi NISHIMURA, Yuji NAKAHARA

1. はじめに

めっき膜への塗膜の密着性については、種々の方々より調べることが出来るのが本報ではクリアー塗料を用いてめっき膜へのを検討した。即ち、めっき膜の相違、めっき表面の経時変化及びめっき後の乾燥方法の相違等によるクリアー塗膜の密着性への影響、めっき上上のクリアー塗膜の密着性を向上させる処理方法等について検討した。

2. 実験方法

2.1 めっきの種類及び工程

ABS樹脂試験片（5×9cm）を用い、図1に示したようにめっき処理は、下地めっき、最終めっき、乾燥の順の3工程とした。また、それぞれの工程の組み合わせは、直線で結んだ16通りとし、各試験片を作成した。これからの試験片について、めっきの種類および乾燥方法の相違によるめっき表面のヌレ性が、時間の経過ごに伴ってどのように変化するかを接触角（θ、以下略する）を測定して比較し、併せてクリアー塗膜の密着性との関連性をも調べた。なお、ペロアニッケル浴にはS社製の添加剤を加えた。

下地めっき

最終めっき

乾燥方法

光沢ニッケル

光沢ニッケル

ベロアニッケル

ベロアニッケル

スズーコバルト合金（フツ化浴）

銅一スズ合金（シアン浴）

銅一スズニッケル合金（ビロ浴）

フレオン

図1、めっきの種類および乾燥方法
2.2 後処理工程
めっきを行った各試験片について、めっき工程と乾燥工程との間に図2に示した5種の後処理を行い、乾燥処理後クリアー塗装を行って密着性試験によりその効果をしらべた。

<table>
<thead>
<tr>
<th>最終めっき</th>
<th>後処理</th>
<th>乾燥</th>
</tr>
</thead>
<tbody>
<tr>
<td>光沢ニッケル</td>
<td>無</td>
<td>純水</td>
</tr>
<tr>
<td>ベロアニッケル</td>
<td>電解クロメート</td>
<td></td>
</tr>
<tr>
<td>スズ－コバルト合金</td>
<td>電解クロメート＋高温水洗</td>
<td></td>
</tr>
<tr>
<td>銅－スズ合金</td>
<td>浸漬クロメート</td>
<td>フレオン</td>
</tr>
<tr>
<td>銅－スズ－ニッケル合金</td>
<td>浸漬クロメート＋高温水洗</td>
<td></td>
</tr>
</tbody>
</table>

図2. 後処理工程

2.3 乾燥方法
めっき処理を行った後、水洗し、純水でさらに洗浄した後熱風乾燥する方法（以下純水乾燥と略す）およびフレオンで洗浄後自然乾燥する方法（以下フレオン乾燥と略す）の両者で行った。

2.4 クリアー塗装法
図1および図2の方法でめっき処理した試験片にO社製のクリア塗料を手吹きにより塗装し、7℃で45分間乾燥した。

2.5 接触角測定法
各試験片について、接触角計（協和界面科学製CA-D型接触角計）を用い、蒸留水を接触液として滴下直後（30秒）の接触角（θ）を測定し、ヌレ性を比較した。

2.6 塗膜の密着性試験法
塗膜面に直交する縦、横11本ずつの平行線を1mm間隔で引いて1cmの中に100個のマス目が出来るようにカッターナイフで基盤目状の切傷をつけ、セロハンテープをはり付けてそのはく離程度により密着性を判定した。また、この方法で行った後に、セロハンテープをはり付けて基盤目状の傷を付けていない場合の密着性をも調べた。

3. 実験結果
3.1 接触角への影響
3.1.1 めっきの種類による影響
下地めっきとして光沢ニッケルめっきとベロアーニッケルめっきの両者について行ったが、いず
— 解 説 —

れもベロアニックルめっきを行った方が、光沢ニッケルめっきの場合より接触角（θ）が大きくなり、
（合金めっきの下地でも同じ傾向を示した。）また、ベロアニックルめっきまたは光沢めっきのみより、その上に合金めっきを行った方が、さらに大きい値（θ）を示した。

3.1.2 乾燥方法による影響

純水乾燥よりフレオン乾燥の方が、大きい接触角を示した。しかし、乾燥後放置時間が長くなる
に従って両者の接触角の差はほとんどなくなった。

3.1.3 放置時間による影響

図1に示したように種々のめっきを行ったが、本報で用いためっき膜では、その差がほとんど認められなかった。純水乾燥した場合は、めっき後約1日間では低い接触角（θ）を示したが、放置時間が長くなるに従って急激にθは大きくなっていく。また、フレオン乾燥した場合は、めっき直後でも接触角（θ）は大きく、純水乾燥の様に急激な変化が見られない。めっき後10日位までは、フレ
オン乾燥した試験片の方が大きいθを示したが、それ以降はほとんど同じ値になった。結果を図1
～4に示す。

3.2 クリアー塗料の密着性への影響

3.2.1 めっきの種類による影響

テープテストおよびクロスカット法で、クリアー塗料の密着性を比較したが、ベロアニックルの
方が光沢ニッケルより良い結果を得た。また合金めっきでは、Cu—Sn 合金，Cu—Sn—Ni 合金，

---

光沢ニッケル

フレオン

純水

ベロアニックル

フレオン

純水

5点測定の平均値

放置期間

図1 めっき表面ぬれ性の経時変化
Sn-Co 合金の順に密着性は悪くなった。結果を表1に示す。

3. 2. 2 乾燥方法による影響
いずれの試験片も放置時間が長くなるに従って、密着性は低下した。図1～4）

図2 合金めっき表面ぬれ性の経時変化

図3 合金めっき表面ぬれ性の経時変化
図4 合金めっき表面の電位の経時変化

表1 密着性試験結果

<table>
<thead>
<tr>
<th>位置</th>
<th>メッキの種類</th>
<th>1</th>
<th>4</th>
<th>7</th>
<th>12</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>純Ni</td>
<td>光反射</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Sn-Co</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>Cu-Sn</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>Cu-Sn-Ni</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>水</td>
<td>光反射</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Sn-Co</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>Cu-Sn</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>Cu-Sn-Ni</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>アルミ</td>
<td>光反射</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Sn-Co</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>Cu-Sn</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>Cu-Sn-Ni</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>ベロア</td>
<td>光反射</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Sn-Co</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>Cu-Sn</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>Cu-Sn-Ni</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

※ テスト方法　テストテスト　NG数／サンプル数
メガタスクテスト
以上の実験結果より、接触角θが高い程密着性が低下する傾向を示した。しかし乾燥方法による影響では純水とプレオン共に接触角(θ)がほぼ同じであったが、密着性はプレオン乾燥の方が悪くめっき表面のぬれ性と密着性を関連づけることは困難であった従って接触角の測定結果のみで密着性の良否を判断するのは困難であった。

3. 3 後処理法による密着性への影響

<table>
<thead>
<tr>
<th>後処理法</th>
<th>乾燥方法</th>
<th>放置日数</th>
<th>1日</th>
<th>6日</th>
<th>10日</th>
</tr>
</thead>
<tbody>
<tr>
<td>無</td>
<td>純水</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>プレオン</td>
<td>△</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>電解クロメート</td>
<td>純水</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>プレオン</td>
<td>△</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>電解クロメート + 高温水焼</td>
<td>純水</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>プレオン</td>
<td>△</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>後処理方式</th>
<th>乾燥方法</th>
<th>放置日数</th>
<th>1日</th>
<th>6日</th>
<th>10日</th>
</tr>
</thead>
<tbody>
<tr>
<td>無</td>
<td>純水</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>プレオン</td>
<td>△</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>高温クロメート</td>
<td>純水</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>プレオン</td>
<td>△</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>アルカリ脱脂</td>
<td>純水</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>プレオン</td>
<td>△</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

以上の様にめっき後、後処理を行っても、密着性には殆ど差はなく、密着性を大きく改善することは出来なかった。

4. まとめ

めっき上のクリアー塗料の密着性について検討してきたが、めっき膜の種類によって密着性に差が生じたのはめっきの折出状態の相違による影響と考えられる。また、プレオン乾燥したもののについて、後処理を変化させても改善できなかったのは、水置換剤が最終表面に残っているためで、めっき表面と水置換剤との間で、剝離したためと考えられる。

めっき皮膜の外観変化はほとんど無い様に見えるが、実際には刻々と変化をしており、ごみや水分が付着するため放置時間が長い程密着性が低下してくる。これらのことからめっき表面のぬれ性を追跡し、密着性に関連付けようと試みたが、密着性に関しては、表面のぬれ性以外の要因が、複雑に関与する為、接触角だけで判断するのは困難であった。

今回の実験では、密着性に影響を及ぼす要因の一部と傾向がわかった程度で、密着性を改善するまでには至らなかったが、今後めっき表面の酸化や塗装条件についても検討する。